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Abstract A random variable X is called strongly decomposable into (strong) com-
ponents Y,Z, if X = Y +Z where Y = φ(X), Z = X−φ(X) are independent nonde-
generate random variables and φ is a Borel function. Examples of decomposable and
indecomposable random variables are given. It is proved that at least one of the strong
components Y and Z of any random variable X is singular. A necessary and sufficient
condition is given for a discrete random variable X to be strongly decomposable.
Phenomena arising when φ is not Borel are discussed. The Fisher information (on a
location parameter) in a strongly decomposable X is necessarily infinite.
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1 Introduction

The classical theory of decomposition of random variables known also as the arith-
metic of probability distributions deals with the representation of a random variable
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X as the sum of two independent random variables Y and Z,

X = Y + Z. (1)

If f (t), f1(t), f2(t) are the characteristic functions of X,Y,Z, respectively, then (1)
is equivalent to

f (t) = f1(t)f2(t), t ∈ R. (2)

A seminal result due to Cramér [3] that states that the components Y,Z of a Gaussian
random variable X are necessarily Gaussian laid a foundation of a research area con-
nected to the theory of functions, probability and statistics. The monographs [9, 10]
are standard references. Very well written expository papers [2, 11, 12] review rela-
tively recent results in the arithmetic of probability distributions.

In this paper we introduce and study a stronger than (1) form of decomposition
when Y and Z are not only independent but also functions of X. In Sect. 2 examples
of strongly decomposable and indecomposable random variables are given. In Sect. 3
it is proved that for any random variable X at least one of its strong components Y,Z

is singular and a necessary and sufficient condition is obtained for a discrete random
variable to be decomposable. An interesting statistical property of any strongly de-
composable X is proved in Sect. 4; namely, the Fisher information on a parameter θ

contained in an observation of θ + X is necessarily infinite.

2 Definition and Examples

Let U be a random variable or a random vector. Then PU(B) = P(U ∈ B) denotes
the distribution of U . Recall that a Borel set B is a support of U if P(U ∈ B) = 1. Let
SU denote the closed support of U , that is, the set of all x satisfying P(U ∈ G) > 0
for all open sets G containing x, and let DU := {x | P(U = x) > 0} denote the dis-
crete support of U . Note that DU ⊆ SU and recall that SU is the smallest closed set
supporting U and that U is discrete if and only if DU is a support of U .

Definition A random variable X is strongly decomposable with (strong) components
Y,Z and decomposition function φ if

(i) X = Y + Z

(ii) Y,Z are independent nondegenerate random variables
(iii) φ is a Borel function and Y = φ(X), Z = X − φ(X)

The conditions (i)–(iii) are very restrictive and make strong decomposition a rare
phenomenon compared to decomposition in sense of (1) referred in what follows
as weak. Observe that the map x � (φ(x), x − φ(x)) is a bijection of R onto � =
{(φ(x), x −φ(x)) | x ∈ R} with inverse (u, v) � u+ v for (u, v) ∈ �. Hence, we see
that � is an injective curve in the plane and by (ii), we have D(Y,Z) = DY × DZ and
S(Y,Z) = SY ×SZ . So by (i), we see that the injective curve � contains the “rectangle”
DY × DZ and that � contains the closed “rectangle” SY × SZ a.s. (i.e. P((Y,Z) ∈
(SY × SZ) \ �) = 0). This observation shows that � is Peano-like curve. Observe
that if ψ(y) := y − √

2φ(
√

2y), then the curve � is the graph of ψ rotated 45◦
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which imposes severe restrictions on the components Y,Z and on the decomposition
function φ. In Sect. 3, we shall see that the independence condition (ii) can be relaxed
to weak independence (see Theorem 1), and that it is the Borel measurability of the
decomposition function φ which is the real restriction (see Theorem 2).

