Updating Hardy, Littlewood and Pdlya
with Linear Programming

Larry Shepp

Abstract Von Neumann’s development of linear programming [8] postdates
the great book on inequalities of Hardy, Littlewood, and Pélya [7]. I believe
that there should be a systematic updating of [7] using the linear program-
ming or convexity methodology that I will illustrate here with examples and
that this approach will produce new insights or at least new proofs. I ex-
pect all the inequalities of Chapter 1 of [7], at least, can be proved by linear
programming methods, but I am not sure of this and discuss some known in-
equalities that I do not know how to do with the linear programming method.
At the end, I give an example of an inequality that provably cannot be done
with convexity methods, for which I have no proof at all, just convincing
evidence that it is true.

1 Proving Two Simple Inequalities with Convexity
Methods

Some of the the standard inequalities that mathematicians use can be proven
with convexity arguments or linear programming. Perhaps others cannot, so
we might say that an inequality is “simple” if there is a convexity based proof.
The Cauchy-Schwarz inequality, which may be the most famous and useful
inequality ever found is simple in this sense [12], but there are so many proofs
of it that it seems that almost any method will give one, so it may be that
it is simple in any sense. The Schwarz inequality can be stated for a general
measure space but it easily reduces to the statement that
EX2EY? > (EXY)",
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where X and Y are any r.v.’s on a common probability space, 2. Equality
holds if and only if X and Y are proportional.

To give a convexity based proof, one thinks of the probability measure,
1, on the space, (£2,F, P), on which X and Y are defined as an element of
the convex set of all probability measures. Then one finds a linear functional,
L(u), of p, which is based on a function, fr(z,y) which must be everywhere
nonnegative and whose integral, L(u) = [, fo(X,Y)du, would therefore be
nonnegative. This would then give an inequality which must then be the
same as the Schwarz inequality. At this stage, this is not possible because the
Schwarz inequality by its very nature is non-linear in y - indeed both terms,
(EXY)? and EX?EY? are quadratic when looked upon as functionals of .
Instead we must encode the quadraticity in the statement in order to linearize
the problem and we do this by going to the product probability space, 2 x (2,
with the product measure, so that X;,Y; and X,, Y5 are two independent
pairs of r.v.'s on the product space each with the joint distribution of X,Y.
Note that for any four numbers, z1,y1, 2, 2, the homogeneous polynomial

f(@1,y1,22,92) = 2393 + 23y7 — 2z @202 = (T1y2 — 1122)* > 0,
is indeed nonnegative. If we now substitute X;,Y; for z;,y;,7 = 1,2 and take
expectations, using the independence of r.v.’s with different subscripts we
obtain that

2EX?EY? > 2(EXY)?
and the proof is complete after dividing by 2. The only case of equality is
when X Y; — XY, = 0, that is when the ratios T“} are constant since they
are independent for i = 1,2 and it is easy to see that two independent r.v.’s
which are equal must each be constant. We have linearized the problem and
we have encoded all the conditions we need to make the proof work. This is
what one does in linear programming, and so this is a “linear programming”
or “convexity” proof. This proof appeared in the paper with Ingram Olkin
[9], which uses the same technique to prove a more difficult inequality due to
M. Brown, among others which I now discuss. I reproduce this material here
for clarity and convenience.

M. Brown’s inequality [2] states that for positive and independent r.v.’s on
a common probability space

xfy 5 54 5}
Eomve ~ Exr  Eyx

Equality holds if and only if both X and Y are constants.

The Brown inequality is proved in [9] by the same method, and the en-
coding of all the conditions is similar. I refer to [9] for some details but the
idea of the proof is completely analogous. We first “clear of fractions” by
multiplying by EX 2EY "2E(X +Y)~2, and so it is equivalent to show that

EX1TEX_2EY‘2 - Etﬁg(EX_lJEY_2 +EX2EY ! >0.

