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The Annals of Probability 
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THE STATIONARY DISTRIBUTION OF REFLECTED 
BROWNIAN MOTION IN A PLANAR REGION 

BY J. M. HARRISON,1 H. J. LANDAU, AND L. A. SHEPP 

Stanford University and AT&T Bell Laboratories 
Suppose given a smooth, compact planar region S and a smooth inward 

pointing vector field on MS. It is known that there is a diffusion process Z 
which behaves like standard Brownian motion inside S and reflects instan- 
taneously at the boundary in the direction specified by the vector field. It is 
also known Z has a stationary distributionp. We find a simple, general explicit 
formula for p in terms of the conformal map of S onto the upper half plane. 
We also show that this formula remains valid when S is a bounded polygon 
and the vector field is constant on each side. This polygonal case arises as the 
heavy traffic diffusion approximation for certain two-dimensional queueing 
and storage processes. 

1. Introduction and summary. In this paper we calculate the stationary 
distribution for a particular type of two-dimensional diffusion process. The 
process is denoted by Z = IZ(t), t 2 0}. Its state space is a compact planar region 
S, and it behaves in the interior of S like standard Brownian motion (uncorrelated 
components with zero drift and unit variance). At the boundary Z reflects 
instantaneously, and the direction of reflection may vary with location. This 
boundary behavior is the distinguishing feature of the process under study, and 
it will be explained further shortly. 

We first treat the case of a smooth state space and smoothly varying direction 
of reflection, pictured in Figure 1. In this case one can build directly on the work 
of Stroock-Varadhan (1971). We take as given a bounded and simply connected 
region G of the form 

(1.1) G = tz E R2: 0(z) 2 0} 

where 

0: R2 -- R is twice continuously differentiable, is bounded with 
(1.2) bounded first and second-order partials, and satisfies I V0q(z) I 2 1 on 

Iz: k(z) = O}. 

Hereafter let us summarize (1.1) and (1.2) with the statement that G is a C2 
domain. Our state space S is the closure of G, so 

(1.3) aS = OG = 1z E R2: 0(z) = 0}. 

To specify the reflection field on the boundary, let 0 be a continuously differen- 
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FIG. 1. Angle of reflection at a boundary point 

tiable function on 9G, with I 0(a) I < 4r2 for all a E 9G. Interpret 0(a) as an 
angle of reflection at boundary point a, measured clockwise from the inward 
pointing normal as shown in Figure 1. To understand the boundary behavior of 
Z, consider a process that behaves like standard Brownian motion in G and jumps 
a distance e whenever aG is struck, this jump being in the direction specified by 
0(.). One may think of Z as the limit of this process as e 4 0; a precise 
mathematical description will be given in Section 2. There we also show that the 
Markov process Z has a unique stationary distribution, that this stationary 
distribution concentrates all its mass on the interior G of S, that it also has a 
density function p, and that p is given by the formula 

(1.4) p(z) = c Refexp L(z)}, z E G. 
Here c is a normalization constant chosen so that p integrates to one, and L is a 
certain complex-valued function of the complex variable z. To be specific, let F 
be any conformal mapping of S to the upper half-plane, and let g0 be the (unique) 
point of aG such that F(uo) = ??. Then L is the analytic function 

1 ('0(a) - 0 (go)1 (1.5) L Xz) = - [F()- dF(a) - i0(co), z E G. 

Note that F is real-valued on OG (it maps OG onto the boundary of the upper 
half-plane), so the real and imaginary parts of the integral in (1.5) can each be 
defined in the ordinary Riemann-Stieltjes sense; each integral is to be computed 
moving counterclockwise around the boundary. 

In Section 3 we turn to the type of case pictured in Figure 2. Here S is a 
polygon with vertices u1, *.., IfK (in counterclockwise order). For k = 1, , 
K - 1 we define side k as the open line segment between uk and Uk+1. Similarly, 
side K is the line between uK and u1, excluding the end points. Let tk denote the 
interior angle made by the two sides meeting at vertex k, as shown in Figure 2. 
Also given are angles 01, * * *, OK satisfying I Ok I < ir/2. For future purposes, set 
00 = OK. The object of our study is a strong Markov process Z with the following 
four properties. (a) It behaves like standard Brownian motion in G. (b) It reflects 
instantaneously at angle Ok on side k, as shown in Figure 2. (c) It spends no time 
at the vertices of S. (d) It has continuous sample paths. (Note in particular that 



746 HARRISON, LANDAU, SHEPP 

O 3 

FIG. 2. An example of the polygonal case 

no directions of reflection have been associated with the vertices.) It turns out 
that these four properties, translated into precise mathematical language, 
uniquely determine the distribution of Z if 

(1.6) Ok-1 < Ok+ 2bk for all k = 1, ,K. 

