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Abstract

Traditional sourcing arrangements for after-sales support of capital-intensive products such as

airplanes, weapons systems, and manufacturing equipment have centered around physical assets.

Typically, customers would pay the supplier of maintenance and repair services (usually the product

manufacturer) for the resources, such as spare parts, that were needed to maintain the products. In

recent years, we have witnessed the emergence of a new service contracting strategy called Perfor-

mance Based Logistics (PBL). Under PBL, the basis of supplier compensation is actual uptime (or

availability) of the product. PBL implementations are now mandated by the Department of Defense

for all new system acquisition programs.

The goal of this paper is to compare the ine¢ ciencies arising under the traditional (pre-PBL

or material contract) and the PBL contract. In both cases, the customer (principal) sets the

contract terms, and as a response, the supplier sets the base-stock inventory level of spare parts

as well as invests in increasing product reliability. We �nd that, in a majority of situations, both

contracts result in suboptimal supply chain performance manifested by low product reliability and

high inventory of spares (relative to the �rst-best solution). However, the PBL contract provides

stronger incentives to invest in reliability improvements than does the material contract. Moreover,

the e¢ ciency of the PBL contract improves (i.e., inventory decreases and reliability increases) if

the supplier owns a larger portion of the spare assets. In particular, under a PBL contract when

the supplier owns all spare assets, the supply chain becomes coordinated. Our analysis supports

a DoD recommendation for transforming suppliers into total service providers of support services

who, under the PBL arrangement, assume complete control of service functions, including asset

ownership.

�Email: shkim@wharton.upenn.edu, cohen@wharton.upenn.edu, netessine@wharton.upenn.edu
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1 Introduction

The importance of after-sales product support is growing in such capital-intensive industries as aerospace,

defense, and industrial equipment. For example, in the defense industry only about 28% of a weapon

system�s total ownership cost is attributed to development and procurement, whereas the costs to oper-

ate, maintain, and dispose of the system account for the remaining 72% (GAO report 2003). Given that

the U.S. Department of Defense�s (DoD) annual budget for operations and maintenance is projected to

be approximately $70B in 2007 (a 25% increase over 2006), it is not surprising that the manufacturers

of military aircraft, engines, and avionic equipment (e.g., Boeing, GE, Honeywell, Lockheed Martin,

Pratt & Whitney, and Rolls-Royce) have been developing competitive strategies for the provision of

spare parts and repair/maintenance services. Such after-sales services are a high-margin business (Co-

hen et al. 2006) that currently accounts for 40-50% of pro�ts and 25% of total revenue across all

manufacturing companies (Bijesse et al. 2002).

Traditionally, many after-sales contractual relationships in the aerospace and defense industry were

governed by simple material contracts that speci�ed unit price of the spare parts that are needed

to be pre-positioned in order to satisfy a required service level. However, increasing pressure on the

Department of Defense to reduce spending as well as growing dissatisfaction with the level of after-sales

support from key suppliers have led to re-evaluation of these arrangements. In recent years, a novel

strategy for aligning interests in the after-sales service supply chains has emerged: Performance Based

Logistics (PBL). Its premise is simple: instead of paying suppliers for their parts, labor, and other

services, the compensation is based on the actual availability of the product to the customer. The

key idea is to align the incentives of all parties by tying suppliers�compensation to the same service

value (availability) that the customer cares about. After several pilot studies, the DoD mandated the

implementation of PBL contracts for all new system acquisition programs beginning in 2003 (DoD

Directive 5000.1). Initial reports support the view that PBL contracts improve product availability:

the U.S. Navy�s implementation of PBL for its �eet of F/A-18 E/F �ghter jets, for example, has resulted

in an availability increase from 67% to 85%, while a similar e¤ort has seen the availability of Aegis

guided missile cruisers rise from 62% to 94% (Geary 2006).

