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Summary

Genome-wide association studies have successfully identified hundreds of novel genetic
variants associated with many complex human diseases. However, there is a lack of
rigorous work on evaluating the statistical power for identifying these variants. In
this paper, we consider the problem of sparse signal identification in genome-wide
association studies and present two analytical frameworks for detailed analysis of the
statistical power for detecting and identifying the disease-associated variants. We present
an explicit sample size formula for achieving a given false non-discovery rate while
controlling the false discovery rate based on an optimal false discovery rate procedure.
The problem of sparse genetic variants recovery is also considered and a boundary
condition is established in terms of sparsity and signal strength for almost exact recovery
of disease-associated variants as well as nondisease-associated variants. A data-adaptive
procedure is proposed to achieve this bound. These results provide important tools for
sample size calculation and power analysis for large-scale multiple testing problems. The
analytical results are illustrated with a genome-wide association study of neuroblastoma.

Some key words: False discovery rate; False non-discovery rate; High dimensional data;
Multiple testing; Oracle exact recovery.

1. Introduction

Genome-wide association studies have emerged as an important tool for discovering
regions of the genome that harbor genetic variants that confer risk for complex dis-
eases. Such studies often involve scanning hundreds of thousands of single nucleotide
polymorphism markers in the genome for identifying the genetic variants. Many novel
genetic variants have been identified from recent genome-wide association studies, in-
cluding variants for age-related macular degenerative diseases (Klein et al., 2005), breast
cancer (Hunter et al., 2007) and neuroblastoma (Maris et al., 2008). The Welcome Trust
Case-Control Consortium has recently published a study of seven diseases using 14, 000
cases and 3000 shared controls (Welcome Trust Case-Control Consortium, 2007) and has
identified several markers associated with each of these complex diseases. The success
of these studies has provided solid evidence that the genome-wide association studies
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represent a powerful approach to the identification of genes involved in common human
diseases.

Due to the genetic complexity of many common diseases, it is generally assumed that
there are often multiple genetic variants associated with disease risk. The key question is
to identify true disease-associated markers from the multitude of nondisease-associated
markers. The most common approach for the analysis of genome-wide association data
is to perform a single marker score test derived from the logistic regression model and
to control for multiplicity of testing using stringent criteria such as the Bonferroni cor-
rection (McCarthy et al., 2008). Similarly, the most commonly used approach for sample
size/power analysis for such large-scale association studies is based on detecting markers
of given odds ratios using a conservative Bonferroni correction. However, the Bonferonni
correction is often too conservative for large-scale multiple testing problems, which can
lead to reduced power in detecting disease-associated markers. Analytical and simula-
tion studies by Sabatti et al. (2003) have shown that the false discovery rate procedure
of Benjamini & Hochberg (1995) can effectively control the false discovery rate for the
dependent tests encountered in case-control association studies and increase the power
over more traditional methods.

Despite the success of genome-wide association studies, questions remain as to whether
the current sample sizes are large enough to detect most or all of the disease markers.
This is related to power and sample size analysis and is closely related to the problem of
sparse signal detection and discovery in statistics. However, the issue of power analysis
has not been addressed fully for simultaneous testing of hundreds of thousands of null
hypotheses. Efron (2007) presented an important alternative for power analysis for large-
scale multiple testing problems in the framework of local false discovery rate. Gail et al.
(2008) investigated the probability of detecting the disease-associated markers in case-
control genome-wide association studies in the top T largest chi-square values from the
trend tests of association. The detection probability is related to the false non-discovery
and the T is related to the false discovery, although these terms are not explicitly used
in that paper.

The goal of the present paper is to provide an analytical study of the power and sample
size issues in genome-wide association studies. We treat the vector of the score statistics
across all the markers as a sequence of Gaussian random variables. Since we expect only a
small number of markers are associated with disease, the true mean of the vector of score
statistics should be very sparse, although the degree of sparsity is unknown. Our goal is
to recover those sparse and relevant markers. This is deeply connected with hypothesis
testing in the context of multiple comparisons and false discovery rate controls. Both false
discovery rate control and sparse signal recovery have been areas of intensive research in
recent years. Sun & Cai (2007) showed that the large-scale multiple testing problem has a
corresponding equivalent weighted classification formulation in the sense that the optimal
solution to the multiple testing problem is also the optimal decision rule for the weighted
classification problem. They further proposed an optimal false discovery rate controlling
procedure that minimizes the false non-discovery rate. Donoho & Jin (2004) studied
the problem of detecting sparse heterogeneous mixtures using higher criticism, focusing
on testing the global null hypothesis vs. the alternative where only a fraction of the
data comes from a normal distribution with a common non-null mean. It is particularly
important that the detectable region is identified on the amplitude/sparsity plane so that
the higher criticism can completely separate the two hypotheses asymptotically.
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In this paper, we present analytical results on sparse signal recovery in the setting of
case-control genome-wide association studies. We investigate two frameworks for detailed
analysis of the statistical power for detecting and identifying the disease-associated mark-
ers. In a similar setting as in Gail et al. (2008), we first present an explicit sample size
formula for achieving a given false non-discovery rate while controlling the false discovery
rate based on the optimal false discovery rate controlling procedure of Sun & Cai (2007).
This provides important results on how odds ratios and marker allele frequencies affect
the power of identifying the disease-associated markers. We also consider the problem of
sparse marker recovery, establishing the theoretical boundary for almost exact recovery
of both the disease-associated markers and nondisease-associated markers. Our results
further extend the amplitude/sparsity boundary of Donoho & Jin (2004) for almost exact
recovery of the signals. Finally, we construct a data adaptive procedure to achieve this
bound.

2. Problem setup and Score statistics based on the logistic regression
models

We consider a case-control genome-wide association study with m markers genotyped,
where the minor allele frequency for marker i is pi. Let Gi = 0, 1, 2 be the number of
minor alleles at marker i for i = 1, . . . ,m, where Gi ∼Bin(2, pi). Assume that the total
sample size is n and n1 = rn and n2 = (1− r)n are the sample sizes for cases and controls.
Let Y=1 for diseased and Y = 0 for nondiseased individuals. Suppose that in the source
population, the probability of disease is given by

logit{pr(Y |Gi, i = 1, . . . ,m)} = a+

m∑
i=1

Gibi,

where only a very small fraction of bis are nonzero. Gail et al. (2008) showed that for
rare diseases or for more common diseases over a confined age range such as 10 years,
for case-control population, if the markers are independent of each other, it follows that

logit{pr(Y |Gi)} = ai +Gibi, (1)

approximately for i = 1, . . . ,m. This implies that a logistic regression model can be fitted
for each single marker i separately, for i = 1, . . . ,m.