On the other hand, there is no diffusion process with the stated properties if 
(1.6) fails. This follows from the work of Varadhan and Williams (1983), as we 
shall explain in Section 3. 

As stated earlier, formula (1.4)-(1.5) gives the stationary distribution of Z 
when S is a smooth region and 0 ( * ) varies smoothly over the boundary. But this 
formula continues to make sense, at least formally, in many situations where S 
and 0 (.) are not smooth; one naturally suspects that the formula remains valid 
in such situations. We prove in Section 3 that this suspicion is correct for the 
polygonal case, and that the general formula also simplifies considerably in that 
case. As the conformal mapping F, we take the inverse of the standard Schwarz- 
Christoffel map from the upper half-plane to S, chosen so that gO is on side K 
and hence 0(co) = OK. (See pages 189-196 of Nehari (1952) for a discussion of 
Schwarz-Christoffel mappings.) On each side of S, the integrand in (1.5) is a 
constant times the exact differential of log[F(z) - F(cr)]. Thus the integral can 
be evaluated explicitly, and (1.4)-(1.5) eventually reduces to 

(1.7) P(z) = c Retexp(-iOK) f k=l [F(z) - F(uk) aI z E GI 
where 

(1.8) ak = (1/7r)(Ok - Ok-) for k = 1, * , K. 

Note that (1.7) can be re-expressed, using real variables only, as 

(1.9) p(Z) = C cS[oK[X akYk(Z) - oK] ll K=l IF(z) - F(9k) Ik. 

Here yj (z), **, YK(Z) are the phase angles pictured in Figure 3, and 
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FIG. 3. Phase angles figuring in final solution for the polygonal case 

| F(z) - F(uk) I is the length of the line connecting F(z) and F(uk). The density 
function p is harmonic, with singularities at vertices of S, and from (1.9) we see 
that its value on oG is given by 

(1.10) p(a) = c cos Oj k=rl I F(a) - F(90 I k on side j 

(j = 1, ***, K). A notable feature of (1.10), and more generally of (1.4)-(1.5), is 
that boundary values of p depend only on the restriction of F to 'G, which is 
real-valued. 

We conjecture that (1.4)-(1.5) remains valid for a much broader class of 
processes than considered here. For example, to unify the two cases discussed 
above, one might consider a bounded and piecewise smooth state space, with 
piecewise continuous angle of reflection. Also, extensions to unbounded regions 
are doubtless possible. These potential directions for future research will be 
discussed briefly in Section 4. 

The original motivation for our study of reflecting Brownian motion comes 
from queueing and storage theory. Harrison (1978) showed that reflecting Brown- 
ian motion on the quadrant, with normal reflection at one axis and oblique 
reflection at the other, is the natural diffusion approximation for a tandem queue. 
More precisely, the two-dimensional queue length process, properly normalized, 
converges weakly to the indicated diffusion under conditions of heavy traffic 
(approximate equality of average arrival rate and average service rates). This 
result was greatly generalized by Reiman (1983), who considered the multidimen- 
sional queue length process associated with a general open network of n service 
facilities. Reiman showed that the normalized queue length process converges 
weakly, under heavy traffic conditions, to reflecting Brownian motion on the 
n-dimensional positive orthant, the direction of reflection being constant over 
each boundary hyperplane. A similar sort of limit theorem was proved by 
Wenocur (1982) for the multidimensional inventory process associated with a 
production network. By considering systems with finite storage capacity at each 
production facility, Wenocur obtained a diffusion limit whose state space is a 
bounded polygonal region, again with constant direction of reflection over each 
boundary hyperplane. This earlier work shows what diffusion process should be 
used to approximate the heavy traffic behavior of a multidimensional queueing 
or storage process, but it does not show how to calculate interesting quantities 
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associated with the approximating diffusion. Using our formula (1.9) and the 
program described by Trefethen (1980), one can numerically evaluate the sta- 
tionary distribution of the approximating diffusion in a variety of interesting 
two-dimensional cases. There are also interesting special cases where the confor- 
mal mapping F can be written out explicitly, which allows direct numerical 
evaluation of (1.9); one of these was studied earlier by Harrison-Shepp (1983). 
For more on the theory of reflecting Brownian motion, and the associated 
analytical problems, see Harrison-Reiman (1981a, 1981b), Foschini (1982), 
Harrison-Shepp (1983), Foddy (1983), Williams (1983), and Varadhan- 
Williams (1983). 