The ultimate goal of the PBL contract �providing incentives to suppliers to attain high availability

at a lower cost �can be achieved through a variety of actions. Examples include spare parts deployment

across multiple stocking locations, R&D e¤ort to improve product reliability, investment in capacity for

scheduled/unscheduled maintenance activities, and parts cannibaliazation. In this paper, our focus is

on the tradeo¤ and interaction between two such actions: spare asset management and investment into

product reliability. This focus is motivated by our close interactions with industry practitioners and
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government agencies regarding current PBL contract implementation practices, as well as by the void

regarding this tradeo¤ in the operations management literature. In particular, the Under Secretary of

Defense for Acquisition, Technology and Logistics has issued a guidance (see Wynne 2004) regarding

key performance criteria for PBL arrangements which include availability, reliability, cost of ownership,

response time, and logistic footprint (which includes inventory, personnel, facilities, etc.). Clearly, spare

asset management and product reliability critically a¤ect every one of these performance criteria, a

thesis that has been independently con�rmed by many industry practitioners.1 Moreover, a recent

DoD Guidebook (2005) designates reliability as one of the three essential elements (along with asset

availability and product maintainability) that enable mission capability. Given these considerations,

we aim to address the following research questions: How does a PBL contract di¤er from a material

contract in motivating suppliers to improve reliability and to manage the inventory of spares? What

kind of ine¢ ciencies arise under these two contracts? Does the ownership structure of the spare assets

(by the customer or by the supplier) a¤ect the answers to these questions?

In this paper, we develop a stylized economic model that draws upon two distinct bodies of lit-

erature. We employ the classical service parts inventory management model to represent repair and

maintenance processes. This model is further enriched by a novel feature which has not been previ-

ously considered in the literature: endogenous product reliability improvement e¤ort. The relationship

between the customer and the supplier is modeled using the principal-agent paradigm in which the

principal sets the terms of the contract in order to minimize her total cost subject to a product avail-

ability constraint. The supplier�s goal is to maximize his pro�t given these contract terms. We allow

for an arbitrary allocation of spare inventory ownership between the customer and the supplier and

consider two types of contracts. Under the material contract the supplier is compensated for each

spare unit that he stocks, and under the performance contract the compensation is based on product

availability. We identify unique analytical challenges that arise as we investigate endogenous reliability

decisions in a decentralized service supply chain. For example, unlike in a centralized setting commonly

found in the literature where the service constraint always binds, we show that the same is not true in

a decentralized contractual relationship.

We �nd that, in a majority of cases, both contracts result in ine¢ ciencies such that the supplier

invests less in reliability and more in inventory of spares than the integrated �rm would. Compared

to the material contract, we show that the PBL contract incentivizes the supplier to invest more into

reliability improvement and at the same time to stock less inventory. Furthermore, we �nd that the

full bene�ts of the PBL contract are realized only when spare assets are fully owned by the supplier;

1We are grateful to the many participants of the Wharton Service Supply Chain Thought Leaders�Forum for bringing
this issue to our attention. See http://opim.wharton.upenn.edu/fd/forum/.
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in fact, in this case the PBL contract achieves the �rst-best solution and coordinates the channel.

Interestingly, our interactions with practitioners indicate that the prevailing industry practice is for

the customer to own spare assets while the supplier decides on target stocking levels of spares and

recommends to the customer a budget of spares acquisitions to achieve these levels. We suspect that

this ownership/decision structure is largely a relic of pre-PBL practice and of the fact that customers,

especially government agencies such as the armed forces, are historically reluctant to cede control of

their assets to third parties due to the fear of mismanagement and the potentially catastrophic costs of

product downtime. While this is understandable, our �ndings indicate that such resistance may actually

be an impediment to the successful implementation of the PBL strategy. Thus, our analysis suggests

that there are signi�cant bene�ts for transforming military suppliers into total service providers who

assume complete control of service functions, including asset ownership.

The rest of the paper is organized as follows. After a brief survey of the related literature, we

provide our modeling assumptions and formulation in Section 3. In Section 4 we present analysis of

material and performance contracts and a comparison between them. This is followed by Section 5, in

which we consider the consequences of relaxing some of the basic assumptions we make in our analysis.

Section 6 concludes our investigation with a summary of major �ndings and areas of future research.

2 Literature Review

Our model represents an application of contracting theory to a service parts inventory management

problem. Sherbrooke (1968) introduced the classical METRIC model for service parts (repairables)

in the 1960�s which led to numerous multi-echelon, multi-indentured inventory model extensions. In

METRIC, the repair process for each part is represented by an M/G/1 queueing system, and the

decision is to optimize the number of spares in stock given an exogenous part failure rate. Over the

years the METRIC model and related models inspired by non-military applications (e.g., Cohen et al.