Based on the well-known results of Prentice & Pyke (1979), the maximum likelihood
estimation for a cohort study applied to case-control data with model (1) yields a fully
efficient estimate of bi and a consistent variance estimate. For a given case-control study,
let j be the index for individuals in the samples, Yj be the disease status of the jth
individual and Gij be the genotype score for the jth individual at the ith marker. The
profile score statistic to test H0

i : bi = 0 can be written as

U(bi) =
∑
j

Gij(Yj − Ȳ ),

where Ȳ =
∑n

j=1 Yj . In the following, we denote pri0,E i0, vari0 as the probability, expec-

tation and variance calculated under the null hypothesis H0
i : bi = 0, and pri1,Ei1, vari1

as those calculated under the alternative hypothesis H1
i : bi = 1. Under H0

i : bi = 0,
pri0(Yj = y|Gij = g) = K I {y = 1}+ (1−K) I {y = 0}, where I {.} is the indicator func-
tion. We have Ei0{U(bi)|Y } = 0, vari0{U(bi)|Y } = 2pi(1− pi)r(1− r)n.
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Under the alternative, if bi is known,

u1gi = pri1(Yj = 1|Gij = g) =
exp(ai + big)

1 + exp(ai + big)
,

u0gi = pri1(Yj = 0|Gij = g) =
1

1 + exp(ai + big)
,

where ai can be determined by
∑2

g=0 u1gipr(Gij = g) = D, with D being the dis-

ease prevalence and pr(Gij = g) = p2i I {g = 2}+ 2pi(1− pi) I {g = 1}+ (1− pi)
2 I {g =

0}. Then, we have

wygi = pri1(Gij = g|Yj = y) =
uy,g,ipr(Gij = g)∑2

g′=0 uyg′ipr(Gij = g′)
.

Therefore,

Ei1{U(bi)|Y } = r(1− r)n{Ei1(Gij |Yj = 1)− Ei1(Gij |Yj = 0)},
vari1{U(bi)|Y } = r(1− r)n{(1− r) vari1(Gij |Yj = 1) + r vari1(Gij |Yj = 0)}, (2)

where Ei1(Gij |Yj = y) =
∑2

g=0 gwygi, Ei1(G
2
ij |Yj = y) =

∑2
g=0 g

2wygi, and

vari1(Gij |Yj = y) = Ei1(G
2
ij |Yj = y)− {Ei1(Gij |Yj = y)}2.

Let

Xi = U(bi)/[vari0{U(bi) |Y }]1/2

be the score statistic for testing the association between the marker i and the disease. If
bi is known, then under H0

i , Xi ∼ N(0, 1) and under H1
i , Xi ∼ N(µn,i, σi) asymptotically,

where

µn,i = n1/2µi ≡ n1/2

{
r(1− r)

2pi(1− pi)

}1/2

{Ei1(Gij |Yj = 1)− Ei1(Gij |Yj = 0)}, (3)

σi =

{
(1− r) vari1(Gij |Yj = 1) + r vari1(Gij |Yj = 0)

2pi(1− pi)

}1/2

. (4)

Given bi, pi, r and D, µn,i and σi can be determined. Note that the alternative mean µn,i

increases with the sample size n at the order
√
n. Intuitively, as the sample size increases,

it is easier to differentiate the signals and zeros. So the problem of power/sample size
analysis can be formulated as the sparse normal mean problem: We havem score statistics
Xi, i = 1, . . . ,m, only a very small proportion ϵm of them have non-zero means, and the
goal is to identify those markers whose score statistics have non-zero means.

3. Marker Recovery Based on Controlling the False Discovery Rate
and False Non-Discovery Rate

3·1. Effect Size and False Discovery Rate Control

As in the work of Genovese & Wasserman (2002) and Sun & Cai (2007), we use the
marginal false discovery rate, defined as mfdr=E(N01)/E(R), and marginal false non-
discovery rate, defined as mfnr=E(N10)/E(S), as our criteria for multiple testing, where
R is the number of rejections, N01 is the number of nulls among these rejections, S is the
number of non-rejections, and N10 is the number of non-nulls among these nonrejections.
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Genovese &Wasserman (2002) and Sun & Cai (2007) showed that under weak conditions,
mfdr and fdr (mfnr and fnr) are asymptotically the same in the sense that mfdr=
fdr + O(m−1/2) and mfnr= fnr + O(m−1/2). In the following, we use mfdr and
mfnr for our analytical analysis. However, to simplify the notation, we use fdr and
fnr.

Consider the sequence of score statistics Xi, i = 1, . . . ,m, as defined in the previous
section, where under H0

i , Xi ∼ N(0, 1) and under H1
i , Xi ∼ N(µn,i, σ

2
i ), µn,i ̸= 0, σi ≥

1. Usually, µn,i and σi are different across different disease-associated markers due to
different minor allele frequencies and different effect sizes as measured by the odds ratios
(see Eqs. (3) and (4)). However, since most of the markers in genome-wide association
studies are not rare and the observed odds ratios range from 1·2 to 1·5, we can reasonably
assume that they are on a comparable scale. In addition, for the purpose of sample size
calculation, one should always consider the worst case scenarios for all the markers , which
leads to a conservative estimate of the required sample sizes. To simplify the notation
and analysis and to obtain closed-form analytical results, we thus assume that all the
markers considered have the same minor allele frequency and all the relevant markers
have the same effect size. Specifically, we assume that under H1

i , Xi ∼ N(µ, σ2), σ ≥ 1.
Suppose that the proportion of non-null effects is ϵm. Defining a sequence of binary latent
variables, θ = (θ1, . . . , θm), the model under consideration can be stated as follows:

θ1, . . . , θm are independently and identically distributed as Bernoulli(ϵm),

if θi = 0, Xi ∼ N(0, 1); and if θi = 1, Xi ∼ N(µ, σ2).
(5)