To use the linear functional or convexity method as above for the Schwarz
inequality, we again construct the product probability space on which two
independent pairs of independent r.v.’s X;,Y; are defined. Then f we could
show that for any four numbers z,, v, z2,y> the function
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f(@1,91,22,92) = sy mgr = G (@2 Y + 2%y )
is everywhere nonnegative, then it would easily follow that

Ef(X:,Y1,X3,Y3) >0
which would then prove the Brown inequality, but (alas) f takes negative
values. Alternatively, if we could show that f(z1,y1,Z2,y2) + f(22,¥2,21,¥1)
is everywhere nonnegative, then the same proof would give the Brown in-
equality because upon substituting r.v.’s X;,Y; for z;,y; we would get the
desired inequality after dividing by two. Again (alas), there are numbers
xi,Yi,1 = 1,2 for which this form is also negative. Fortunately, we have one
last chance. If we can show that the doubly mixed (symmetric in z;, x; and
in y1,ys) form

(@1, 1, %2,92) + f(21,Y2, T2, Y1) + f(@2, 91,21, 92) + f(z2,y2,21,41) >0
for all positive values of z;,y;,7 = 1,2, then substituting X;,Y; for z;, i,
taking expecations and using the independence of X, X»,Y1,Y> we get the
Brown inequality after dividing by 4. The last inequality is true and the
proof is easy provided one does it in the right way. I refer to [9] for the
details. Note in the Brown inequality we have to encode the independence
and all the symmetry of the problem, but it is all quite natural.

2 An Inequality with Both a Convexity Proof and an
Alternative Proof

Another example of how linear programming methodology can provide new
inequalities is taken from a paper of J. Reeds and M. Win [10]. Some re-
cent work in wireless communications engineering [3] raised the problem of
determinmg tht best constants L and U such that

?--1 L+nk fo H;. 1 $+a,, m(dz) < Hk 1 U+m‘
hold umformly for all values of a;, > 0,1 < k < n, where

If we can pmve the followmg general result for a given probability measure
w4, and if it holds for p(dz) = m(dz), then we can easily find the best values
of L and U.

Given a probability measure p on [0, %), and positive ay, define c(a, u) =
clay,...,a,, u) to be that positive real value of ¢ such that

o Hk 1 iiﬁt (dz) =1

Theorem 1. For any probability measure p, c(a, ) is monotone increasing
in each ay.

More precisely, c(ay, ..., an, p) is defined by the implicit equation
H(ay, ..., 00, pyclar,- - an,0)) =1,

where H is defined by
H(a1y ooy @aiphr€) =[5 [Teey S52hu(dz).

r4ap
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One can interpret ¢(ay,...,an, u) as a generalized mean, Mgy[u], in the
sense of [7], Chap. VI, for a suitable function ¢(z) = ¢(zr,a1,...,a,). A
generalized mean wrt. a strictly monotonic function ¢(z), denoted My[p], is
defined by the equation

$(Molu]) = [ $(z)u(da).

In our case, ¢(z,a1,...,8,) = [[} 1ﬁla_
C(ﬂ.]_, LS am,u).

We prove by linear programming arguments that the desired monotonic-
ity follows for any probability measure u. It can alternatively be proved by
applying a criterion of [7], Chap. III, which gives necessary and sufficient
conditons on pairs of monotonic functions (¢, ) for My[u] < My[u] for all
pt. For details of the alternative proof see [10] [Appendix]. Our proof seems
simpler but it is also indirect.

We reformulation the problem by first implicitly differentiating H with

respect to a; which gives
8H(a,u,c) dela,u) ) OH( a ,u ) =
Ba; |C c(a,pu) [ Ba; ] -

Clearly % gH - (a,u,c) > 0,s0to show that c(a, ) is increasing in a; it suffices
to show that

H;i = %%%lkzc{a,p} <0,
whenever H(a,pu,c) = 1.

This leads to consideration of the set C(a,c) C R? of possible values of
the pair
(H(a, pu,c), H;(a,u,c)) as u ranges over all probability measures, for fixed
¢ and a. Indeed, the closure of C(a,c) is the convex hull of the union of
(0,0) € R? and the curve

for z > 0 gives My[u] =

= (h(z), hi(z))

in R? traced out by z € [0,00), where

W = oG (1)

z + ay
=1 BT G

_ c+ ay
lm); = aa, (Haw—ak)

c=c(a,u)

Then ~
H:/O h(z)u(dz)

and

H—g — /:D h%(:.i:),u(dx)

The main fact that we use about C(a,c) is a linear inequality.
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Lemma 1. There exists a A > 0 such that for all (s,t) € C(a,c),
s+ At <1.
The Theorem follows directly from the Lemma since from
H(a,p,c) + AH;(a,p,c) <1
and H(a,u,c) = 1 it follows that H;(a, u,c) < 0, as desired.

