
COMPUTER GRAPHICS a4ND IMAGE PROCESSING 10, 246-255 (19%) 

NOTE 

The Tuning Fork Artifact in Computerized Tomography 

L. A. SHEPP 

Bell Laboratories, Murray Hill, New Jersey 07974 

AND 

S. K. HILAL AND R. A. SCHULZ 

The Neurological Institute, Columbia Presbyterian Medical Center, 
New York, New York 10032 

Received January 29, 1979 

It is apparently well known that one particularly delicate tolerance in designing a 
tomographic machine is that on the error in alignment of the graticule. If the graticule, 
or strip which determines the location of the parallel measurements in each view, is 
displaced by as little as 0.05 mm consistently in each view, a characteristic artifact 
resembling a tuning fork can appear in the neighborhood of a small dense object (e.g., 
the petrous bone). In this paper, we give a mathematical analysis of this artifact, leading 
to a simple quantitative estimate of this error in terms of the displacement. We also 
show that a rough correction can easily be made in software to remove this artifact by 
making the opposite shift in the weight function used. We show further that the dis- 
placement can be indirectly measured by using a pin phantom. Finally, we note that 
if the displacement were measured directly using, e.g., a triangular piece of lead, the 
above correction would then remove the artifact and eliminate the need for such a 
delicate tolerance. 

1. INTRODUCTION 

In computerized tomography, a density f(x, y) is reconstructed as in [l] 
from the integrals P(t, 0) (see [l]) of f along the line with equation z cos 0 + y 
Xsin 19 = t, obtained from X-ray measurements. In measuring P(t, e), errors occur 
and produce characteristic artifacts, some of which were studied in [Z]. Relative 
motion of the object with respect to the X-ray beam during the measurement 
period produces an artifact sometimes called the “patient motion artifact,” 
Fig. 1. A similar artifact occurs in Fig. 2 where the object is a 0.25-in.-diameter 
aluminum pin and where a vertical st’rip or tuning fork artifact is seen. This 
effect is known to be due to the relat’ive motion which occurs when, after each 
rotating step, the graticule or t’iming strip (which defines the translation location 
of the beam) comes to a new position, slightly jittered. The center of rotation 
should project onto the center point on the graticule in each view, but, because 
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FIG. 1. Reconstruction of a head section (at the level of the midbrain) showing the tuning fork 
artifact. The artiface emanates from the left frontal bone. There is a dark streak running downward 
into the brain and a light streak running upward into the water surrounding the head. 

of the mechanical jitter, it is shifted by an amount] 6(e), causing each ray in the 
view at angle 0 to be shifted parallel to itself by s(0), so that’ 

P*(t, e) = P(t - s(e), e) (1) 

is the incorrectly measured value of P(2, 0). In case s(0) = 6 independent of 8, 
it is known [3,4] that a consistent displacement of 6 = 0.05 mm of the graticule is 
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FIG. 2. Reconstruction of a 0.25-in.-diameter aluminum pin showing the tuning fork artifact. 
The black at the center of the pin is also an artifact, perhaps due to numerical overload in the 
display, the pin being unexpectedly dense. This corresponds to Run 1A of Table 1. 

enough to cause visible artifacts (Fig. 2). How dots one estimate S(0) in actual 
practice, however? 

2. INDIRECT MEASUREMENT OF s(e) 

We obtained the projection data for the pin phantom of Fig. 2 from a tomo- 
graphic transmission scanner. In each of 180 views the 251 project,ion values were 
found to be integers less than about 100 in absolute value for all except about 
eight central rays (the rays numbered 123-130), which have a maximum of 



TUNING FORK ARTIFACT IX TOMOGRAPHY 

126.7 , , , , , , , , , 

249 

126.6 

126.5 

126.4 

126.3 

126.2 

126.1 

126.0 

125.9 

125.8 

125.7 
0 20 40 60 60 100 120 140 160 160 

FIG. 3. Plot of estimated projections of the center of the pin onto the graticule as a function of 
angle 1 to 180”. This corresponds to slice A of run 1 of Table 1. 

around 2000, usually at ray 126, the central ray. The center of the pin t’hus pro- 
jects somewhere near ray 126 in each view. 