Assume that σ is known. Our goal is to find the minimum µ that allows us to identify
θ with fdr level asymptotically controlled at α1 and fnr level asymptotically controlled
at α2. We particularly consider the optimal false discovery rate controlling procedure
of Sun & Cai (2007), which simultaneously controls the fdr at α1 and minimizes fnr
asymptotically. Different from the p-value-based false discovery rate procedures, this
approach considers the distribution of the test statistics and involves the following steps:

i. Given the observation X = (X1, . . . , Xm), estimate the non-null proportion ϵ̂m us-
ing the method in Cai & Jin (2010). This estimator is based on Fourier trans-
formation and the empirical characteristic function, which can be written as ϵ̂m =
1−m−(1−η)

∑m
i=1 cos{(2η logm)1/2Xi}, where η ∈ (0, 1/2) is a tuning parameter,

which needs to be small for the sparse case considered in this paper. Based on our
simulations, η = 10−4 works well.

ii. Use a kernel estimate f̂ to estimate the mixture density f of the Xi’s,

f̂(x) = m−1+ρ
m∑
j=1

K{mρ(x−Xj)}, ρ ∈ (0, 1/2), (6)

where K{.} is a kernel function and ρ determines the bandwidth. We use
ρ=1·34×m−1/5 as recommended by Silverman (1986).

iii. Compute T̂i = (1− ϵ̂m)φ(Xi)/f̂(Xi), where φ(.) is the standard normal density func-
tion.

iv. Let

k = max{i : 1
i

i∑
j=1

T̂(j) ≤ α1},
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then reject all H(i), i = 1, . . . , k. This adaptive step-up procedure considers the average
posterior probability of being null and is adaptive to both the global feature ϵm and
local feature of φ(Xi)/f(Xi).

The procedure has a close connection with a weighted classification problem. Consider
the loss function

Lλ(θ, δ) =
m∑
i=1

{λ I (θi = 0)δi + I (θi = 1)(1− δi)}. (7)

The Bayes rule under the loss function (7) is

θi(λ) = I

{
Λ(Xi) =

(1− ϵm)f0(Xi)

ϵmf1(Xi)
<

1

λ

}
, (8)

where f0(x) = φ(x; 0, 1) and f1(x) = φ(x;µ, σ2). Sun & Cai (2007) show that the thresh-
old λ is a decreasing function of the fdr level, and for a given fdr level α1, one can
determine a unique thresholding λ to ensure the fdr level to be controlled under α1. The
following theorem gives the minimal signal µ required in order to obtain the pre-specified
fdr and fnr levels using this optimal procedure.

Theorem 1. Consider the model in Eq. (5) and the optimal oracle procedure of Sun
& Cai (2007). In order to control the fdr under α1 and fnr under α2, the minimum

µ has to be no less than (σ2 − 1)d̂, where (ĉ, d̂) are the root of the following nonlinear
equations: {

Φ(c− dσ)− Φ(−c− dσ) = (1− c1)/(c2 − c1),

Φ(−cσ − d) + Φ(−cσ + d) = c1(c2 − 1)/(c2 − c1),
(9)

where Φ is the cumulative density function of the standard normal distribution, and

c1 =
α1ϵm

(1− α1)(1− ϵm)
, c2 =

(1− α2)ϵm
α2(1− ϵm)

.

As discussed in Section 2, in genome-wide association studies, µ =
√
nµ1, where µ1 as

defined in Eq.(3) can be determined by the effect of the marker, log odds ratio b, the
minor allele frequency p and the case/control ratio r. The following corollary provides the
minimum sample size needed in case-control genome-wide association studies in order to
control the fdr and fnr levels.

Corollary 1. Consider a case-control genome-wide association study, with m mark-
ers, a total sample size of n, with n1 = nr cases and n2 = (1− r)n controls. Assume
that all the markers have the same minor allele frequency of pi = p and all the rele-
vant markers have the same log odds ratio bi = b. In order to control the fdr and fnr
levels under α1 and α2 asymptotically, the minimum total sample size must be at least
n = {d̂(σ2 − 1)/µ1}2, where d̂ is the root of Eq.(9), and µ1 and σ1 are defined in Eqs.
(3) and (4).

Corollary 1 gives the minimum sample size required in order to identify the markers
with minor allele frequency p and effective odds ratio of b with fdr less than α1 and fnr
less than α2 using the optimal false discovery rate controlling procedure of Sun & Cai
(2007). Since this procedure asymptotically controls the fdr level and minimizes the fnr
level, the sample size obtained here is a lower bound. This implies that asymptotically, one
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cannot control both fdr and fnr using a smaller sample size with any other procedure.
In practice, α2 should be set to less than ϵm, which can be achieved by not rejecting any
nulls.

3·2. Illustration

As a demonstration of our analytical results, we present the minimum sample sizes
needed for different levels of fdr and fnr in Figure 1 for ϵm = 2× 10−4, which corre-
sponds to assuming 100 disease-associated markers. We assume a disease prevalence of
D=0·10. As expected, the sample size needed increases as the fdr level or the target fnr
level decreases. It also decreases with higher signal strength. The fnr levels presented
in the plot are very small since it cannot exceed the proportion of the relevant markers
ϵm. When m is extremely large, ϵm is usually very small. In Figure 1, ϵm = 2× 10−4 and
the fnr level we choose should be less than ϵm, since fnr=ϵm can be achieved by not
rejecting any of the markers. Among the 100 relevant markers, fnr=10−4, 2× 10−5 and
10−6 corresponds to an expected number of nondiscovered relevant markers of fewer than
50, 10 and 0·5, respectively. As a comparison, with the same sample size for fdr=0·05
and fnr=10−4, 2× 10−5 and 10−6, the power of the one-sided score test using the Bon-
feronni correction to control the genome-wide error rate at 0·05 is 0·22, 0·64 and 0·95,
respectively. We observe that the sample sizes needed strongly depend on the fnr and
the effect size of the markers, but are less dependent on the fdr level. Similar trends
were observed for ϵm = 2× 10−5, which corresponds to assuming 10 disease-associated
markers.