2.1 Gaussian, Poisson and Binomial Random Variables are Indecomposable

Suppose that a Gaussian X has strong components Y,Z. Due to the Cramér theorem,
Y,Z are also Gaussian. Then Y and X = Y + Z as linear functions of a bivariate
Gaussian vector (Y,Z), have a bivariate Gaussian distribution and, by virtue of a
well known property of the latter,

E(Y |X) = a0 + a1X for some a0, a1.

Since Y = Y(X), we have Y = a0 +a1X and Z = X−Y = b0 +b1X for some b0, b1.
However, a0 + a1X and b0 + b1X are independent if and only if a1b1 = 0 implying
that one of Y,Z is degenerate.

Using a result by Raikov [13] (see also a monograph [9, Chap. 5]) claiming that
weak components Y,Z of a Poisson random variable X are necessarily Poisson ran-
dom variables (possibly, shifted) and arguing as in case of a Gaussian X, it is easy to
show that a Poisson X is indecomposable.

Similar arguments prove that a binomial random variable X is indecomposable.

2.2 Uniform and Exponential Random Variables are Decomposable

Let X be a random variable uniformly distributed on (0,1). It is well known (see, for
example, [5]) that in the dyadic expansion of X,

X =
∞∑

1

(Xn/2n),

X1,X2, . . . are independent identically distributed random variables with

P(Xi = 0) = P(Xi = 1) = 1/2.

Let A
⋃

A′ = N be a partition. On setting

Y =
∑

n∈A

(Xn/2n), Z =
∑

n∈A′
(Xn/2n)

one gets a strong decomposition

X = Y + Z.

If A is finite, Y is discrete and Z is absolutely continuous. If both A,A′ are infinite,
Y and Z are continuous singular random variables. Moreover, their distributions are
mutually singular.

Lewis [8] showed that in any weak decomposition of a uniformly distributed X at
least one of the components is not absolutely continuous.
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If X1,X2, . . . are independent random variables taking values 0 and 1, then the
series

X =
∞∑

1

(Xn/2n)

(converging with probability 1) is strongly decomposable.
Let now X be an exponential random variable with a parameter λ. Denote by

Y = [X] the integer part of X and by Z = {X} the fractional part of X. Then X =
Y + Z. Furthermore, for 0 < z < 1 and n = 0,1, . . .

P (Z < z|Y = n) = (1 − e−λz)/(1 − e−z), 0 ≤ z < 1

does not depend on n so that Y,Z are strong components of X. Note that only one of
the components is absolutely continuous.

It is worth noticing that there are many nonexponential (positive) random variables
X such that X/t is strongly decomposable for any t > 0. Indeed, let Y be a random
variable supported by the set N and Z an independent of Y random variable with
distribution concentrated on [0,1). Then X = Y + Z has the property that X/t is
strongly decomposable for any t > 0.

3 Singularity of Strong Components

In all the examples above, a random variable X either had no strong components at
all (normal X) or one of the components (or both) was either singular (uniform X) or
discrete (exponential X, uniform X). It turns out that these examples are manifesta-
tions of a general fact: at least one strong component of an arbitrary random variable
X is singular, and we may actually replace the independence condition (ii) by weak
independence.

Recall that a Borel measure μ on Rk is called diffuse if μ({x}) = 0 for all x ∈ Rk or
equivalently, if μ(F) = 0 for every countable set F ⊆ Rk ; a measure μ1 is absolutely
continuous with respect to μ2,μ1 	 μ2, if μ2(N) = 0 implies μ1(N) = 0; μ1 and
μ2 are singular, μ1 ⊥ μ2, if there exists a Borel set B ⊆ Rk satisfying μ1(B) = 0
and μ2(Rk \ B) = 0.

We say that random variables X and Y are weakly independent if PX ⊗ PY 	
P(X,Y ) (for independent X,Y,P(X,Y ) = PX ⊗ PY ).

Note in passing that in a recent paper [6], X and Y were called quasi-independent
if PX(A)PY (B) > 0 implies P(X,Y )(A × B) > 0. Quasi-independence is a weaker
property than weak independence.