Proof. We will exhibit a A > 0 such that for all z > 0,

(@) + M) <1 ©)
and . )
o) = | - | M) ®

Integrating (2) against p will then finish the proof.
To see that such a A exists, we rearrange (2) into the equivalent form

n

S(JE'}'G:')H

k=1

T —c T + ag

ctay

T+ a;+ A [4)

¢+ a;

The right hand side of (4), which we are to prove, is a polynomial function in
& with positive coefficients, and hence convex on [0, 00). The left hand side is
an affine function of x, agreeing with the right hand side when z = ¢. With
appropriate choice of A the left hand side’s derivative matches the right hand
side’s derivative at ¢ = c, too. For that choice of A, (4) will hold for all z > 0.

It remains to check the positivity of the chosen A, namely, of the solution

of
d z— d S z+a
L) ghetde— = = (z+a:) ] £,
dz|,_, c+a; dz |,_. i ¢+ ag
that is, of
A IS |
1+ =1+ (c+ai) ;
¢+ a; k:1c+a"'

But clearly

ks
1
A=(c+ai)?d >0,
k:lc—i_ak

which finishes the proof.
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3 Discussion

The argument given here follows the pattern of a typical application of the
“weak duality theorem” of finite dimensional linear programming. Finite di-
mensional linear programming deals with the problem of maximizing a linear
form such as (c, x) with respect to 2 € R" subject to constraints of the form

Z?:l AT = bg i= 1,...,ma:j Z 0 j'= 1,...‘7'&.

Associated with each such problem [13], pp. 73,74, is its dual problem,
that of minimizing (v, b) with respect to y € R™, subject to the constraints

Z;’;Iyga‘;jZCj j:1,”.,n‘

This in fact is not the “standard form” for presenting primal and dual
linear programming problems, but an equivalent one which matches this ap-
plication more exactly.

The weak duality theorem [13], p. 58, asserts that if z € R™ and y € R™
satisfy the constraints of the original problem and of its dual, respectively,
then (e, z) < (y,b).

In our case, working formally and ignoring all differences between finitely
many dimensions and uncountably many, consider the problem of finding a
finite signed measure p on [0, 00) which maximizes the linear form H;(u) =
J5” hi(z)p(dz) subject to the constraints

17 1u(dz) = 1; f;° h(z)p(dz) = 1; u(dz) > 0 for all = > 0.

The dual problem would be that of minimizing u + v over R?, subject to
the uncountably many constraints

u-1+vh(z) > hi(z) for all z>0. (5)

The weak duality theorem would then say that if y and (u,v) satisfied
their respective constraints, then

[ h@mtde) suto. (6)
0

But the A > 0 of the Lemma obeys (2), namely h(x) + Ah;(z) < 1 for all
z > 0, which means (u,v) = (1/X, —1/)) satisfies the constraint (5). So (6)
would then imply

By ]0 ha(z)(dz) < 0,

which of course gives us the Theorem.

Although our proof of the Theorem and Lemma would have been perfectly
comprehensible to mathematicians such as Caratheodory and Markov work-
ing in the early 1900s, the formalism of linear programming duality — which
seems to have originated half a century later [13], p.87, — would not have
been available to them.
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4 Examples of known inequalities where there may or
may not be a convexity proof

My next two examples are incomplete and suggestions for further work; I
suggest trying to prove each of the Schur and FKG inequalities via convexity,
which may or may not be possible.