We performed simulation studies to evaluate the sample size formula presented in
Corollary 1. We assume that m = 500, 000 markers are tested with 100 being associated
with disease, which corresponds to ϵm = 2× 10−4. We first considered the setting that
all the 100 relevant markers have the same odds ratio on disease risk with a minor
allele frequency of 0·40. For a pre-specified fdr=0·05 and fnr=10−4, we determined the
sample size based on Corollary 1. We then applied the false discovery rate controlling
procedure of Sun & Cai (2007) to the simulated data and examined the observed fdrs

Table 1. Empirical fdr and fnr (10−4 unit) and their standard errors for the optimal
false discovery rate procedure based on 100 simulations where the sample sizes are deter-
mined by Corollary 1 for the independent sequences with the same alternative odds ratio
for fdr=0·05 and fnr=10−4.

Independent sequence with Short-ranged dependent sequence
the same alternative odds ratios with different alternative odds ratios

Odds ratio Empirical fdr Empirical fnr Empirical fdr Empirical fnr
1·20 0·050 (0·028) 1·04 (0·10) 0·051 (0·030) 1·04 (0·10)
1·23 0·048 (0·028) 1·03 (0·12) 0·051 (0·032) 1·04 (0·11)
1·26 0·045 (0·030) 1·04 (0·11) 0·055 (0·033) 1·04 (0·11)
1·29 0·046 (0·030) 1·15 (0·13) 0·053 (0·031) 1·03 (0·11)
1·33 0·053 (0·033) 1·04 (0·11) 0·054 (0·032) 1·05 (0·10)
1·36 0·047 (0·029) 1·01 (0·13) 0·049 (0·029) 1·00 (0·12)
1·39 0·051 (0·030) 1·02 (0·11) 0·051 (0·033) 1·01 (0·11)
1·43 0·046 (0·033) 1·05 (0·12) 0·044 (0·029) 1·04 (0·11)
1·46 0·046 (0·027) 1·04 (0·10) 0·046 (0·025) 1·02 (0·11)
1·50 0·051 (0·027) 1·03 (0·13) 0·053 (0·033) 1·03 (0·12)
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and fnrs. Table 1 shows the empirical fdrs and fnrs over 100 simulations for different
values of the odds ratios. We see that the empirical fdrs and fnrs are very close to
the pre-specified values, indicating that the sample size formula can indeed result in the
specified fdr and fnr.

Since our power and sample size calculation is derived under the assumption of common
effect sizes for all associated markers and independent test statistics, we also evaluated
our results under the assumption of short-range dependency and unequal effect sizes.
To approximately mimic the dependency structure among markers due to linkage dis-
equilibrium, we assumed a block-diagonal covariance structure for the score statistics
with exchangeable correlation of 0·20 for block sizes of 50. We simulated marker effects
with a mean odds ratio ranging from 1·20 to 1·50. For a given mean odds ratio, we ob-
tained the sample size and simulated the corresponding marker effects by generating µn,i

from N(4·40, 1·00). We then applied the false discovery rate controlling procedure and
calculated the empirical fdrs and fnrs for different mean odds ratios. The results are
presented in Table 1, indicating that the false discovery rate controlling procedure can
indeed control fdrs and obtain the pre-specified fnrs.

4. A Procedure for Sparse marker Recovery

4·1. Oracle Sparse Marker Discovery

Besides controlling the fdr and fnr, an important alternative in practice is to control
the numbers of false discoveries and false non-discoveries. One limitation with the use of
fdr and fnr in power calculations is that they do not provide a very clear idea about
roughly how many markers are falsely identified and how many are missed until the
analysis is conducted. In genome-wide association studies, the goal is to make the number
of misidentified markers, including both the false discoveries and false non-discoveries,
converge to zero when the number of the markers m and the sample sizes are sufficiently
large. In this section, we investigate the conditions on the parameters µ = µm and ϵm in
model (5) that can lead to almost exact recovery of the null and non-null markers. This
in turn provides a useful formula for the minimum sample size required for an almost
exact recovery of disease-associated markers.

Consider model (5) and a decision rule δi for i = 1, . . . ,m. We define fd as the ex-
pected number of null scores that are misclassified to the alternative, similarly, fn as the
expected number of non-null scores that are misclassified to null,

fd = E{
m∑
i=1

I (θi = 0)δi}, fn = E{
m∑
i=1

I (θi = 1)(1− δi)}.

Define the loss function as

L(θ, δ) =
∑
i

I (θi = 0)δi + I (θi = 1)(1− δi) =
∑
i

I (θi ̸= δi), (10)

which is simply the Hamming distance between the true θ and its estimate δ. Note that
E{L(θ, δ)} = fd+ fn.

Under model (5), the Bayes oracle rule (8) with λ = 1, defined as

δOR,i = I

{
ΛOR(Xi) =

(1− ϵm)f0(Xi)

ϵmf1(Xi)
< 1

}
, (11)
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Fig. 1. Minimum sample size needed for a given
fdr and fnr for a genome-wide association study
with m = 500, 000 markers and the relevant mark-
ers proportion ϵm = 2× 10−4. Assume that the case
proportion r=0·40 and the minor allele frequency
p=0·40. (a) fdr=0·05 and different values of odds
ratio; (b) fdr=0·20 and different values of odds ra-
tio; (c) odds ratio of 1·20 and different values of fdr;
(d) odds ratio of 1·50 and different values of fdr. For
each plot, the solid, dash and dot lines correspond to

fnr=10−4, 2×10−5 and 10−6, respectively.

minimizes the risk E{L(θ, δ)} = fd+ fn. We consider the condition on µm and ϵm such
that this risk converges to zero as m goes to infinity, where the non-null markers are
assumed to be sparse. We calibrate ϵm and µm as follows. Define

ϵm = m−β , β ∈ (1/2, 1), (12)

which measures the sparsity of the disease-associated markers, and

µm = (2τ logm)1/2, (13)

which measures the strength of the disease-associated markers. Here we assume that the
disease markers are sparse. We first study the relationship between τ and β so that both
fd and fn converge to zero as m goes to infinity.

Theorem 2. Consider model (5) and reparameterize ϵm and µ = µm in terms of β
and τ as in Eqs. (12) and (13). For any γ ≥ 0, under the condition

τ ≥ {(1 + γ)1/2 + σ(1 + γ − β)1/2}2, (14)
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the Bayes rule (11) guarantees both fd and fn converge to zero with the convergence

rate 1/{mγ(logm)1/2}.