Theorem 1 Let φ : R → R be a Borel function and X = Y + Z the decomposition
where Y = φ(X) and Z = X − φ(X). Let μ1 and μ2 be σ -finite Borel measures
on R and suppose that one of the measures μ1 and μ2 is diffuse. Set μ(B) = μ1 ⊗
μ2(T

−1(B)), the image measure of μ1 ⊗μ2 under the bijective linear map T (x, y) =
(x − y, y). Then

(i) P(Y+Z,Y ) ⊥ μ1 ⊗ μ2 and P(Y,Z) ⊥ μ.
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(ii) P(Y+Z,Z) ⊥ λ2 and P(Y,Z) ⊥ λ2.
(iii) If φ−1(u) is at most countable for PY -almost all u ∈ R, then P(Y,Z) ⊥ μ1 ⊗ μ2.
(iv) If Y and Z are weakly independent and μ1 ⊗ μ2 	 μ, then either PY ⊥ μ1 or

PZ ⊥ μ2.
(v) If Y and Z are weakly independent, then either PY ⊥ λ1 or PZ ⊥ λ1.

Remark (a) The set C := {u ∈ R | φ−1(u)is at most countable} is not necessarily a
Borel set. However, since φ is Borel measurable, C is co-analytic and consequently,
measurable with respect to any Borel measure on R (σ -finite or not); see [7].

(b) In particular, a Gaussian X has only Gaussian components and, thus, is strongly
indecomposable (as shown by different arguments in Sect. 2.1). However, the next
theorem shows the a Gaussian X admits a representation of the form X = Y + Z

with Y and Z independent and Gaussian and with Y = φ(X) and Z = X − φ(X) =
φ−1(Y )−Y for some (non-measurable) bijection φ of R onto R. In particular, we see
that it is the Borel measurability of the decomposition function which makes strong
components different from weak components.

The authors are unaware of general conditions for X to have only absolutely con-
tinuous weak components.

It is of some interest to find out if there are random variables having only strong
components. In particular, does there exist a weak decomposition of a uniform ran-
dom variable which is not strong?

Proof Let G := {(x,φ(x)) | x ∈ R} denote the graph of φ. Since μ2 is σ -finite, we
see that F := {x | μ2({φ(x)}) > 0} is at most countable. Since φ is Borel measurable,
we have that G is a Borel set and so by Fubini’s theorem we have

μ1 ⊗ μ2(G) =
∫

R
μ2({φ(x)})μ1(dx) =

∫

F

μ2({φ(x)})μ1(dx).

If μ2 is diffuse we have F = ∅ and if μ1 is diffuse, we have μ1(F ) = 0 by count-
ability of F . Hence, in either case (μ1 ⊗μ2)(G) = 0 and since P((Y +Z,Y ) ∈ G) =
1, we have P(Y+Z,Y ) ⊥ μ1 ⊗ μ2. Since T (x, y) = (x − y, y) is a bijective linear map
with inverse T −1 = (x + y, y), we have (Y,Z) = T (Y + Z,Z) and thus P(Y,Z) ⊥ μ.
Hence, part (i) is proved and since T has determinant 1, (ii) follows from (i) with
μ1 = μ2 = λ1.

Suppose that φ−1(u) is at most countable for PY -a.a. u ∈ R. Then there exists a
Borel set S ⊆ R such that P(Y ∈ S) = 1 and φ−1(u) is at most countable forall u ∈ S.
Since μ2 is σ -finite and the sets φ−1(u) are for different u mutually disjoint, we see
that F := {u | μ2(φ

−1(u)) > 0} is at most countable. Set φ := {(φ(x), x − φ(x)) |
x ∈ R}. Since φ is a Borel function and φ = {(u, v) | u = φ(u + v)}, we see that φ is
a Borel set and since φu ⊆ φ−1(u) for all u ∈ R, φu is at most countable for all u ∈ S.
So by Fubini’s theorem we have

(μ1 ⊗ μ2)(� ∩ (S × R)) =
∫

S

μ2(�
u)μ1(du) ≤

∫

S

μ2(φ
−1(u))μ1(du)