1989) have become the basis for a number of decision support systems that are currently used in both

commercial and military settings (for example, see Cohen et al. 1990). Two recent books, Sherbrooke

(2004) and Muckstadt (2005), present the details of the METRIC model and summarize advances

within this stream of research. Recent papers in this stream include Deshpande et al. (2003) and

Deshpande et al. (2006). Despite the large volume of literature in this �eld, the issues of contracting

and outsourcing have remained largely unaddressed. We use a simpli�ed version of the repairable model

in order to minimize complexity arising from the game-theoretic aspects of the model.

One of the novel features of our paper is endogenizing the product failure rate which, to the best

of our knowledge, has never been attempted in the service parts inventory management literature.
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This allows us to model the interaction between reliability improvement and inventory level decisions

made by the supplier, the main focus of this paper. In this respect our model has a connection to the

controlled queue literature, which dates back to Naor (1969). Stidham (1985) provides an early survey

of this research stream. Several recent papers study contracting models with controlled queues in

settings other than spare parts inventory management. Ren and Zhou (2006) and Hasija et al. (2006)

consider call center outsourcing, while Plambeck and Zenios (2000), Lu et al. (2006) and Baiman et

al. (2007) study production systems.

To represent the contractual relationship between the customer and the supplier, we employ model-

ing approaches commonly used by existing supply chain contracting papers. Unit-price based contracts

for product procurement under uncertain demand have been extensively analyzed in the papers such

as Lariviere and Porteus (2001) and Cachon and Lariviere (2001). See Cachon (2003) for the summary

of this stream of literature. Our material contract falls under the class of contracts found there, but

our paper is the �rst to consider it in the after-sales support context. The private-action �moral haz-

ard� framework, which is a natural basis for modeling a PBL contract, has gained wide adoption in

the OM community. Recent examples include So and Tang (2000), Iyer et al. (2005), and Lu et al.

(2007). From the economics literature, Bolton and Dewatripont (2005) provide a comprehensive survey

of this area of research. Our model is most closely related to the multitasking literature (Holmström

and Milgrom 1991, Gibbons 2005), in which the agent controls more than one action (inventory and

reliability in our case). Interestingly, the original paper by Holmström and Milgrom (1991) contains

the following motivating example whose idea is quite similar to our problem: �As a simple example,

production workers may be responsible for producing a high volume of good quality output, or they

may be required both to produce output and to care for the machines they use... if volume output

is easy to measure but the quality is not, then a system of piece rates for output may lead agents to

increase the volume of output at the expense of quality.�Despite the similarity, our model is unique

in that it ventures beyond this abstract example and attaches signi�cance to the terms �volume�and

�quality�motivated by our speci�c problem context of system support. We also consider other opera-

tional elements such as the target service level, which economic models ignore but which are important

in practice. Thus, our model o¤ers an interpretation of the multitask principal-agent model in terms

of operational variables, namely investment in reliability and inventory, in the concrete setting of the

after-sales product support supply chain for mission-critical products such as military weapon systems.

Early papers that discuss incentives and contracting in the defense industry include Cummins (1977)

and Rogerson (1994). Kang et al. (2005) propose a decision-support model that can help support PBL

relationships by trading o¤ reliability and maintenance tasks. While the motivation of this paper

is very similar to ours, it does not explicitly model decentralized decision-making arising in support
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arrangements. Finally, in our earlier work (Kim et al. 2007), we considered the tradeo¤ between

incentive and insurance against risks under a general contracting arrangement that includes PBL, and

analyzed the implications for performance and supply chain e¢ ciency while ignoring asset ownership

issues. In contrast, we do not incorporate risk considerations in the present paper, instead we focus on

reliability improvement and its interaction with inventory management decisions under varying asset

ownership assumptions. This di¤erent perspective of PBL contracting allows us to discover new insights

that we were not able to obtain from our earlier model. For example, while it was found in Kim et al.

(2007) that PBL contract leads to an increase in inventory investment, we �nd in this paper that PBL

contract can actually lower the inventory as it provides incentives to improve reliability.

In summary, the analytical contributions of our paper are two-fold. First, we endogenize reliability

improvement decisions in a classical repairable inventory management model and, for the �rst time,

study the interaction between reliability and inventory. Second, we study and compare two frequently

used contractual arrangements (material and PBL), evaluate their ine¢ ciencies, and identify the factors

that cause them. From a managerial perspective, our paper sheds light on how performance-based

incentives can lead to reliability improvement and on the role of supply chain re-structuring in achieving

an e¢ cient solution.