Independently of the work described in the preceding paragraph, Newell (1979) 
studied diffusion approximations for tandem queueing systems, focusing on the 
stationary queue length distribution and certain closely related quantities. Newell 
did not discuss approximation of the queue length process by a diffusion process. 
Instead, using a general approach familiar in mathematical physics, he directly 
formulated a partial differential equation whose solution approximates the time- 
dependent distribution of the queue length process under heavy traffic conditions. 
This is a diffusion equation (heat equation), with auxiliary conditions of an 
unusual and difficult type. Newell was able to solve the steady-state version of 
his equation for certain special cases, thus obtaining an approximate equilibrium 
distribution for the original queueing system. We began our study by verifying 
that, except for what seems to be a typographical error, Newell's steady-state 
solution is in fact a stationary distribution for the reflecting Brownian motion 
that approximates his queue length process. Generalizing this result by stages, 
we eventually arrived at formula (1.4)-(1.5). Thus Newell's analysis provided the 
essential energy for our investigation, although most readers would see no 
connection between the two works in final form. 

2. Bounded smooth region with smoothly varying angle. Let G be a 
bounded C2 domain, S its closure, and 0 a function on aG meeting the conditions 
spelled out in Section 1. Throughout this paper, we denote by C2(S) the set of 
all real-valued functions that are twice continuously differentiable on a domain 
containing S. For each f E C2(S) and a E aG, let 

(2.1) Df (a) = (a/an) f () + tan 0( )(a/a) ) f (a), 

where a/an signifies the inward-pointing normal derivative, and a/au is the 
tangential derivative along the boundary in the counterclockwise direction. Thus, 
except for a constant depending on a, Df (a) is the directional derivative of f in 
the direction of reflection pictured in Figure 1. 

To define Z precisely, we adopt the language and mathematical machinery of 
Stroock-Varadhan (1971). Let Q consist of all continuous functions mapping 
[0, oo) -- S. Endowing Q with the topology of uniform convergence on finite time 
intervals, let , be the Borel a-algebra on R. Finally, let Z be the identity map 

(2.2) Z(t, w) = w(t) for all t : 0 and w E Q. 
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Let F be the class of all functions f E C2(S) such that 

(2.3) Df(a) 2 0 for all a E 0G. 

We wish to associate with each starting state z E S a probability measure P, on 
(Q2, S)such that 

(2.4) PztZ(O) = zI = 1, z E S, and 

f(Z(t)) -- f f(Z(s)) ds, t o 
(2.5) 2 o 

is a submartingale on (Q, YX P,) for all z E S and f E A, 

where Af is the Laplacian. Any such family IPz, z E SI will be called a solution of 
the submartingale problem (2.4)-(2.5). 

THEOREM 2.6. The submartingale problem (2.4)-(2.5) has a unique solution. 
Moreover, the family of probability measures JP, z E SI has the strong Markov 
property. 

PROOF. This is a variation of the central result proved by Stroock and 
Varadhan (1971). Because our diffusion process is time homogeneous, we state 
the submartingale problem using functions of state only, whereas Stroock and 
Varadhan studied processes with time-dependent drift and diffusion coefficients, 
so they were obliged to consider test functions depending on both state and time. 
Their argument can be modified to prove the current proposition exactly as in 
Varadhan-Williams (1983). 

A probability measure ir on S is said to be a stationary distribution (or invariant 
probability measure) for JP, z E SI if 

(2.7) 1 ir(dz)E-[f (Z(t))] = f ir(dz) f (z) 

for all t > 0 and all bounded, measurable f: S -- R. Weiss (1981) developed the 
following analytical characterization of stationary distributions. We shall com- 
ment briefly on the proof after his theorem has been stated precisely. 

THEOREM 2.8. There exists a unique stationary distribution. Moreover, a 
probability measure ir is the stationary distribution if and only if ir (oG) = 0 and 

(2.9) f ir(dz)zAf(z) c 0 for all f E W. 

