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Let U and V be two symmetric (about zero) random
variables with U + V symmetric about C; here Cis a
constant. It is easy to see that if U and V are mutually
independent, or if both U and V satisfy the weak law of
large numbers, then C =0. So, intuitively, we would
suspect that C =0 in general. However, we show that
there exist two random variables U and V symmetric
about 0 with U + V symmetric about C # 0. The exam-
ple given is closely related to one given by Alejandro D.
De Acosta in another context.

Let X and Y be two mutually independent and non-
degenerate random variables such that X is symmetric
about a and Y is symmetric about b; here a and b are
two constants. Kadane and Duncan (1980) observed
that if E(| X||’) <® and E(|Y |’) <w, then XY is sym-
metric if and only if ab = 0. They conjectured that the
statement would still be true even without the moment
condition. Chen and Slud (1981) proved that the state-
ment does hold if E(| X |) <= or E(|Y |) <« and they
observed that the Kadane-Duncan Conjecture will fol-
low from their main theorem if the following statement
holds.

Statement. Let U and V be two symmetric (about
zero) random variables with U + V symmetric about C;
here C is a constant. Then C =0.

Intuitively, we would suspect that this statement
holds since this statement does hold if U and V are
mutually independent, or if both U and V satisfy the
weak law of large numbers. However, this statement is
false in general and the following is a counterexample.
This counterexample also reveals the difficulty to estab-
lish the Kadane-Duncan Conjecture.

Example. Let U and V be two random variables such
that the joint characteristic function of U and V is

(s, t) = E(exp{isU + itV})

2n
=exp{—| |scos6 + tsin6|d6
0
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On The Sum Of Symmetric Random Variables

2n
= :'J’ (scos0 + £sin@)
0
X (log|scos® + tsin6|)g (8)d 6};

here g(8) is a real-valued function of 8 defined on the
interval [0, 27] such that |g(8)| =2/wforall0=6=<2m
(see Feller 1966, p. 542). Then ¢(s, 0) = E(exp{isU})
is the characteristic function of U; &(0, t) = E(exp
{itV}) is the characteristic function of V; and
&(s, s) = E(exp{is(U + V)}) is the characteristic func-
tion of U + V. Now if g is so chosen that g is orthogonal
(over the interval [0, 21]) to the subspace B spanned by

is not orthogonal to (cos6 + sinf)log| cosd + sind| (it is
possible since the function (cos6 + sin8)log|cos6 +
sinf| is not in the subspace B). Then

(s, 0) = E(exp{isU}) =exp{—4|s |}

&(0, t) = E(exp{itV}) =exp{—4|t[};
and
&(s, s) = E(explis(U+ V)}) = exp{~4V2s |

m
- wJ’ (cosB + sinB)log | cos® + sinB | g (8)d 6}.
0
since g is not orthogonal to the function

(cos® + sinB) log|cosd + sinb |,

2n
(cosB + sin@)log | cosO + sinb | g (8)d0 = C # 0
0

and
&(s, s) =exp{—4V2|s| —isC}.

Therefore, U is symmetric about 0, V is symmetric
about 0, but U + V is symmetric about C # 0. In fact,
we have just shown that there exist two identically dis-
tributed, symmetric (about 0) Cauchy random variables
U and V such that U + V is a Cauchy random vaqable
and symmetric about C # 0.
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