=
∫

F∩S

μ2(φ
−1(u))μ1(du).
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Since F is at most countable, we see that μ1 ⊗ μ2(φ ∩ (S ⊗ R)) = 0 if μ1 is diffuse
and since φ−1(u) is at most countable for all u ∈ F , we see that μ1 ⊗ μ2(φ ∩ (S ⊗
R)) = 0 if μ2 is diffuse. Hence, in either case, we have (μ1 ⊗ μ2)(φ ∩ (S ⊗ R)) = 0
and since (Y,Z) ∈ φ and P(Y ∈ S) = 1, P((Y,Z) ∈ φ ∩ (S ⊗ R)) = 1. Hence,
P(Y,Z) ⊥ μ1 ⊗ μ2 which proves (iii).

Suppose that PY ⊗PZ 	 (Y,Z) and μ1 ⊗μ2 	 μ. Since the distribution of (Y,Z)

is singular with respect to μ, there exists a Borel set W ⊆ R2 such that μ(W) =
P(Y,Z)(R2 \ W) = 0. Hence, (μ1 ⊗ μ2)(W) = (PY ⊗ PZ)(R2 \ W) = 0 and hence
by Fubini’s theorem, μ1(R \ A) = PY (R \ B) = 0 where A = {u | μ2(Wu) = 0} and
B = {u | PZ(Wu) = 1}. If A ∩ B �= ∅, there exists u ∈ R such that μ2(Wu) = 0 and
PZ(Wu) = 1. If A ∩ B = ∅, we have B ⊆ R \ A and thus μ1(B) = 0 and PY (B) = 1.
Hence, we see that either PZ ⊥ μ2 or PY ⊥ μ1 which proves (iv), and (v) follows
from (iv) when μ1 = μ2 = λ1. �

Theorem 2 Let P1 and P2 be Borel probability measures on R and Q(B) :=
(P1 ⊗P2)(S

−1(B)) denote the image probability measure of P1 ⊗P2 under the linear
bijection S(x, y) = (x + y, x). Suppose that Q is absolutely continuous with respect
to the product of two diffuse σ -finite Borel measures on R. Then there exist a prob-
ability space (�,F ,P ), random variables Y , Z and X and a bijection φ : R → R
such that

(i) Y and Z are independent with distributions P1 and P2.
(ii) X(ω) = Y(ω) + Z(ω) and Y(ω) = φ(X(ω)) ∀ω ∈ �.

(iii) Z(ω) = φ−1(Y (ω)) − Y(ω) ∀ω ∈ �.

Remark (a) Suppose that (P1,P2) satisfies the conditions of Theorem 2. Then it fol-
lows easily that P1 and P2 are diffuse and by (i), Y and Z are independent, continuous
random variables with distributions P1 and P2. By (iii), Z is a function of Y which
at the first glance seems to contradict the independence and continuity of Y and Z.
In fact, it does not and just means that φ is non-measurable (as a matter of fact,
the function φ is extremely non-measurable and owes its existence to the axiom of
choice).

(b) Suppose that P1 and P2 are absolutely continuous with respect to λ2. Then so
is Q and the condition of Theorem 2 is satisfied. Hence, we see that every weak de-
composition of X into absolutely continuous components can be realized as a strong
decomposition on some probability space, provided that we drop the assumption of
Borel measurability of the decomposition function.

Proof Let μ1 and μ2 be diffuse σ -finite Borel measures on R such that Q is absolute
continuous wrt. the product measure μ = μ1 ⊗ μ2.

If B ⊆ R2 and u ∈ R, we set Bu := {y ∈ R | (u, y) ∈ B}, the u-section of B , and
denote by B∗ the set of all u ∈ R such that Bu is uncountable. Denote by S the
collection of all Borel sets B ∈ B(R2) for which B∗ is uncountable. If B ∈ B(R2),
we have (see [7, page 496])

(a): Bu ∈ B(R) and B∗ is analytic and cardBu = c for all u ∈ B∗
(b): cardS = c and cardS∗ = c for all S ∈ S
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where c := 2ℵ0 denotes the cardinality of the continuum. Let B ∈ B(R2)\S be given.
Then B∗ is at most countable and Bu is at most countable for all u ∈ R \ B∗. Since
μ1 and μ2 are continuous, we have μ1(B

∗) = 0 and μ2(B
u) = 0 for all u ∈ R \ B∗.