Theorem 2 shows the relationship between the strength of the signal and the con-
vergence rate of the expected false discoveries and false non-discoveries. As expected,
astronger non-zero signal leads to faster convergence of the expected number of false
identifications to zero and easier separation of the alternative from the null.

In Eq. (14), when γ = 0, the convergence rate of fd and fn is the slowest, 1/(logm)1/2.
Letting σ → 1 yields the phase diagram in Figure 2, which is an extension to the phase
diagram in Donoho & Jin (2004). Three lines separate the τ − β plane into four regions.
The detection boundary

τ =

{
β − 1/2 (1/2 < β ≤ 3/4),

{1− (1− β)1/2}2 (3/4 < β < 1),

separates the detectable region and the undetectable region, when µ exceeds the de-
tection boundary, the null hypothesis H0 : Xi ∼ N(0, 1), 1 ≤ i ≤ m and the alternative

H
(m)
1 : Xi ∼ (1− ϵm)N(0, 1) + ϵmN(µ, 1), 1 ≤ i ≤ m separate asymptotically. Above the

estimation boundary

τ = β, (15)

it is possible not only to detect the presence of nonzero means, but also to estimate these
means. These two regions were identified by Donoho & Jin (2004). Based on Theorem 2,
we can obtain the almost exact recovery boundary

τ = {1 + (1− β)1/2}2,

which provides the region that we can recover the whole sequence of θ with a very high
probability converging to one when m → ∞, since

pr{
∑
i

I (θi ̸= δi)} ≤ E (∥θ − δ∥22) ≍ 1/(logm)1/2,

where “≍” represents asymptotic equivalence. In other words, in this region, we can
almost fully classify the θi into the nulls and the non-nulls.

Note that in large-scale genetic association studies, µ =
√
nµ1. Based on Theorem 2,

we have the following corollary.

Corollary 2. Consider the same model as in Corollary 1. If the sample size

n ≥

[
{2(1 + γ) logm}1/2 + σ{2(1 + γ) logm+ 2 log ϵm}1/2

µ1

]2

,

then both fd and fn of the oracle rule converge to zero with convergence rate

1/{mγ(logm)1/2}.

4·2. An Adaptive Sparse Recovery Procedure

Theorem 2 shows that the convergence rate 1/{mγ(logm)1/2} can be achieved using the
oracle rule (11). However, this rule involves unknown parameters, ϵm, f1(x) and f0(x),
which need to be estimated. Estimation errors can therefore affect the convergence rate.
We propose instead an adaptive estimation procedure for model (5) that can achieve the
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Fig. 2. Four regions of the τ − β plane, where ϵm =
m−β represents the percentage of the true signals
and µm = (2τ logm)1/2 measures the strength of the

signals.

same convergence rate for fd and fn under a slightly stronger condition than that in
Theorem 2.

Note that the Bayes Oracle rule given in (11) can be rewritten as

δOR,i = I
{
(1− ϵm)f0(Xi) < ϵmf1(Xi)

}
= I

{
f(Xi)

f0(Xi)
> 2(1− ϵm)

}
, (16)

where f(x) = (1− ϵm)f0(x) + ϵmf1(x) is the mixture density of the Xi’s. The density f

is typically unknown, but easily estimable. Let f̂(x) be a kernel density estimate based on
the observations X1, X2, · · · , Xm, defined by Eq. (6). For i = 1, . . . ,m, if |Xi| > {2(1 +
γ) logm}1/2, then reject the null H0

i : θi = 0; otherwise, calculate Ŝ(Xi) = f̂(Xi)/φ(Xi)

and reject the null if and only if Ŝ(Xi) > 2. Note that the threshold value 2 is based on
Eq. (16) since the proportion ϵm is vanishingly small in our setting.

The next theorem shows that this adaptive procedure achieves the same convergence
rate as the optimal Bayesian rule under a slightly stronger condition.

Theorem 3. Consider model (5) and reparameterize ϵm = n−β and µ = µm =
(2τ logm)1/2 as in Eqs. (12) and (13). Suppose that the Gaussian kernel density es-

timate f̂ , defined in Eq. (6), with ρ=1·34×m−1/5 is used in the adaptive procedure. For
any γ ≥ 0, if

τ > {(1 + γ)1/2 + σ(1 + γ − β)1/2}2,

then the adaptive procedure guarantees that both fd and fn converge to zero with the

convergence rate 1/{mγ(logm)1/2}.
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Fig. 3. Minimum sample size required for almost ex-
act recovery of the disease-associated markers for
a case-control genome-wide association study with
the number of markers m = 500, 000, case propor-
tion r=0·40, minor allele frequency p=0·40 for all
the markers. (a). The relevant markers proportion is
ϵm = 2× 10−4; (b). The relevant markers proportion
is ϵm = 2× 10−5. For each plot, the solid, dash and
dot lines correspond to γ value of 0·00, 0·20 and 0·40.

4·3. An Illustration of Marker Recovery

As an illustration, the sample sizes needed to obtain an almost exact recovery of the
true disease-associated markers are presented in Figure 3 for ϵm = 2× 10−4 and ϵm = 2×
10−5, which correspond to 100 and 10 disease-associated markers. We assume a disease
prevalence ofD=0·10. We observe that a larger γ implies a faster rate of convergence, and
therefore also larger sample size required to the achieve the rate. Generally speaking, the
sample sizes in Figure 3 are much larger than those in Figure 1, simply because almost
exact recovery of the disease-associated markers is a much stronger goal than controlling
the fdr and fnr at some given levels. In addition, for markers with the same effect
size, it is easier to achieve full recovery of the relevant markers for the sparser cases, see
Figure 3 (b).

We performed simulation studies to investigate how sample size affects the convergence
rate of fd and fn. We considered the same setting as above, where the number of markers
m = 500, 000, case proportion r=0·40, minor allele frequency p=0·40 for all the markers
and the relevant markers proportion is ϵm = 2× 10−4. For a given odds ratio and a given
γ parameter, we obtained the minimum sample size n for almost exact recovery and
evaluated the convergence rate of the oracle and the adaptive procedures under different
sample sizes. Table 3 shows the average number of fd+fn over 100 simulations. We
observed a clear trend of decrease of the fd+fn as we increase the sample sizes for both
the oracle and the adaptive procedures. For the adaptive procedure, when the sample size
is larger than the minimum sample size, decrease in fd+fn is small since the minimum
sample size has already achieved almost exact recovery.
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Table 2. The performances of the oracle (o) and adaptive (a) fd and fn controlling
procedures for varying sample sizes, where n is the theoretical sample size. For a given
γ, the average number of fd+fn and its standard error over 100 simulations are shown
for each sample size and odds ratio (or) combination.