3 The Model

A risk-neutral customer owns and operates a �eet of N identical products, whose continued usage

is disrupted by random product failures occurring at a rate �. We denote the Mean Time Between

Failures (MTBF) by � = 1=�, which is assumed to be bounded from below and above by � and

� , respectively. The supplier performs three kinds of activities to support the customer�s �eet of

products: (1) repairs defective units, (2) manages spare product inventory, and (3) manages product

reliability. For simplicity, we only consider a single indenture level for the product, i.e., spares inventory

is managed at a product level (in practice, inventory to support maintenance and repair operations

primarily consists of parts at di¤erent indenture and echelon levels; see Section 5 for further discussion).

We assume that a repair facility with a given capacity is already in place, and that the expected repair

lead time l is �xed (which is reasonable if repairs are always performed at full speed) and is normalized

to one.

At the beginning of the product support phase the customer designs and o¤ers a contract which

in�uences the supplier�s decisions on product reliability � and the inventory of spares s. By assuming

that s is the supplier�s choice, we only consider the case of Vendor Managed Inventory (VMI), which is

the prevailing practice in after-sales product support relationships. We model di¤erent asset ownership
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structures using the parameter 0 � � � 1, which represents the proportion of spare assets owned by

the supplier. Thus, when � = 0, the customer owns the inventory (and hence incurs holding costs),

whereas when � = 1, the ownership is with the supplier. In other words, we allow for both procurement

and consignment inventory management settings. Although we do not model the multi-echelon supply

chain explicitly, 0 < � < 1 can be interpreted as the situation where a portion of spares inventory is

owned by the customer at her �retail�site (e.g., base) while the remaining is owned and managed by

the supplier at his location (e.g., depot).

3.1 Repair Process and Performance Measurement

Following the classical service parts inventory management literature, we model the repair facility as

an M/G/1 queue. Product failures occur according to a Poisson process, and the failed product is

replaced by a working unit from the spares inventory, if available. Otherwise, a backorder occurs.

A one-for-one base stock inventory policy, characterized by a target stocking level s, is used: each

failed product immediately undergoes a repair that takes a random amount of time with a general

distribution function. Note that the Poisson failure process is not an exact representation since, in

general, the failure rate in the closed-loop repair cycle (i.e., repaired units are restored back to the

system) depends on the number of deployed units that are in working condition. However, this model

is a good approximation as long as � = 1=� � N is satis�ed, which is true in most environments

where products fail relatively infrequently. This is indeed a standard assumption in the service parts

management literature, including the paper by Sherbrooke (1968) that �rst introduced the METRIC

model.

The Poisson failure assumption allows the application of Palm�s Theorem, which postulates that

the inventory on-order O(�) (the number of units that are being repaired at a random point in time) is

Poisson-distributed with mean �l = � = 1=� (see Muckstadt 2005). The random variables of interest,

on-hand inventory I and backorder B, are related to O(�) and s by I j � ; s = maxfs � O(�); 0g and

B j � ; s = maxfO(�) � s; 0g, respectively. Backorders are also related to expected availability A as

follows: A = 1 � E[B j � ; s]=N . We assume that the customer faces the service requirement A � A�

(e.g., expected availability should be 95% or more), which is translated into the backorder constraint

E[B j � ; s] � B�.

3.2 Contracting

At the beginning of the product support phase the customer o¤ers to the supplier a contract, whose

form will be discussed shortly. Let T be the customer�s payment to the supplier according to the
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contract. In response, the supplier sets � and s optimally in order to maximize its expected pro�t2

given by

�(� ; s) = E[T j � ; s]�  (� ; s) = E[T j � ; s]� cs�K(�)� �hE[I j � ; s]: (1)

We use  (� ; s) to denote the supplier�s internal cost, which includes three elements: the linear pro-

duction/acquisition cost cs, the reliability improvement cost K(�), and the expected cost of holding

inventory �hE[I j � ; s]. c is the unit cost of manufacturing/purchasing each spare product, and h is

the net present value of the holding cost throughout the contract duration.3 We assume that all of

these costs are public knowledge (a discussion of other possible costs are discussed later in Section 5).

K(�) represents the dollar amount of investment in research and development or engineering changes

required to improve reliability to � . We assume that K(�) is increasing and convex, i.e., K 0(�) > 0,

K 00(�) > 0. Implicit in this assumption is the simpli�cation that the supplier has many technological

choices whose combined e¤ect maps to each value of � . Convexity is a reasonable assumption since in

general the most e¢ cient improvement opportunities will be exploited �rst. Furthermore, we assume

that K 000(�) > 0,4 K(�) = 0, and lim�!� K(�) = lim�!� K 0(�) = 1. Hence, � can be interpreted as

the baseline reliability that the supplier can provide without incurring the extra cost K(�) (i.e., the

original design speci�cations for reliability when the product was adopted). Similarly, � represents the

theoretical upper bound on MTBF, i.e., it becomes in�nitely expensive to achieve � .