Hence, due to Fubini’s theorem, μ(B) = 0 and since Q is absolutely continuous with
respect to μ,

(c): Q(B) = 0 ∀B ∈ B(R2) \ S
By the axiom of choice there exists a well-ordering � on R such that card{x ∈ R |
x � a} < c for all a ∈ R. If A ⊆ R is a non-empty set, let MinA denote a minimal
element in A with respect to the well-ordering �.

Let A denote the set of all uncountable Borel sets and let Lim denote the set of
all limit ordinals <c. Since cardA = card(Lim), one may “enumerate” A by ordinals
in Lim, say A = {Aα | α ∈ Lim}. Let A ∈ A be given. Since (A × R)u = R if u ∈ A

and (A × R)u = ∅ if u /∈ A, we have (A × R)∗ = A and A × R ∈ S for all A ∈ A.
Hence, for S0 := {A × R | A ∈ A}, we have S0 ⊆ S and since card(S \ S0) = c, one
may “enumerate” S by ordinals <c, say S = {Sα | α < c} such that Sα = Aα × R for
all α ∈ Lim.

Let α < c be a given ordinal and let x ∈ S∗
α be a given number. By (a) and

(b), we have cardS∗
α = c = cardSx

α and since card{β | β < α} < c, we see the sets
S∗

α \ {uβ | β < α} and Sx
α \ {vβ | β < α} are non-empty for all families (uβ)β<α ⊆ R

and (vβ)β<α ⊆ R. Hence, we may define the vectors {(xα, yα) | α < c} uniquely, by
transfinite induction, as follows

(d): x0 = MinS∗
0 and y0 = MinS

X0
0

(e): xα = MinS∗
α \ {xβ | β < α} and yα = MinS

xα
α \ {yβ | β < α} ∀0 < α < c

Since x0 ∈ S∗
0 and y0 ∈ S

x0
0 , we have (x0, y0) ∈ S0. Let 0 < α < c be given. Since

xα ∈ S∗
α \ {xβ | β < α} and yα ∈ S

xα
α \ {yβ | β < α}, we have (xα, yα) ∈ Sα , xα �= xβ

for all β < α and yα �= yβ for all β < α. Hence, we have

(f): (xα, yα) ∈ Sα ∀α < c
(g): xα �= xβ and yα �= yβ ∀α �= β < c

Moreover,

(h): R = {xα | α < c} = {yα | α < c}

Proof of the first part of (h) Suppose that R �= {xα | α < c}. Then there exists a num-
ber u ∈ R satisfying u �= xβ for all β < c. Let us define ϒ := {α < c | u ∈ S∗

α}. Let
γ ∈ Lim be given and define Bγ := R × Aγ . Since Bx = Aγ for all x ∈ R, Bγ ∈ S
and all u ∈ R = B∗

γ . Since card Lim = c, cardϒ = c. For a given α ∈ ϒ , due to
u ∈ S∗

α \ {xβ | β < c}, we have xα � u, that is, ϒ ⊆ {α | xα � u}. By (g), α � xα is
an injective and since card{x ∈ R | x � u} < c, we see that c = cardϒ < c which is
impossible. Thus, R = {xα | α < α}.