In order to determine the projection of the center of the pin onto the graticule 
more precisely, we fitted a parabola through the largest value of the projection 
and its two neighbors in each view and took the location ci of the maximum of 
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FIG. 4. Residuals of Fig. 3 after a least-squares fit with z0 cos ej + y0 sin ej + c, z0 = 0.225, 
j/o = 0.275, c = 126.058. This corresponds to Run 1A of Table 1. 
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TABLE 1 

Run Slice 

1 A 0.225 0.275 0.058 
1 B 0.285 0.301 0.057 
2 A 0.294 0.195 0.044 
2 B 0.347 0.243 0.032 
3 A 0.205 0.236 - 0.045 
3 B 0.264 0.273 -0.045 

the parabola as an estimate of the location of t-he maximum of the projection. 
We thus took this value cj (Fig. 3) as the projection of the center of the pin in 
the jt,h view, j = 0, 1, . . . , 179. If there were no jit,ter in centering the jth view 
the projection of the center of a pin at (~0, 1~0) would be ~0 cos Bj + yo sin Bj. We 
thus fitted cj using least squares with 

c*j = 126 + 50 cos Oj + 7J0 sin ej + 6, (3 

where 0j = jn/lSO, j = 0, 1, . . .) 179, and determined t,he best values of (x0, yo) 
and the average value of 6 of the shift s(0). The residuals cj - c*j are shown in 
Fig. 4. We obtained the values given in Table 1 for each of two slices A and B 
for each of three runs. Assuming the distance between adjacent parallel rays in 
in each view to be about 1 mm, Table 1 indicates that in each slice the center of 
the pin is at (20, YO), given in mm; in particular, the pin appears to be centered 
close to the intended center of rotation, i.e., within 1 mm. Further, the average 
shift 6 is about 0.05 mm in each case. Figure 4 indicates the accuracy to which 
6 can be presumed known; e.g., the standard deviat’ion of the mean of 6 is about 
O.l/(lSO)+ = 0.007 mm. To be more conservative here we should perhaps use 
0.1/n;, where 180 > n = 30, because of the evident correlation between points 
in Fig. 4. We next show t’hat we can remove the artifact by reccntcring the 
projections. 

3. CORRECTION FOR CEKTERING ERROR 

If we know the values of s(0) in (1) it is easy to modify formula (12) of [l] to 
make the appropriate correction. Using any weight function [l], 4, set with 
6j = 6(t9,), as the corrected reconstruction: 

Since the inner sum is a convolution, the shift, (1) in P has been achieved by 
shifting ‘p, which is easily implemented in the program. 

If 6j were known precisely (3) should be used, but in our case, since cj varies 
wildly (due to noise in the projections), as is clear from Fig. 3, we use only a 
gross, average correction based on an estimate A of the average value of & and 
set 6j = A in (3). In each case this choice removes the artifact. Further, if we 
vary A = -0.2, -0.1, -0.05, 0, 0.05, 0.1, 0.2, and 0.3 mm, respectively, we 
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obtain the eight reconstructions, shown from left to right in Fig. 5 for the cast 
of slice B of run 1, which shows that the artifact can be focused out by choosing A. 
A picture essentially identical to Fig. 5 was obtained for slice A of run 1, and 
corresponding pictures were obtained for the other runs; they were consist,ent 
with our explanat’ion in each case. 