Schur: It would be nice to see a proof of Schur’s inequality via convexity.
Schur’s inequality (Morehead’s inequality in [7]) states that if f(z1,...,2,)
is permutation symmetric in its arguments z; > 0, and differentiable, and if

2f(z) ~ 0f(z)

wheflglver :t:lmzz T2, then f(z) > f(y) whenever y = Az where A is a matrix
with nonnegative entries and row sums one. An example is f(z) = Y I, «7.
It’s clear that the set, C, of all such f is convex and so there has to be a
linear functional,

Fuy(9) = [ 9(2,y, 2)pa,y(d2)
for which the hyperplane f(z) — f(y) > 0 for all f € C. Indeed the usual
proof as in [7] gives such a y, if written from this point of view, see also [9].
Is p unique?

FKG: It would be nice to see a proof of the FKG [6], inequality via
convexity. This extremely useful inequality came along after [7]. Ahlswede
and Daykin [1] gave a later and sometimes more useful version [5], but I will
discuss only the original version. Here A is a partially ordered set which is
also a distributive lattice, and g > 0 is a function on z € A satisfying the
property P: u(z V y)u(z Ay) > p(z)u(y), where z V y is the unique largest
element of A smaller than both z and y and « A y is the unique smallest
element of A larger than both. If now f, g are a pair of monotinic functions
on A, f(z) < f(y) and g(z) < g(y) when z < y, then the FKG inequality
asserts that

Y eea f(@)9(@) Xyea uy) 2 Xpen f(@)1(2) Xye s 9(W)p(Y)-

A new proof has been given by Siddharti Sahi [11] in this volume, but I would
like to see a convexity proof. There are at least two approches to a convexity
proof: one can look at the convex set of all f satisfying the given inequalities
with g, u held fixed; or one can fix f,g and try to imitate the proof of the
Schwarz or Brown inequality. It is well known that property P is not “sharp”,
but how to make a better general condition on p for the same conclusion is
unclear. It’s a long shot, but maybe convexity can help.

An example where we can show that there is no convexity proof.

Finally, I discuss a conjectured inequality that I will show cannot be proved
by using convexity. I believe it to be true but I have no proof for it. This
example has not been published before and I owe the formulation of the
problem to J. Denny.

Let X,Y denote a pair of symmetric (about zero) independent r.v.’s with
common variance o2, given, and with cumulative distribution functions, F, G,
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respectively. Define the functional F(F,G) = P(X +Y > 1), and let ¢(o)
denote the supremum of F(F, &) over all such choices of F, G, so that,

¢(c) =supxy P(X +Y > 1)
under the constraints that each of X and Y are symmetric about zero, each
has variance 2, and X,Y are independent. We want to explicitly find ¢(c).
First note that

F(F,G)=P(X+Y > 1) = [%_[* x(z+y > 1)F(de)G(dy)
is bi-linear in the pair F, G but is not convex. This causes the problem and it
becomes even worse (quadratic) if we impose F' = G as is the case if X ~ YV
are assumed to have the same distribution. In case F' and & can be chosen
separately, the for each fixed F', F(F, () is linear in G and for each fixed G,
F(F,@G) is linear in F. Since the class of symmetric distributions with given
variance is convex, a theorem of Lester Dubins [4], says that for the extreme
“points” at which the supremum of F(F,G) must occur, each of X and Y
have at most 4 values. Thus the answer can be numerically determined via
a search through a 4 dimensional parameter space. This leads me to believe
that I know the exact formula for ¢(o) for every o, but a rigorous proof that
the formula is correct escapes me. For ¢ < ¢ where ¢ ~ .724, I indicate next
that a rigorous proof might be devised based on linear programming, but for
o > ¢, it can be proven that the linear programming argument breaks down
and some other method of proof has to be found. I do not know how to move
ahead to find an honest proof that the search gives the correct maximum.

If we relax the independence condition on X.,Y, which is a non-linear
condition, and replace it by the weaker condition that

E[X? - 0%]Y] =0 and

E[Y?-¢%X]=0
which of course holds if X,Y are independent, then the problem becomes
a linear programming problem (infinite dimensional, but linear). We have
linearized the problem and in the wider class of X, Y pairs satisfying the last
two conditions if it turns out that the maximum value is just the one obtained
by the search then this in principle would give a rigorous proof that the search
found the optimum. For ¢ <~ .724 the upper bound seems to coincide with
the value for ¢(o) obtained from the search (at least numerically) which would
then give a rigorous proof that there is no “duality gap” between the linear
and nonlinear problems. But we show that a duality gap does exist for larger
o. The best pair under the relaxed conditions on conditional expectations
above are no longer independent for ¢ > .724. Some method other than
linear programming will be required to give a rigorous proof for these values
of .