Proof of the second part of (h) Suppose that R �= {yα | α < c}. Then there exists a
number v ∈ R such that v �= yβ for all β < c. Define � := {α < c | v ∈ S

xα
α } and let

α ∈ � be given. Since v ∈ S
xα
α \ {yβ | β < c}, yα � v and thus {yα | α ∈ �} ⊆ {x ∈

R | yα � v}. By (g), α � xα is injective and since card{x ∈ R | x � v} < c, we see
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that card� < c. Let now γ ∈ Lim be given. Then Sγ = Aγ × R and since Sx
γ = R for

all x ∈ Aγ and Sx
γ = ∅ for all x ∈ R \ Aγ , S∗

γ = Aγ . Since xγ ∈ S∗
γ = Aγ , we have

v ∈ R = S
xγ
γ so that γ ∈ �, that is, Lim ⊆ �. Since Lim = c, we have c = card� < c

which is impossible. Thus, we see that R = {yα | α < c}. By (g) and (h), we see that
α � xα and α � yα are bijections of {α | α < c} onto R. Hence, φ(xα) := yα is a
well-defined bijection of R onto R. Let � = {(x,φ(x)) | x ∈ R} denote the graph of
φ and set

� = {(φ(x).x − φ(x)) | x ∈ R} ⊆ R2 and F = B(�).

Then (�,F) is a measurable space. Let B ∈ B(R2) be a given set with B ⊇ ω.
Since ω = T (φ) ⊆ B , φ ⊆ T −1(B) and φ ∩ T −1(Bc) = ∅ where Bc := R2 \ B de-
notes the complement of B . By (f) we have (xα,φ(xα)) = (xα, yα) ∈ Sα . Hence,
φ∩S �= ∅ for all S ∈ S and since T −1(Bc)∩φ = ∅, we see that T −1(Bc) ∈ B(R2)\S .
Thus, due to (c)

0 = Q(T −1(Bc)) = (P1 ⊗ P2)(S
−1(T −1(Bc))) = (P1 ⊗ P2)(B

c)

so that (P1 ⊗P2)(B) = 1 for all B ∈ B(R2) with B ⊇ ω. But then (P1 ⊗P2)
∗(ω) = 1

where (P1 ⊗ P2)
∗ denotes the outer (P1 ⊗ P2)-measure and since F = B(ω) = {B ∩

ω | B ∈ B(R2)}, we see that

P(F) := (P1 ⊗ P2)
∗(F ) ∀F ∈F

defines a probability measure on (�,F) satisfying (P1 ⊗ P2)(B) = P(B ∩ ω) for all
B ∈ B(R2). Hence, if to define

Y(ω) := ω1, Z(ω) := ω2X(ω) := ω1 + ω2 ∀ω = (ω1,ω2) ∈ �

then Y , Z and X will be random variables on the probability space (�,F ,P ) with

P(Y ∈ A,Z ∈ B) = P(� ∩ (A × B)) = P1 ⊗ P2(A × B) = P1(A)P2(B)

for all A,B ∈ B(R). In particular, we see that claim (i) in Theorem 2 and the first
equality in (ii) hold.

Let now ω = (ω1,ω2) ∈ � be given. Then there exists x ∈ R such that ω =
(φ(x), x − φ(x)). Hence, X(ω) = x and Y(ω) = φ(x) = φ(X(ω)) and since φ

is a bijection of R onto itself, we have x = φ−1(Y (ω)) and Z(ω) = x − φ(x) =
φ−1(Y (ω)) − Y(ω) which proves claim (iii) and the second equality in (ii). �

Theorem 3 Let X be a discrete random variable with discrete support DX and prob-
ability mass function p(u) = P(X = u) for u ∈ DX . Then X is strongly decompos-
able if and only if there exist sets A,B ⊆ R with at least two elements in each and
functions q, r : R → R such that

(i) P(X = a + b) > 0 for all (a, b) ∈ A × B .
(ii) For every u ∈ DX there exists a unique solution to the equation

x = a + b and (a, b) ∈ A × B (3)

and the unique solution (a, b) satisfies p(u) = q(a)r(b).
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Proof Suppose that X is strongly decomposable and let Y = φ(X) and Z = X −
φ(X) be strong components of X. Since γ (x) = (φ(x), x − φ(x)) is a bijection of
R onto � = {(φ(x), x − φ(x)) | x ∈ R} with inverse γ −1(x, y) = x + y, we have
D(Y,Z) = γ (DX) ⊆ φ and DX = γ −1(D(Y,Z)) and since X is discrete and Y and Z

are independent, Y and Z are discrete random variables satisfying D(Y,Z) = DY ×
DZ ⊆ φ and DX = DY + DZ . Hence, we see that (i) and (ii) holds with A = DY ,
B = DZ , q(x) = P(Y = x) and r(x) = P(Z = x).