Throughout the paper, we also make the following technical assumption that facilitates derivations

of many analytical results:

�3K 00(�) � 2h: (2)

That is, K(�) is su¢ ciently convex on its domain (recall that K 000(�) > 0). For suitable choices of � ; � ,

and K(�), (2) is a reasonable assumption. This su¢ cient condition greatly simpli�es our exposition and

allows us to focus on the most important and managerially relevant features of our model. Although

interesting counter-intuitive results can be obtained by relaxing (2), we will not pursue them in great

detail because doing so would obscure the central theme of the paper, namely the interaction between

reliability and inventory and their combined impact on successful implementation of contracts. In the

2 If the supplier is risk-averse, expected pro�t maximization is not an appropriate criterion. See Kim et al. (2007)
for an alternative model capturing risk aversion. Including risk aversion in our model does not qualitatively change any
insights from this paper.

3 In general, the variable costs c and h may depend on � . We believe that such dependence is a second-order e¤ect
because most costs associated with reliability improvement are �xed and hence we ignore this interaction. In defense
logistics, most reliability improvements come from engineering changes in which a part is re-designed and the cost is
absorbed in a �xed investment into research and development. Allocation of that investment to the variable cost of the
product could happen, but the impact of improved reliability on the replacement rate of the product and the investment
in inventory are our key interests here.

4The assumption that marginal cost is convex increasing is frequently employed in the economics literature to facilitate
analytical tractability, as is in our paper. For example, see La¤ont and Tirole (1986).
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subsequent sections, we will identify the lemmas and propositions where (2) applies to and comment

on the consequences of relaxing it in appropriate places.

Anticipating the supplier�s response, the customer determines compensation terms that would mini-

mize her total cost subject to the availability constraint while making sure that the supplier participates

in the trade. We restrict transfer forms to the following linear functions: T = w+ ps for material con-

tract and T = w � vB for performance contract. w is a lump-sum payment, p is the unit price paid

to the supplier for each unit of spare product the supplier provides, and v is the penalty rate for

each realized backorder.5 The material contract (w; p) represents the traditional parts pricing scheme

that was ubiquitous before the introduction of the PBL.6 The parameter p can be interpreted as a

reservation price that secures a spare quantity s for support of the customer. Note that p also has a

straightforward meaning as the purchase price in the case of spares procurement (� = 0, i.e., ownership

is transferred to the customer). A similar meaning is not relevant when the supplier retains ownership

(� = 1). With the performance contract (w; v), the payment is based on the realization of the random

variable B. In practice, payments associated with performance are made throughout the duration of

the customer-supplier relationship and backorder levels are evaluated periodically. For simplicity, how-

ever, we do not model the details of cash �ow dynamics and we sidestep related intertemporal incentive

issues. Thus, v represents the net present value of the cumulative penalty rate for the backorder B

over the service contract duration, measured in dollars. The magnitude of v will be determined by the

loss of �value�incurred by the customer due to the unavailability of one unit of the product.

Note that the underyling assumption is that the customer cannot contract directly on either the

inventory level s or the product reliability � . Moreover, s is assumed to be observable (but not

contractible) when material contract is used, whereas it is unobservable under performance contract.

These assumptions are consistent with the existing literature and with current industry practice. Under

material contract, s is revealed at the time of �nancial transaction when the supplier bills the customer

for compensation, but it is not directly contracted upon (same assumption is made in numerous other

supply chain contracting models; for example, see Lariviere and Porteus 2001). Under performance

5There is an ongoing debate in the defense industry on whether the appropriate measure of performance is the steady-
state availability random variable, which maps to B, or its time average, which maps to eB(t) = 1

t

R t
0
B(u)du, where t

is the performance evaluation period length. The DoD Guide for Achieving Reliability, Availability, and Maintainability
(2005) de�nes availability as "a measure of the degree to which an item is in an operable state and can be committed
at the start of a mission when the mission is called for at an unknown (random) point in time", clearly advocating the
usage of B. However, the time average is a more readily measurable metric and is widely used in practice. Although
this issue merits a separate in-depth study, the distinction has a minimal impact on our model as the two are identical
in expectation (i.e., E[B j � ; s] = E[ eB j � ; s]), which is the only quantity representing the backorder in our model. Note
that Kim et al. (2007) considers an arrangement in which the distinction becomes important since the assumption of risk
aversion requires the computation of variance of each measures.