The proof of existence depends critically on the assumed boundedness of S. 
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Starting with any probability measure it on S, let 

wrt(A)=- f t f ,(dz)Pz{Z(t) E AI t o 

for t - 0. One may interpret irt(A) as the expected fraction of time spent in set 
A up to time t when the initial state is randomized according to pi. The set of all 
probability measures on a compact set is itself weakly compact, so [{rn, n = 1, 
2, - * * converges weakly along a subsequence to a probability measure -r. A 
standard argument then shows that ir satisfies (2.7). To prove uniqueness of the 
stationary distribution, one uses the uniform ellipticity of Laplace's operator plus 
standard results from ergodic theory. From the results of Stroock and Varadhan 
(1971), it follows that PzIZ(t) E OGI = 0 for all z E S and t - 0, and hence 
ir(aG) = 0. To see that the stationary distribution satisfies (2.9), let f E F be 
arbitrary, and note that (2.5) implies 

(2.10) Ez f (Z(t)) - f Af (Z(s)) ds] f (z) 

for all z E S. Now integrate both sides of (2.10) with respect to r (dz), and use 
(2.7) and Fubini's theorem to obtain 

(2.11) 0 f J r(dz)Ez[ Af (Z)(s)) ds] = A I ir(dz)E[Af (Z(s)) dsj. 

The inner integral on the last line equals fG r (dz) Af (z) by (2.7), so we conclude 
that (2.9) is necessary for ir to be the stationary distribution; the proof of 
sufficiency is much more difficult, and we will not discuss it. 

It remains only to verify that the probability measure identified in Section 1 
satisfies Weiss' condition (2.9). As the proof will suggest, we originally deduced 
from (2.9) that a well-behaved stationary density p would have to satisfy 

(2.12) Ap(z) = 0 in G, 

(2.13) (a/an)p(a) = (a/Oa)[p(o)tan 0(o)] on 0G. 

Formula (1.4)-(1.5) was then obtained by solving this boundary value problem. 

LEMMA 2.14. The function L defined by (1.5) is bounded and analytic in G 
with Im L = -0 on oG. 

PROOF. Suppose first that G is the unit disk and F is the standard conformal 
mapping 
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Thus OG is the unit circle C, and o0 = 1. Specializing (1.5), we have 

L r _z) [F%-F(u)1 dF(o)-i0(o) 
(2.16) 

I (1 - z) duo () =-ir Jc [ (a) -0 (1) ] (z - ) ( - - i0(l). 

Since 0 is assumed Lipschitz-continuous on OG, we see from the last line of (2.16) 
that the integral defining L(z) is in fact convergent for I z I < 1. Hereafter set 
g(a) = 0(a) - 0(1) and define 

(2.17) Tz = J (a) Izi < 1, 

with the understanding that the integral is singular when I z I = 1. Equation 
(2.17) is the familiar Poisson integral formula, so T is a bounded analytic function 
with Re T = g on C, cf. Chapter 4 of Ahlfors (1979). Now the kernel appearing 
on the last line of (2.16) can be written as 

(1 - z)du As+ 1\ du as + z\ du 
(Z - a)(1 - a) a- 1 2a a - z 2c' 

so (2.16) can be rewritten L(z) = iT(l) - iT(z) - i0(). Of course T(1) = g(1) = 

0, so this reduces to L(z) = -iT(z) - i0(1). From our previous characteriza- 
tion of T it follows that L is a bounded analytic function with Im L(U) - 

-g (a) - 0(1) = -0(a) on C, as desired. 
In the general case, we can always represent F(z) as i[1 + 4)(z)]/[1 -(z)], 

where 4) is a conformal mapping from S to the unit disk such that 4) (o) = 1. 
That is, F can always be represented as the composition of the conformal mapping 
(2.15) with such a 4). Let us make the change of variable w = 4)(z), let s = (a) 
denote a generic point on the unit circle, and set L*(w) = L(z) and 0*(s) = 0(a). 
From the Lipschitz-continuity of 0 and the description (1.3) of OG it follows that 
0* is Lipschitz-continuous on C, so the argument above shows that L* is bounded 
and analytic with Im L* =-0* on C. The desired conclusion for L then follows 
directly. 

THEOREM 2.18. The unique stationary distribution is ir(dz) = p(z)dz, where 
p is defined by (1.4)-(1.5). 