γ = 0 γ=0·2
or 0·8n n 1·2n 0·8n n 1·2n

o 0·77(0·89) 0·14(0·35) 0·02(0·14) 0·08(0·27) 0·00(0·00) 0·00(0·00)
1·20 a 3·08(3·11) 3·10(3·23) 2·51(3·04) 2·57(3·02) 3·12(3·24) 2·59(3·12)

o 0·57(0·79) 0·13(0·37) 0·01(0·10) 0·03(0·17) 0·00(0·00) 0·00(0·00)
1·30 a 3·93(4·22) 2·61(2·97) 2·92(3·36) 3·41(3·99) 2·66(3·00) 2·92(3·34)

o 0·50(0·72) 0·1(0·30) 0·04(0·20) 0·02(0·14) 0·00(0·00) 0·01(0·10)
1·40 a 3·31(3·30) 2·57(3·11) 2·89(3·45) 2·97(3·39) 2·55(3·11) 2·84(3·42)

5. Genome-wide Association Study of Neuroblastoma - Power
Consideration

Neuroblastoma is a pediatric cancer of the developing sympathetic nervous system
and is the most common form of solid tumor outside the central nervous system. It is
a complex disease, with rare familial forms occurring due to mutations in paired-like
homeobox 2b or anaplastic lymphoma kinase genes (Mosse et al., 2008), and several
common variations being enriched in sporadic neuroblastoma cases (Maris et al., 2008).
The latter genetic associations were discovered in a genome-wide association study of
sporadic cases, compared to children without cancer, conducted at The Children’s Hos-
pital of Philadelphia. After initial quality controls on samples and marker genotypes, our
discovery data set contained 1627 neuroblastoma case subjects of European ancestry,
each of which contained 479,804 markers. To correct the potential effects of population
structure, 2575 matching control subjects of European ancestry were selected based on
their low identity-by-state estimates with case subjects. Analysis of this data set has led
to identification of several markers associated with neuroblastoma, including 3 markers
on 6p22 containing the predicted genes FLJ22536 and FLJ44180 with allelic odds ratio
of about 1·40 (Maris et al., 2008), and markers in BARD1 genes on chromosome 2 (Ca-
passo et al., 2009) with odds ratio of about 1.68 in high risk cases. The question that
remains to be answered is whether the current sample size is large enough to identify all
the neuroblastoma-associated markers.

We estimated ϵm = 2× 10−4 using the procedure of Cai and Jin (2010) with the tuning
parameter η = 10−4. A small value of η was chosen to reflect that we expect a very small
number of disease-associated markers. With this estimate, we assume that there are 96
markers associated with neuroblastoma. For the given sample size and number of markers
to be tested, Figure 4 (a) shows the minimum detectable odds ratios for markers with
different minor allele frequencies for various fdr and fnr levels. Note that fnr of 10−4,
5× 10−5 and 10−5 corresponds to an expected number of nondiscovered markers of fewer
than 48, 24 and 4·8, respectively. This plot indicates that with the current sample size,
it is possible to recover about half of the disease-associated markers with an odds ratio
around 1·4 and a minor allele frequency of around 20%.

Figure 4 (b) shows the minimum detectable odds ratios for markers with different
minor allele frequencies for almost exact recovery at different rates of convergence as
specified by the parameter γ, indicating that the current sample size is not large enough
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Fig. 4. Power analysis for neuroblastoma genome-
wide association study, where plots (a) and (b)
assume that ϵ = 2× 10−4, which corresponds to
98 relevant markers and plots (c) and (d) as-
sume that ϵ = 10−4, which corresponds to 49 rel-
evant markers. (a) and (c): detectable odds ra-
tios for markers with different minor allele frequen-
cies. For plot (a), the solid, dot, dash and dot-
dash lines correspond to (fdr=5%, fnr=10−4),
(fdr=1%, fnr=10−4), (fdr=5%, fnr=10−5), and
(fdr=1% and fnr=10−5), respectively. For plot (c),
the solid, dot, dash and dot-dash lines correspond
to (fdr=5%, fnr=5× 10−5), (fdr=1%, fnr=5×
10−5), (fdr=5%, fnr=5× 10−6), and (fdr=1%
and fnr=5× 10−6), respectively. (b) and (d): de-
tectable odds ratios for markers with different mi-
nor allele frequencies for almost exact recovery with
different convergence rates determined by γ=0·10

(solid) and 0·40 (dash).

to obtain almost exact recovery of all the disease-associated markers with odds ratio
around 1·40.

Figures 4 (c) and (d) show similar plots if we assume that ϵm = 10−4, which implies that
there are 48 associated markers. This plot indicates that with the current sample size, it
is possible to recover most of the disease-associated markers with odds ratio around 1·4
and minor allele frequency round 20% for fdr of 1% or 5%. However, the sample size is
still not large enough to obtain almost exact recovery of all disease-associated markers
with odds ratio around 1·40.
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6. Discussion

Our work complements and differs from that of Zaykin & Zhivotovsky (2005) and Gail
et al. (2008). Both Zaykin & Zhivotovsky (2005) and Gail et al. (2008) based their analy-
ses on the individual marker p-values, aiming to evaluate how likely the markers selected
based on the p-value ranking are disease-associated. Although both papers considered
the issues of false positives and false negatives, neither links these to fdr and fnr in
a formal way. Our analysis is mainly based on the distribution of the score statistics
derived from the logistic regressions for case-control data and is set up in the framework
of multiple testing and sparse signal recovery. In the setting of thousands of hypotheses,
it is natural to consider the power and sample size in terms of fdr and fnr, which
correspond to type I and type II errors in single hypothesis testing. In addition, we have
derived an explicit sample size formula under the assumption of fixed allele frequency
and fixed common marker effect.