We find convincingly that the maximum value of ¢(o) = P(X +V > 1)
taken over all pairs of independent symmetric r.v.’s X, Y each with variance
< o7 strictly increases in ¢ for 0 < ¢ < 1, and thereafter, i.e., for ¢ > 1,
(o) = %, although there is no i.i.d. pair that achieves the value % for any
value of . The range [0, 1] breaks up into 5 intervals, (o;,0i+1),i =0,...,4,
with g = 0,0, = %,04 = 1. In each interval the optimal X, Y has a different
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form and in the first, third, and fourth interval the optimal pair are i.i.d.,
but this is not so for the second and fifth intervals, which seems surprising,.
More precisely, we have that

I. for 0 < ¢ < o¢ an optimal X, Y pair (not necessarily unique) is identi-
cally distributed and each of X, Y is equal to +1 w.p. ";2—2 and equal to zero w.p.
1 — o2, Tt is easy to verify that this makes ¢(0) = 0% — 30 for 0 < o < 0.

II. for g < 0 < % = 01, surprisingly, the (apparently unique up to an

interchange of X,Y) optimal X,Y pair is not identically distributed (except

at o = %) One of the variables, say X has the distribution X = +¢ w.p. %,
while ¥ has the unequal distribution ¥ = (1 — o) w.p. E(TU;E)'? and Y =0
w.p. 1 = (7Z)%. Of course X and Y could be interchanged here so there are
at least two different optimal pairs now. It is easy to check that for ¢ in this
range this gives ¢(0) = 3(;%;)*. Here gg ~ .46 is the root of the quartic
equation
7~ 30t = 35"
required to make ¢ continuous at oy (smooth-fitting).

ITI. for the next range, 5 < o < 01 ~ .65, the optimal X, Y pair are again
identically dlstrlbuted and

X~Y _i“‘wp (02 — 1) and

X~Y= :i: W.p. 7 i — - U%)
This gives the value d}(cr) o+ 5ot — ot

IV. for the next range, oy < o < g2 ~ .78, the optimal pair X,Y is again
identically distributed and has the same distribution as the earlier identical
pair for 0 < o < gy and the same formula for ¢, ¢(o) = o? 204

V. for o3 < ¢ < 1, the optimal pair is not identically distributed and have
the distributions

X =+1 wp. %03, X =0w.p. 1-0?

Y =42 w.p. -";,Y:{]w.p. 1—%;.
This gives the va,lue for this range of o as

¢(o) = 3= 5, <o < 1.

The above paltlcular choices of the pair X,Y give a lower bound on ¢(c).
In the next section we will use linear programming, or duality, to obtain an
upper bound which is tight for some o, but alas, not for all o. The upper
bound will be a "linear programming bound” despite the fact that we are
maximizing a non-linear (actually bilinear) functional:

PX+Y >1) f f x(z +y > 1)F(dz)G(dy)
which is linear in the d. f F of X for each fixed d.f. G of Y, and is linear in G
for each fixed F, but is not linear in the pair F, G since it involves products.
It is even “less” linear if X ~ Y is imposed as an extra condition - more on
this later. It is well-known that a linear functional on a compact convex set
C is maximized at an extreme point of C'. Here C' might be the set of pairs
F,G with G fixed and F the d.f. of any symmetric X with variance 0. It’s a

4
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consequence of the Dubins-Caratheodory theorem that an extreme point of
C is a distribution with at most 4 points in its support which is a set of the
form {—b, —a, a,b} or {—aq,0,a}, or {—a,a} or (for o = 0, just {0}). Similarly
for each fixed F' the best G has at most four points in its support. It follows
rigorously that the best F, G are each “four-pointers”. A search of this set of
distributions for each of F,G led to the conjecture above for ¢(¢). Each of
the above 4 particular choices for X,Y gives a lower bound for ¢(c), and the
maximum for each o of the 4 lower bounds is also a lower bound for ¢(o)
which we call ¢o(o). Note that pair I (or IV) can be used for any value of
o <1 but ILis allowed for ¢ < %, Il for o € [}, 2], and V for o € [£, 1].