PROOF. Viewing c as an arbitrary positive constant for the moment, we take 
p(z) = c ReIexp L(z)} and q(z) = c ImIexp L(z)}, meaning that 

(2.19) p(z) = c expIRe L(z)jcos{Im L(z)}, 

(2.20) q(z) = c expIRe L(z)lsin{Im L(z)}. 

From Lemma (2.14) we know that exp L(z) is itself bounded and analytic, so p 
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and q are both harmonic, and that Im L(a-) = -0 (a) on aG. Now I 0(a) I < r/2 
by assumption, so I Im L(z) I < r/2 for all z E G by the maximum principle. Thus 
p is strictly positive and bounded, insuring that c can be set to make p a probability 
density. From (2.19), (2.20) and (2.14), 

(2.21) q(u)/p(a) = tan{Im L(o)l = -tan 0(u) on aG. 

Finally, since p and q are conjugate functions, we have (remember that 0/On 
denotes the inward-pointing normal derivative) 
(2.22) (a/an)p(o) = -(alan)q(o). 

Now multiply both sides of (2.21) by p (a), take the tangential derivative of both 
sides, and then substitute (2.22) to obtain (2.13). Summarizing the development 
up to here, we have seen that (1.4)-(1.5) does in fact define a probability density 
p, and that p satisfies (2.12)-(2.13). 

Let r (dz) = p (z)dz, and let f E W be arbitrary. Using t2.12) and Green's second 
identity, and again remembering that a/an is an inward-pointing normal deriva- 
tive, we have 

f ir(dz)Af(z) = f p(z) Af (z) dz 

(2.23) t'r a 1 

-23 J [f(a) - p() -p(a) - f(a)j do. OG L an an 

But (a/an)f(a) - -tan 0(a)(a/aa)f(() by the definition of W Integrating by 
parts around aG, we thus have 

p(a) - f(a) dou? p(a)tan 0(a) - f(a) du 
OG On dJOG Ocr 

(2.24) 
= f (a) -[p(a)tan 0(u)] du. 

dG a 

Combining (2.23) and (2.24) gives 

rG (z) A f' )- G {a p (a) aa [p(o)tan ?(a)]ff(a) du. 

By (2.13), the integrand on the right is identically zero, so ir satisfies (2.9), and 
the proof is complete. 

3. The polygonal case. All notation and assumptions are as described 
earlier in Section 1. In particular, recall that G is the interior of a polygon S with 
vertices 1, * *, UK. In the current context, we define 

(3.1) Df (a) = (a/an)f (a) + tan Ok(a/aof) f (W) on side k, 
with Df undefined at vertices. Also, let W be the set of all f E C2(S) such that 

(3.2) f is a constant over a neighborhood of each vertex 

(3.3) Df 2 0 on each side of S. 
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To define the diffusion process Z, we now seek a family of measures IP_, z E8 S 
on (Q, Y) such that, for each z E S8 

(3.4) P2' 1Z(O) = z = 1, 
l t 

f (Z(t)) - 2 Af (Z(s)) ds, t - 0, 
(3.5) 

2 

is a submartingale on (Q, 9 P,) for each f E A, and 

(3.6) EZ[f lZ(s)=,kl dsl = 0 for k = 1, -.., K. 

Condition (3.6) requires that the residence time of Z at each vertex 0k be zero 
almost surely, regardless of starting state. This condition is an essential comple- 
ment to (3.5), because the latter involves only test functions that are flat around 
vertices, and thus (3.5) does not specify the behavior of Z at the vertices. The 
following is proved by Varadhan and Williams (1983) for the case where S is a 
wedge; the extension to a polyhedron is accomplished by an easy localization 
argument, which we omit. 

THEOREM 3.7. The submartingale problem (3.4)-(3.6) has a solution if and 
only if the problem data satisfy (1.6). In this case, the solution is unique, and the 
family tPz, z E SI has the strong Markov property. 

Hereafter we assume (1.6) holds. It follows from the results of Varadhan and 
Williams (1983) that for any starting state z E S, vertex Sk is hit with probability 
1 if Ok < Ok-i, and Sk is hit with probability zero otherwise. We shall have no need 
for this result in our study. 

Stationary distributions are defined exactly as in Section 2. The following 
analytical characterization is identical to (2.8), except that now 9' is defined 
differently. This theorem is a composite of results by Weiss (1981) and Williams 
(1983), as we shall explain. 