In presenting the results for genome-wide association studies, we made several simpli-
fications. First, we assumed that the score statistics were independent across all the m
markers. This obviously does not hold due to linkage disequilibrium among the markers.
However, we expect such dependency to be short-ranged and our recent unpublished
results show that the optimal false discovery rate controlling procedure of Sun & Cai
(2007) is still valid and remains optimal. The results and the sample size formulae re-
main valid for such short-range dependent score statistics. Zaykin & Zhivotovsky (2005)
and Gail et al. (2008) showed that correlations of p-values within linkage disequilibrium
blocks of markers or among such blocks have little effect on selection or detection prob-
abilities because such correlations do not extend beyond a small portion of the genome.
It is likely, therefore, that our results were also little affected by such correlations. This
was further verified in our simulation studies shown in Table 1. Second, to simplify the
presentation and the derivation and to obtain a clean sample size formula as we pre-
sented in Corollary 1 and Corollary 2, we assumed that all the markers had the same
minor allele frequency and the effect sizes of the relevant markers were the same. One can
only employ simulations for power analysis if the minor allele frequencies and the marker
effects are all different. In fact, the analytical results that were used to validate their
simulations in Gail et al. (2008) were also derived under the assumption of fixed allele
frequency and fixed common effect. As in most of the power calculations, in practice, one
should consider different scenarios in terms of minor allele frequencies and odds ratios.
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Appendix

We present the proofs of Theorem 1, Theorem 2 and Theorem 3. We use the symbol
“≍” to represent asymptotic equivalence. If a ≍ b, then a = O(b) and b = O(a).
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Proof of Theorem 1.

When δi = 1, we have

(1− ϵm)φ(Xi; 0, 1)

ϵm φ(Xi;µ, σ2)
<

1

λ
,

which is equivalent to (Xi − µ)/σ ∈ (−∞,−c− dσ) ∪ (c− dσ,+∞), where
c =

{
2

σ2 − 1
log

(
λσ(1− ϵm)

ϵm

)
+

µ2

(σ2 − 1)2

}1/2

,

d =
µ

σ2 − 1
.

(17)

Since

mfdr =

∑m
i=1 pr(δi = 1 | θi = 0)(1− ϵm)∑m

i=1{pr(δi = 1 | θi = 0)(1− ϵm) + pr(δi = 1 | θi = 1)ϵm}
≤ α1,

we have

Φ(−cσ − d) + Φ(−cσ + d) ≤ c1{Φ(−c− dσ) + Φ(−c+ dσ)}, (18)

where c1 = α1ϵm/{(1− α1)(1− ϵm)}. Similarly, since

mfnr =

∑m
i=1 pr(δi = 0 | θi = 1)ϵm∑m

i=1{pr(δi = 0 | θi = 0)(1− ϵm) + pr(δi = 0 | θi = 1)ϵm}
≤ α2,

we have

Φ(cσ − d)− Φ(−cσ − d) ≥ c2{Φ(c− dσ)− Φ(−c− dσ)}, (19)

where c2 = (1− α2)ϵm/{α2(1− ϵm)}. Setting (18) and (19) as equality and simplifying

them, we obtain Eq. (9). Let (ĉ, d̂) be the solution of this equation, then Eq. (17) leads

to µ̂ = d̂(σ2 − 1). �

Proof of Theorem 2

Define c and d as in Eq. (17). Since

fd = mpr(δi = 1 | θi = 0)(1− ϵm) = m(1− ϵm){Φ(−cσ − d) + Φ(−cσ + d)},

in order for fd to converge to zero, −cσ + d should be negative and small enough. In
addition, since

−cσ + d = −σ

[
2

σ2 − 1
log

{
σ(1−m−β)

}
+

2{β(σ2 − 1) + τ}
(σ2 − 1)2

logm

]1/2
+

(2τ log)1/2

σ2 − 1

≍
√
2

σ2 − 1

[
−σ

{
β(σ2 − 1) + τ

}1/2
+ τ1/2

]
(logm)1/2,

as m → ∞, −cσ + d < 0. Because Φ(−cσ − d) ≤ Φ(−cσ + d), we have

fd ≍ m

cσ − d
φ(cσ − d) ≍ 1

(logm)1/2
·m1−C1 ,

where

C1 =
[σ{β(σ2 − 1) + τ}1/2 − τ1/2]2

(σ2 − 1)2
.
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In order for fd to converge to zero with the rate 1/{mγ(logm)1/2}, we require

1− C1 ≤ −γ,

which leads to

τ ≥ {(1 + γ)1/2 + σ(1 + γ − β)1/2}2.

Similarly,

fn = mpr(δi = 0 | θi = 1)ϵm = mϵm{Φ(c− dσ) + Φ(−c− dσ)},

and

c− dσ =

[
2

σ2 − 1
log

{
σ(1−m−β)

}
+

2{β(σ2 − 1) + τ}
(σ2 − 1)2

logm

]1/2
− σ(2τ logm)1/2

σ2 − 1

≍
√
2

σ2 − 1

[
{β

(
σ2 − 1

)
+ τ}1/2 − στ1/2

]
(logm)1/2.

As m → ∞, in order for c− dσ < 0, we require {β(σ2 − 1) + τ}1/2 < σ/τ1/2, which im-
plies τ > β. Then,

fn ≍ m

dσ − c
φ(dσ − c) ≍ 1

(logm)1/2
·m1−β−C2 ,

where

C2 =

[
σ(τ)1/2 −

{
β(σ2 − 1) + τ

}1/2
]2

(σ2 − 1)2
.

It is easy to show that {
1− β − C2 ≤ −γ,

τ > β,

is equivalent to τ ≥
{
(1 + γ)1/2 + σ(1 + γ − β)1/2

}2
. �

Proof of Theorem 3

Define S(x) = f(x)/φ(Xi), S̃(x) = S(x)/(1− ϵm). We have

pr{Ŝ(Xi) > 2 | θi = 0}
≤pr[|Xi| > {2(1 + γ) logm}1/2 | θi = 0]

+ pr[|Xi| ≤ {2(1 + γ) logm}1/2 , S̃(x) > 3/2 | θi = 0]

+ pr[|Xi| ≤ {2(1 + γ) logm}1/2 , |Ŝ(Xi)− S̃(Xi)| > 1/2 | θi = 0]

=(A) + (B) + (C).