We summarize this as follows, ¢(¢) > ¢o(o), where:

do(0) = 0% — 304,0 < o < 0,

do(o) = ‘i‘ﬁg,ﬂ'ﬁ <g<o1=3%,

¢U():12%33+ “%Ua1,<,0<02a

¢o(o) —‘0' 02 <0 < 03,

bol0) = %52 oy <o < 1,
where the values of 0,7 = 0,1,2,3 are defined to make ¢g(c) continuous,
and each is the solution of an algebraic equation of degree at most four. Note
also the value of ¢o(c) = 5 for 0 > 1 and since P(X +Y > 1) < } because
X +Y is symmetric, we see that ¢(c) = 1 for o > 1.
Remark: Under the additional constramt that X ~ Y are equi-distributed
it is impossible to make P(X +Y > 1) = 1. Maximizing P(X +Y > 1)
under this additional constraint is a harder problem because this functional
of the d.f. of X is non-liear (quadratic). The optimal X is not necessarily a
four-pointer.

A graph of ¢o(c) is shown in Figure 1.

figure=figmaxprob.eps,angle=-90

Fig. 1 The maximum value of P(X +Y > 1) as a function of ¢ for independent and

symmetric r.v.'s X, Y with variance o2.

At this point we only know that ¢(o) > ¢o(c). We wanted to show that the
two functions are the same, but we now believe that this is actually false in
general although it seems to hold for ¢ <~ .724. In the course of conducting
the search our “best” guess kept getting better especially as we also studied
upper bounds given in the next section. Searches are only as good as the
searcher, and it’s better to have a rigorous proof that you have found the
least upper bound.

Upper bounds

Even though the above problem is not linear, as remarked above, we may
use a Chebyshev method, or a “duality” method to obtain upper bounds for
¢(o). Supppose for a given value of 6 there is a function f = f(z),0 < 2 < 00
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for which |f(z)| < A+ Bz? for some fixed constants A, B, and for which for
all values of z,y € (—o0, ),

(@) - o%) + f(y) (@ — 0?) +6

>ix{z+y >+ x{e-y> 1} +x{-z+y>1} +x{-z-y >1}).
Then @ is an upper bound on ¢(o). The proof is to observe that if X (w), Y (w)
are defined on some probability space {2, and X,Y are independent, symmet-
ric, and have variance o2, then we may set z = X(w),y = Y (w) and take
expectations. By the symmetry, each of the four expectations on the right is
the same, i.e. P(X +Y > 1, and so this immediately gives that for any such
X,Y pair, P(X +Y >= 1) < 6. The infimum of all such 6 is called ¢;(o)
and we therefore have

90(0) < #(0) < ¢1(0)-

We can make the problem slighly simpler if we take into account the
symmetry. All we really need is to find f(z) for a given @ such that for all
x,y € [0,00), rather than on the whole line, we have

[ - 0% + W)@ —0?) +0 > $0xdz+y > 1+ x{lz =3l > 1. (7)

Then we can merely set f(z) = f(—z) to define f for negative values of z,
and we can easily verify that the first set of inequalities hold for all z,y. Note
that we do not expect that f will be unique. We remark that, of course, for
@ < ¢o(o) such an f cannot exist.