THEOREM 3.8. There exists a unique stationary distribution. Moreover, a 
probability measure ir is the stationary distribution if and only if ir( G) = 0 and 

(3.9) f ir(dz)Af(z) c 0 for all f E W. 

Existence of a stationary distribution is proved exactly as in the case of smooth 
data, using the boundedness of S. By imitating the analysis in Chapter 7 of 
Williams (1983), one can show that Z is recurrent in the fine topology, and thus 
its invariant measure is unique. Because Z spends no time on OG, regardless of 
starting state, the stationary distribution must have ir (aG) = 0. The necessity of 
(3.9) is proved exactly as in the case of smooth data, and Theorem 3 of Weiss 
(1981) establishes sufficiency. (Weiss treats a more general problem with piece- 
wise smooth data, assuming that the corresponding submartingale problem is 
well posed.) 



754 HARRISON, LANDAU, SHEPP 

Consider now the density function p defined by (1.7). Let us first check that 
p is integrable over G. so c can be set to make p a probability density. This comes 
down to the question of integrability around an arbitrary vertex Sk. Recall from 
Figure 2 that ok is the interior angle made by the two sides meeting at 0k. A 
fundamental property of the Schwarz-Christoffel mapping is that 

I F(z) - F mk) I = O(I Z - ak I /(k) as I z Ik I -O. 

Combining this with (1.9) gives 

p(Z) = O(| Z - Jk I k) as I Z - Sk I , 

where fk = (Ok - Ok-l)/Ak- Our key restriction (1.6) says that flk >-2, so p is 
integrable over any neighborhood of Sk, as required. 

In proving that Weiss' condition (3.9) is satisfied by r (dz) = p (z)dz, we shall 
show that 

(3.10) Ap(z) = 0 in G, 

(3.11) (a/an)p(a) = tan 0k(a/ao)p(W) on side k, and 

(3.12) J -p(a) du = p(b)tan 0(b) - p(a)tan 0(a), 
r an 

where a and b are boundary points located on side i and side j, respectively, 
0(a) = 0i and 0(b) = Oj, and r is any differentiable curve that leads from a to b 
through G. One might think that (3.10)-(3.11), being analogous to (2.12)-(2.13) 
for the case of smooth data, would uniquely determine p, but this is not the case. 
(Note that these conditions are always satisfied by the uniform density.) The 
extra requirement (3.12) is essential here. 

THEOREM 3.13. The unique stationary distribution is lr(z) = p(z)dz, where p 
is defined by (1.7). 

PROOF. Let us define the complex-valued function 

(3.14) L(z) = logjexp(-i0K) Hfl [F(z) -=F(ok)I 

- Ek=i aklog[F(z) - F(k)] -iK 

for z E G. Let H be the upper half-plane and R the real line, and let L* (w) - 

L(z), where w = F(z). Also set 0*(u) = O(o) on R, where u = F(o), with the 
obvious convention that 0(u) = Ok on side k. From (3.14) we have 

(3.15) L*(w) = ,k~l (1/lr)(Ok - Ok-1)lg(W -uk) -OK, 

where uk = F(rk). Recall that log(w) is analytic in the upper half-plane with 
Im log(u) = 0 for u < 0, and Im log (u) = ir for u < 0. Combining this with (3.15), 
we see that L* is analytic in the upper half-plane with Im L*(u) = 0*(u) on R. 
Thus L is analytic in G with Im L(u) = -0k on side k. 

Noting that p(z) = c ReIexp L(z)} by (3.14) and (1.7), let us define q(z) = c 
ImIexp L(z) }. Proceeding exactly as in the proof of Theorem (2.18), we find that 
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p and q are conjugate harmonic functions satisfying 

(3.16) -q(a) = tan OkP(o) on side k. 

Now take the tangential derivative of each side of (3.16), and substitute 

(3.17) -(a/a)q(o)= (a/an)p(u) 

as in the proof of (2.18). This gives (3.11). 'Next, let F be any differentiable curve 
that leads from a to b through G, where a, b, E 9G are not vertices. From (3.16) 
we have 

(3.18) p(b)tan 0(b) - p(a)tan 0(a) = -[q(b) - q(a)]. 

But [q(b) - q(a)] can be written as the integral of the tangential derivative of q 
over F. Using (3.17) to substitute for the tangential derivative, we finally arrive 
at (3.12). Thus p has been shown to satisfy (3.10)-(3.12). 