We control (A), (B) and (C), respectively. First, we have

(A) = 2Φ
[
−{2(1 + γ) logm}1/2

]
≤ Cm−1−γ/(logm)1/2.

Using the same technique as the proof of Theorem 2, if

τ ≥
{
(1 + γ)1/2 + σ(1 + γ − β)1/2

}2
,
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(B) ≤ pr{S̃(Xi) > 3/2 | θi = 0} = pr{ΛOR(Xi) < 2 | θi = 0} ≤ Cm−1−γ/(logm)1/2.

Consider the set Xi = {Xi : |Xi| ≤ {2(1 + γ) logm}1/2}, for all Xi ∈ Xi,

pr{|Ŝ(Xi)− S̃(Xi)| > 1/2 | Xi}
≤ pr{|mŜ(Xi)−mS(Xi)|+ |mS(Xi)−mS̃(Xi)| > m/2 | Xi},

and

|mS(Xi)−mS̃(Xi)| =
m1−βf(Xi)

(1− ϵm)φ(Xi)
.

Since the alternative density can be modeled as a Gaussian location-scale mixture, we
have

f(Xi) = (1− ϵm)φ(Xi) +

L∑
l=1

1

σl
φ

(
Xi − µl

σl

)
ϵm,l,

where ϵm,l is the mixture proportion, representing the probability that Xj is from
N(µl, σl)). Under the condition

µl ≥ τ
{
(1 + γ)1/2 + σl(1 + γ − β′)1/2

}2

and σl > 1 for all l = 1, . . . , L, f(Xi)/φ(Xi) < mβ′
, for all Xi. Then,

|mS(Xi)−mS̃(Xi)| ≤ 2m1−(β−β′), β > β′.

Therefore, for m sufficiently large,

pr{|Ŝ(Xi)− S̃(Xi)| > 1/2 | Xi ∈ Xi} ≤ pr{|mŜ(Xi)−mS(Xi)| > m/3 | Xi}.

Let h = m−ρ, we have

E{mŜ(Xi) | Xi} −mS(Xi) = m

∫
K(y)

φ(Xi)
f(Xi − yh) dy −m

f(Xi)

φ(Xi)
.

Further, we take K(y) = φ(y) or any other symmetric kernel with a smaller tail than φ
when |y| > {2(1 + γ) logm}1/2. Using the fact that

∫
K(y) dy = 1 and

∫
yK(y) dy = 0,

E{mŜ(Xi) | Xi} −mS(Xi) = m
∑
l=2

(−1)lhl
{∫

ylK(y) dy

}
f (l)(Xi)

φ(Xi)
.

Let H l(x) be the lth Hermite Polynomial. For Xi ∈ Xi,

|(−1)lf (l)(Xi)/φ(Xi)| ≤ (1− ϵm)|H l(Xi)|+ ϵm

L∑
k=1

1

σl+1
k

∣∣∣∣H l

(
Xi − µk

σk

)∣∣∣∣ ≤ C(logm)l/2.

Therefore, for m sufficiently large,

pr{|Ŝ(Xi)− S̃(Xi)| > 1/2 | Xi}
≤pr[|mŜ(Xi)−mE{S(Xi) | Xi}|+ |E{mŜ(Xi) | Xi} −mS(Xi)| > m/3 | Xi]

≤pr[|mŜ(Xi)−mE{S(Xi) | Xi}|+ Cm1−2ρ logm > m/3 | Xi]

≤pr[|mŜ(Xi)−mE{S(Xi) | Xi}| > m/4 | Xi].
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Let X l
k = (Xk, . . . , Xl), l ≥ k. For example, Xm

1 = (X1, . . . , Xm) = X. Given Xi ∈ Xi,
define

g(X) =
1

h

m∑
j=1

K
(
Xi−Xj

h

)
φ(Xi)

= Ŝ(Xi),

then ∣∣∣∣∣∣
K

(
Xi−Xk

h

)
hφ(Xi)

∣∣∣∣∣∣ ≤ 1

h
exp

[
−1− h2

2h2

{
Xi −

h

1− h2
Xk

}2

− 1− 2h2

2h2(1− h2)
X2

k

]
≤ 1

h
.

For k ̸= i,

|g(Xk
1 , Xk, X

m
k+1)− g(Xk

1 , x̃k, X
m
k+1)| =

∣∣∣∣∣∣
K

(
Xi−Xk

h

)
−K

(
Xi−x̃k

h

)
hφ(Xi)

∣∣∣∣∣∣ ≤ 2

h
.

By McDiarmid’s inequality (McDiarmid, 1989),

pr{|Ŝ(Xi)− S̃(Xi)| > 1/2 | Xi with Xi ∈ Xi}
≤ pr[|mŜ(Xi)−mE{S(Xi) | Xi}| > m/4 | Xi with Xi ∈ Xi] ≤ 2 exp(−m1−2ρ/8).

Therefore,

(C) ≤
∫
Xi∈Xi

2 exp(−m1−2ρ/8)φ(Xi) dXi ≤ 2 exp(−m1−2ρ/8).

Thus,

fd = m(1− ϵm)pr{Ŝ(Xi) > 2 | θi = 0} ≤ Cm−γ/(logm)1/2.

Similarly,

fn = mϵmpr{Ŝ(Xi) ≤ 2 | θi = 1}
= m1−βpr{Ŝ(Xi) ≤ 2, |Xi| ≤ {2(1 + γ) logm}1/2 | θi = 1}
≤ m1−β [pr{S(Xi) ≤ 5/2 | θi = 1}
+ pr{|Ŝ(Xi)− S̃(Xi)| > 1/2, |Xi| ≤ [2(1 + γ) logm]1/2 | θi = 1}]

= m1−β{(D) + (E)}.

Using the same technique as the proof of Theorem 2, if

τ ≥
{
(1 + γ)1/2 + σ(1 + γ − β)1/2

}2
,

then (D) ≤ Cm−1+β−γ/(logm)1/2. Finally,

(E) ≤
∫
Xi∈Xi

pr{|Ŝ(Xi)− S̃(Xi)| > 1/2 | Xi}f1(Xi) dXi ≤ 2 exp(−m1−2ρ/8).

Thus,

fd = m(1− ϵm) = m{(D) + (E)} ≤ Cm−γ/(logm)1/2.

�
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