If for some o, the strict inequality ¢o(o) < ¢1(c) then there is a “duality
gap”. The problem of minimizing # subject to the linear constraints above is
a (continuous) linear programming problem in the infinitely many unknowns,
f(z),0 < z < 0o and . Minimizing #, which is a linear form in the unknowns,
subject to the inequalities (7) above for all z,y is thus a linear problem. The
dual problem is equivalent to maximizing P(X' 4+ Y’ > 1) over all jointly
distributed symmetricr.v.’s X', Y’ which now are not necessarily independent
but which satisfy E[X? — ¢®|Y = y] = 0 and E[Y? — ¢*|X = z] = 0 for all
z,y € [0,00). To see this, observe that if we multiply in (7) by t(z,y) > 0 for
z,y in a discrete finite set S and add we get the latter problem provided that

T =1

>, toy(2® —0?) =0, and

Zy tzy (¥ —0%) =0,
which becomes the latter problem if we interpret ¢, as P(X = z,Y = y).
This conditional expectation condition is of course weaker than independence,
if X,Y are actually independent then the conditional expectations vanish
because the variances are o2, Thus the dual version of the upper bound
problem drops the independence assumption. Does this increase the value of
¢(c) and leave a “duality gap”? Alas there is gap for some values of o as we
will see below, but for small ¢ <~ .724 there seems to be no gap.

We believe one can produce f(-,0) for o <~ .724, which satisfies (7), at
least numerically on a fine lattice z,y consisting of all multiples of a small
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spacing. This seems to leave little doubt that there is no duality gap for these
cases. A rigorous proof that the inequalities (7) hold for the given f’s for all
z,y and these o’s still needs to be supplied.

For the first range, 0 < o < o, the f, which was found by discretizing

the problem to a finite set of values, zy,...,2,, and then solving the linear
programming problem of finding the least § for which the inequalities (7)
hold for some values f; = f(z;),i = 1,...,N. We then guessed the solution

to the continuous version by finding the set of i, j for which equality holds in
the inequalities with @ = z;,y = ;.
This led to the guess that the inequalities (7) hold with equality when
0<o <o wheny =y(z) =z, > %, which indicates that, for
bo = 435:1(01) =0? - %0'4,
19
f(z) = §T§5_—§r):$ > 3.
The linear programming solution also indicated that there is a function, a =
a(o) for 0 < ¢ < o such that for 0 < z < a, equality holds in (7) when
y =y(z) = 2 + 1. This indicates that
2 2
1_gy— 3002 -0?)
2 kY -
f(il') = (1+:;;_}32 : 1 O S T S a,
and also whena < z < %, that equality holds when y = 1 — z which, in turn,
indicates that e
y i
F(@) = (& — o) 5 Sh (1 -2)? —0%a < < L,
and f(z) is defined for all > 0. There is only one value of a(c) that makes
f continuous and consistently defined. Thus for example for ¢ = .1 the value
of a(o) ~ .1777, found only numerically. A graph of f(z,o = .1) is given in
Figure 2.

figure=figjackf.1.eps,angle=-90

Fig. 2 The function f(z,0 = .1) in (7) giving the least upper bound.

I tried to use the same technique to guess a function f(z) = f(z,0) for o
in the second range og < 0 < % but I could not verify all the inequalities and
I am not sure whether or not this case has a duality gap or not.

The linear program now gives different y = y(z) where equality holds. It
now indicates that for z > 1 — o, equality holds when y = z, which indicates

that with the new optimal value for 8,
1 e

01 = do(0) = ;7552
f(z) = stz 2 1-0.

For this second range of o, 09 < ¢ < 1, there is a threshold b = b(0) < o,
analogous to the threshold a(o for the range 0 < ¢ < gy and now, for
0 < z < b, equality holds when y = 1 + z, whereas for b < = < o, the Lp.
indicates that y = 1 — z. This leads to the guessed f obeying the equations
f@)((1+2)?-0?)+ f(z+1)(a® —0?) +6, =1, for0<z < b
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which determines f(z) on this range since we know f(z + 1), except that we
don’t yet know b, in particular we now know f(0). Next,

f(z)(0% —0?) + f(0)(2* —0?) + 6, =0,forc <z < %
which determines f(z) in this range. Next.

fle) (-2 -0?)+ fQ-2z)(a® —0®)+ 6, = %, for b < z < &, for
b<z<g,
which determines f(z) in the range b < z < ¢ (noting that this range reflects
into [1 — 0,1 — b] where f is known). There is a unique b which will make
f(z) continuous on [0, 3]. Supposing b is so defined (there is an equation
for b and we have found numerically, for example, for ¢ = .48 > oy, that
b(o) ~ .311784. The rest of the range (b, ;) reflects into (3,1 — b) and since
1 —b> 1— o this allows us to determine f(z) on (1,1 — o). This makes f
well-defined everywhere. A graph of f(z,o = .48) is given in Figure 3.

figure=figjackf.48.eps,angle=-90

Fig. 3 The function f(z,¢ = .48) in (7) giving the least upper bound.