Finally, to prove that (3.9) is satisfied by r (dz) = p(z)dz, let f E F be arbitrary. 
Because f is flat around each vertex, we can cut the corners of G, as pictured in 
Figure 4, so that f has constant value Ck over a neighborhood containing the small 
triangle eliminated near Sk. Let a,, * , ax and bi, * * *, bK be as shown in Figure 
4, and let Fk be the line segment leading from ak to bk. Finally, let W be the open 
polygonal region bounded by F,, * * , FK and the sides of S, as shown in Figure 
4. Note that Af = 0 in each of the small triangles that make up G - W, since f is 
constant over each such triangle. Thus, using (3.10) and Green's second identity 
exactly as in the proof of (2.8), we have 

T r(dz)Af (z) = f p(z)Af (z) dz = f p(z)Af (z) dz 
(3.19) 

=1 X f() 1 p(u) - p(u) (a) do. O9n O9n 
For the last stage of the argument, let 0(.) be defined on OW so that it is 
continuously differentiable, I 0(* ) I < r/2, and 0(a) = Ok at each point a E8 AW 
that lies on side k. Recall that 

(3.20) (a/an)f () - -tan 0( )(a/a))f (a) 

on each side of S by definition of W. This weak inequality extends to all a E8 aW, 

03 

b3 a3 

a1 W b2 

04/ 
N,0- 

FIG. 4PoyoareinWfrebyctigteca2 
FIG. 4. Polygonal region W formed by cutting the corners of G 



756 HARRISON, LANDAU, SHEPP 

because both the normal and tangential derivatives of f are zero on F1, * K*, FK. 
Just as in the proof of (2.8), we substitute (3.20) into (3.19) and integrate by 
parts around aW to arrive at 

(3.21) f ir(dz)f (z) ' I { -p(a) - a[p()tan 0(a)] f (a) du. tan a poa 
a Oo]f~) o 

By (3.11), the quantity in braces vanishes where aW coincides with aG, so (3.21) 
reduces to 

(3.22) < (d) f (z) _ Ek=1 Ck k tan P(a) - - [p(o)tan 0(u)] do 

But each of the integrals on the right side of (3.22) is zero by (3.12), so (3.22) 
reduces to (3.8), and the proof is complete. 

4. Concluding remarks. To unify the two cases treated in this paper, one 
might consider a piecewise smooth region of the type studied by Weiss (1981). 
Let G be the union and/or intersection of finitely many bounded C2 domains, 
with the restriction that there are no cusps on aG, and let 0(.) be Lipschitz 
continuous on each section of aG, with I 0 (- ) I < r/2. Let S be the closure of G, 
and let F be a conformal mapping from S to the upper half-plane such that 
F(uo) = 0o for some o E aG that is not a singularity. The submartingale problem 
for this case is stated very much as in Section 3, using test functions f that are 
flat around singularities of aG. We conjecture that if the submartingale problem 
is well posed, then there is a unique stationary distribution, and its density 
function is given by formula (1.4)-(1.5). This submartingale problem (existence 
and uniqueness of a diffusion with the specified data) has not been studied as 
yet. If our conjecture is correct, then it can only be well posed when the function 
p defined by (1.4)-(1.5) is integrable over G; it may well be that integrability of 
this function is necessary and sufficient for the submartingale problem to have a 
(unique) solution. 

In Sections 2 and 3 we have only used the boundedness of S to prove that a 
stationary distribution exists; then direct calculations show that the stationary 
density is given by a particular function p. For unbounded regions, we conjecture 
that this same function p is the unique stationary distribution if it is integrable, 
and that no stationary distribution exists if it is not integrable. If the angles of 
reflection provide sufficient restorative force, it is certainly possible to have a 
stationary distribution with an unbounded region: see Harrison-Shepp (1983) for 
a concrete example of this (S is the semi-infinite strip and the angle of reflection 
is constant on each side). 

Readers interested in the behavior of reflected Brownian motion around 
singular boundary points may consult Dynkin (1964, 1967) and Varadhan- 
Williams (1983) for more on this fascinating and intricate subject. We also refer 
to Gakhov (1966) and Smirnov (1964) for extensive discussion of oblique deriv- 
ative boundary value problems of the type encountered in Sections 2 and 3. 
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