4. AN APPROXIMATE FORMULA FOR THE ERROR 

The error or artifact at height y mm above or below the ccntcr (~0, yO) of a 
pin of radius Z, << \yI and density D due to a shift of size 6 mm in every ray of 
every view (the views start and end in the vertical direction as is usual in 180” 

FIG. 5. Eight reconstructions of the pin of Fig. 2 from the same data using eight different 
values of the centering parameter in (3). The rays have been uniformly shifted to the right by 
the respective amounts (in millimeters) -0.2, -0.1, -0.05, 0, 0.05, 0.1, 0.2, and 0.3 from the 
left. The picture shows that tomography is sensitive to small (0.05 mm) errors in recentering the 
graticule after each translation stop, and that these errors can be measured and corrected. This 
corresponds to Run 1B of Table 1. For Run 1A an essentially identical picture was obtained. 
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scanning) is shown in the Appendix to be given by the crude approximate formula 

2 6D 
f*(zo,yo+Y) = --, b < /Y/j. (4) 

TY 

For example, if D = 1000 output units for the pin corresponding to twice the 
density of bone, b = 3 mm, 6 = 0.05 mm, y = 5 mm, the error is about 6 units, 
enough to show an artifact. In each of the runs of Table 1 the results agree 
qualitatively with (4) and exhibit the reversal of the error predicted by (4) as 6 
or y changes sign. If a centering correction (3) with 6j = A is used in the algorithm, 
(4) is of course modified by replacing 6 in (4) by 6 - A. In Fig. 5 we see that the 
error reverses as 6 - A changes sign, and this holds for the other cases of Table 1 
as well. Note that (4) predicts that the error above the pin will appear as an 
object denser than the surrounding water, as it does in Fig. 5 when A = 0. 

In comparing Figs. 2 and 5 the artifact appears reversed, which is due t’o 
our considering the data collected with a different direction of rotation. This 
reversal is consistent and should be ignored. 

If one considers the reconstruction as a sum of filtered backprojections where 
in each direction the filtered backproject’ion is as in (A2) of [l], which is a positive 
constant in the shadow of the circle and is negative outside, then the superposition 
of t’he a-displaced backprojections is intuitively seen t,o give a posit’ive error 
(for 6 > 0) above the circle and a negative error below it. The argument in the 
Appendix makes this more quantitative. We also show that the error in the region 
on either side of the circle is much smaller, of order 62, as would be the case with 
uniformly displaced rays with 360” scanning. 

APPENDIX : DERIVATION OF APPROXIMATION (4) 

We assume that the pin of radius b and density D is centered at the origin (as 
far as our approximations go, centering at the origin is not a loss of generality). 
Suppose that each projection is shifted by the same amount s(0) = 6 in (l), 
0 5 0 5 7, and no correction (i.e., 6j = 0) is used in (3). Then the value at the 
point (0, y) with 1 y 1 > b should be zero, but is given by (3), and may be approx- 
imated by the limiting integral form of (3), 

f*(x,y) s ;/‘de/- P(t - 6, e)p(x cos 19 + y sin 0 - t)dt. (5) 
0 --oo 

For weight functions cp of the type appropriate to reconstruction from projections 
(i.e., those whose Fourier transform d(w) A lo\, for low frequencies U) the 
inner integral in (5) is given approximately by (A2) of Appendix 1 of Cl], as & 
is the derivative of the Hilbert transform of P, and so 

f*b, Y) =& p /” d&@(xcost?+ysinB-8) 
0 

=l-! da 
J 

T IT - 61 
7 = x cos a + y sin (Y, (6) 

T 0 
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where x indicates that the integral is carried out only over those (Y for which the 
square root makes sense as a real number, i.e., / T - 61 > b. Here, from (A2) of 
Cl] (with a misprint corrected), we have used 

&CT> = 2, 171 i a, 
= 2 - 2 / 7 I(7’ - d)-+, 171 > a. 

Suppose z = 0, 16 1 < b, and b + 16 j < j y I. Then it is easy to see, set,ting 
a! = p + r/2 in (6), that 

wD)f*(o, Y> G 1 - F@/Y), (7) 

where, letting 2: = I b/y 1, 

F(u) = ” 
i 

Bo cos p - u 
d/3 0 2 po = cos-’ (u + .$) < ; ) (8) 

n- 0 ((COSP - u)” - 12)k’ 

since the last integral in (6) is over an interval in (Y symmetric about a! = r/2. 
Changing variables, cos p - u = t, we have 

F(u) = ” 
/ 

l--u tdt 

n- $ (P - g”)+(l - (t + u)*)+ * 
(9) 