It remains to determine f(z,c). It is an indication of trouble that the f
in Figure 2 indicates a discontinuity near z = .5, and that (7) does not seem
to hold as cleanly as in case I. Though I believe there is no duality gap for
o <~ .T24, the above method to find f(z, o) for this range is not a good one
because it produces an extreme point of the set of functions f satisfying (7).
It would be better to look for a smooth f or one in the “center” of the set of
solutions of (7).

A duality gap seems to exist for o >~ .724

Since the problem of finding the smallest value of § for which there exists
a function f = f(z) satisfying the inequalities of (7) for all nonnegative z,y
is a linear programming problem (even finite if we restrict z,y to a discrete
truncated lattice of values, it can be solved numerically for any fixed value of
o. We did this for various values of ¢ and found that the maximal value of
is ¢ (o) for o < around .7 or so, but for o around .8 or so a strictly larger ¢
was found, and it was further found that the dual linear program was solved
by a distribution of X,Y which satisfies

E[X? -0®|Y] = E[Y?-0?|X]=0 (8)

but one for which X,Y fail to be independent. The actual example found for
the case o = .8 led to the following distribution:
P(X=Y =0)=a= 0=
P(X ==+3,Y = +3) =6=§%§%§1,
P(X=0,Y=x21)=P(X=41,Y=0)=79=
P(X =3}, ¥ =42)=P(X =22, Y =% =8

P(X=+1,Y=42)=P(X =42, Y =+1)=¢e=

4—g?
-
4—g2

0.2_3[ 1

|| =

tnj— tal= 3

7
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where S is chosen so that all these probabilities add to unity. It’s easy to
verify that this distribution of X, Y satisfies (8) and that
PX+Y>1)=08+4(y+d+¢).
We will call the right side of the last equation ¢;(c); a graph is given in
Figure 4.

figure=figcorr.eps,angle=-90

Fig. 4 The function ¢1(¢) = P(X 4+ Y > 1) for the nonindependent pair satisfying (8).

We have verified numerically that ¢o(c) > ¢ (o) for o <~ .724 but there-
after ¢(a) << ¢1(o). There is little doubt that this is right because we have
run a linear program to maximize P(X + Y > 1) over X,V satisfying (8)
and taking values in a large finite set S for various values of o. We found
that for o slightly less than .724 the best X, Y pair are independent but this
fails for o slightly greater than .724. The value .724 is approximately the o
where P(X +Y > 1) in the above example coincides with ¢(c) and occurs
in the range (02,03). This of course just means that the upper bound given
by linear programming is no longer tight. We still believe that for all o,

‘;‘6(0) = qbﬂ(o—)}
though we see no way to prove this. It seems that the only proof rests on a
maximization of P(X +Y > 1) over all 4 point symmetric independent r.v.’s.

More general versions of the problem.

Consider the problem of maximizing P(X + Y > 1) under the restriction
that X,Y are independent and symmetric and have variances less than or
equal to o?. This will have the same answer as if the variance are equal to
o? because we can always place e probability of X or Y far out and increase
the variance without changing the value, so any value that can be achieved
can also be achieved with variance equal to 2.

What if we impose the additional condition that X' ~ Y are equi-
distributed? It seems likely that the optimal X will be discrete and the num-
ber of points in its support will go to infinity with o. If we denote by (o)
the maximum value of P(X +Y > 1) over all r.v.’s XY, symmetric, iden-
tically distributed, and independent then it seems very hard to determine
1 except that when the maximum of the former problem is attained for iid
X,Y then of course ¢(a) = ¢(a). In particular this happens for o < gq, and
for é— < ¢ < o. But for ¢ > 1 it can be seen that

¢(o) =3 > (o), 0 > 1
because no iid pair can ever give P(X +Y > 1) = %
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