Suppose that there exist sets A,B ⊆ R with at least two elements in each and
functions q, r : R → R satisfying (i) and (ii). Let u ∈ DX and γ (u) = (φ(u),u −
φ(u)) be the unique solution of (3). Since DX is at most countable, φ can be extended
to a Borel function on R so that Y = φ(X) and Z = X − φ(X) become random
variables such that X = Y + Z.

Let now (a, b) ∈ A × B be given and set u = a + b. By (i), u ∈ DX and we see
that (a, b) is the unique solution of (3). Hence, by (ii) P((Y,Z) = (a, b)) = P(X =
a + b) = q(a)r(b) > 0 for all (a, b) ∈ A × B . In particular, A × B ⊆ D(Y,Z) and
since D(Y,Z) = γ (DX) ⊆ A × B , we have D(Y,Z) = A × B whence Y and Z are
independent random variables with DY = A and DZ = B . Since A and B each has
at least two elements, we see that Y and Z are non-degenerate so that X is strongly
decomposable with components Y and Z. �

Example 1 Let X be a geometric random variable with parameter p, 0 < p < 1,

P (X = k) = (1 − p)kp, k = 0,1,2, . . . .

With A = {0,1,2, . . .} let us set

B = {0,2,4, . . .}, C = {0,1}.
Every k ∈ A is uniquely represented as

k = l + m, l ∈ B, m ∈ C. (4)

Set

q(l) = [(1 − p)l + (1 − p)l+1]p, l ∈ B, (5)

r(0) = 1/(2 − p), r(1) = (1 − p)/(2 − p). (6)

Relations (4–6) imply (ii) in Theorem 3 proving that a geometric random variable
is strongly decomposable.

4 The Fisher Information in a Strongly Decomposable Random Variable

Remind that the Fisher information on a (location) parameter θ contained in an ob-
servation of θ + ξ (shortly the Fisher information in ξ ) where ξ is a random variable
with distribution function F is defined as

Iξ = sup
[∫ ψ ′(x)dF (x)]2
∫ [ψ(x)]2dF(x)

,
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where the supremum is taken over all smooth ψ with a compact support. As proved
by Huber (see, e.g., [4, Chap. 4]), Iξ < ∞ if and only if F is absolutely continuous
and F ′ = f is such that

∫
(f ′/f )2f dx < ∞ in which case Iξ = ∫

(f ′/f )2f dx.
In the examples of strongly decomposable X in Sect. 2.2, the density function

of (uniform and exponential) X has a discontinuity points implying that IX = ∞. It
turns out that the latter relation holds for any strongly decomposable random variable.

Theorem 4 For any strongly decomposable X, IX = ∞.

Proof Let X = Y +Z be a strong decomposition. On one side, the Fisher information
on θ contained in (θ +Y,Z) is not less than that in θ +Y +Z = θ +X and is strictly
less unless IY = ∞. This is a special case of monotonicity of the Fisher information:
the information in any statistic never exceeds the information in the observation. For
a location parameter, the Stam inequality [14] or [1, Chap. 5] quantifies this principle:

1

IX

≥ 1

IY

+ 1

IZ

.

Furthermore, due to independence of θ + Y and Z and additivity of the Fisher
information, the information in (θ + Y,Z) is simply IY since the distribution of Z

does not depend on θ . Thus, IX ≤ IY with a strict inequality unless IY = ∞.
On the other side, Y is a strong component of X and the monotonicity of the Fisher

information implies IX ≥ IY . Hence IX = IY = ∞. �
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