Since for all 6, it is easy to see that 

tdt 
= 

(t” - (2)$(1 - P)i 
1, (10) 

we see that F(0) = 1 and it is shown below that 

1 
F’(O) = - 2-.- 

7rl-.$2 

+” 
t2 l 

J 

tdt 

~ (1 _ {2)” 5 (p - {2)“(1 - tqk(t(l - .p)’ + (t” - [“)9 ’ (11) 

and that F is infinitely differentiable at zero. Since 16 1 << y we have from (7), 
since F(0) = 1, 

(12) 

which gives (4) since b2 << y2. In the last approximation we have used the fact 
that the last term in (11) is less than .$“/(l - .$“) because of (10) and that f2 
= (b/~)~ is small compared to unity. Note: t(1 - S”)+ 5 t(1 - f2)* + (t” - [“)s 
in (10). 

The argument does not require 5 to be exactly zero, and (7), and the other 
equations are valid so long as 1 z I < b, i.e., in the vertical stripe about the pin. 
If, however, say y = 0 and 1x1 > b, i.e., to the right or left of the pin we have 
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from (6) that (with 1: = jb/zj and with the same E’ as in (8)) 

(l/D)s*(X, 0) G= F(0) - +F(6/X) - $F(-6/X) 

A p”(0) (6/x)2, (13) 

which, since F”(0) exists, is of smaller order (P) than (12) as 6 -+ 0. 
We remark that if the sampling were taken over 360” rather than 180” the 

error due to displacement of all rays by 6 would be of order P, as in (13). 
We indicate how to obtain (11). Choose z in the interval (0 1 - U) and write 

from (9) 

z 

F(u) = ”  -__ 

tdt 

a i 

+3 ~ 

$ (P - t;Z)‘(l - (t + U)“): s 

1 
(t - u)dt 

___ (14) 
P Z+U ((t - U)” - t”)+(l - t2)+’ 

by breaking up the integral in (9) from t to z and from x to 1 - u and replacing 
t by t - u in the second integral. It is now clear that each of t-he integrals in (14) 
is infinitely differentiable in u since there nom are no singularities at the limits 
of integration. Differentiating w-e get’ for u = 0, 

t2dt 2 2 
_____-___- 

(p _ p)t(l - p)3 7r (x2 - .$“):(I - 22)” 

+‘) 
s 

1 t2dt 
-- . (15) 

a z <1? - [“)“(I - t*): 

Since this holds for each z E (E, l), let z + 1 using 

2 1 2 1 2 
--- = -- 

iT (1 - <“)i(l - .22)$ __ -; (1: i2)‘[d((l: t2):>- w9 7rl-.$2 

The third term in (15) tends to zero, t.he second is replaceable by (16), and (11) 
follows by a passage to the limit. 

We take t,his opportunity to correct some errors and misprints in [l]. 

1. As A. Kak kindly pointed out, the first sontcncc of the second paragraph 
of Appendix I should read: 

The projections P(t) = P(t, 0) of an ellipse of density one centered at the 
origin and with semiaxes (Y, p are 

p(t) = (2&/a”) (a’ - P)k, Itl 5 a, 
= 0, ItI > a, (AlI 

where a2 = a”(e) = C? cos2 0 + ,B2 sin2 0 and a is the half-width of the projection 
in direction 8. 

2. The factor &/a2 is also missing in (A2) and (A9). Xote that this constant 
factor makes no difference in the conclusions of [l] and was not omitted in the 
simulations discussed in [l, 21. For a circle, a! = 0 = a, as in the present paper, 
the missing factor is unity. 
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3. (A8) has a parenthesis missing in fq(x, y). 
4. (A16) should read: 

& = - (2/XFw) log (D/B) - 2. L4w 

5. The line above (A16) should have “emitted” photons instead of omitted 
photons. 

6. The referee kindly pointed out that (A2) of [l] should read: 

Q(t) = 2, ItI I a, 
= 2 - j t / (t2 - a2)-6, [tl > a. 
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