6Material contract can be viewed as a special case of Cost Plus contract (see Kim et al. 2007). With Cost Plus, the
supplier is fully reimbursed for the costs that he incurs. Material contract speci�es a component of this reimbursement
amount, namely the margin p� c for each unit of spares that the supplier acquires.
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contract, on the other hand, s is kept o¤ the record as the basis of compensation is the performance

B, which is ultimately what the customer is concerned with. One of the often-cited bene�ts of PBL

is removal of costs related to inventory inspection: by entering into PBL contracting, the customer

only needs to monitor performance (availability) and not inventory levels, which can be very expensive

to keep track of in a complex multi-echelon, multi-indentured supply chain environment. Hence, the

di¤erence in inventory observability assumptions between material contract and PBL captures the

real-world practice.

Similarly, we assume that reliability, i.e., time between product failures, is not contractible. This

is also consistent with past and current practices where contracts have rarely been based on observed

reliability. The main reason is that failures occur infrequently in most service environments we are

concerned with and therefore it is impractical to base compensation on such rarely observed events.

Although we consider only one aggregated product type in our stylized model, in reality each product

consists of thousands of parts so that failure characteristics and required inventory levels are determined

at the parts level. Thus, PBL contracts can be o¤ered to multiple companies that provide di¤erent

product modules or parts, and it is very common to see one or at most a few failure events occurring for

each module within a performance evaluation interval, which is typically a few weeks or a month.7 In

addition, dynamic product deployment plans and scheduled/unscheduled maintenance events make it

di¢ cult for the customer to accurately measure true failure rates since the time during which the parts

were not utilized should not be counted toward the time between failures. In contrast, availability does

not su¤er from this di¢ culty because it can be measured quite unambiguously at any point in time by

both the customer and the supplier.

To summarize, the customer�s problem can be written as

(SB) min
P

CSB � E[T j ��; s�] + (1� �)hE[I j ��; s�]

s.t. E[B j ��; s�] � B� ;

�(��; s�) � 0; (IR)

(��; s�) 2 argmax�(� ; s) ; (IC)

where P denotes the contract parameter space, consisting of fw; p; vg. Note that (��; s�) are functions

of p and/or v. It is important to recognize that the supplier is not subject to the same backorder

constraint that the customer faces. Hence, the customer can only satisfy the constraint through her

choice of contract terms. As is standard in principal-agent models, two additional constraints are

7However, the annual number of failures is often tracked and used as a basis for renewing the service contract.
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included in the customer�s problem: the individual rationality (IR) constraint ensures that the supplier

participates in the trade, while the incentive compatibility (IC) constraint describes that the supplier

makes decisions in a self-interested manner (i.e., maximizes his own pro�t). Without loss of generality,

we assume that the supplier�s reservation pro�t (the right-hand side of the (IR) constraint) is set to zero.

We call this a second-best (SB) problem in view of the ine¢ ciency that is inherent in the decentralized

decision-making setup. The dimensionality of this problem is reduced after recognizing that the (IR)

constraint is always binding at the optimum by adjusting w accordingly. Hence the problem becomes

(gSB) min
Pnfwg

eCSB � cs� +K(��) + hE[I j ��; s�] subject to E[B j ��; s�] � B� and (IC).

The transformed objective function eCSB will appear frequently in the following sections.
4 Analysis

In this section we determine the optimal contract terms and the equilibrium solutions for � and s.

After introducing the mathematical conventions that are used throughout the paper, we begin with

the benchmark �rst-best case in which the customer and the supplier are assumed to be one entity and

thus contracts are unnecessary. We then analyze the supplier�s response to arbitrary contract terms,

and �nally compare the merits of di¤erent contract types.

4.1 Mathematical Preliminaries

The Poisson distribution of O(�) limits our ability to obtain insights into the game-theoretic problem

because of the necessity to operate with discrete variables, which handicaps our ability to obtain

analytically tractable expressions. To circumvent this di¢ culty, we conduct an asymptotic analysis

by treating O(�) and s as continuous variables and restricting attention to situations in which N is

su¢ ciently large and � is su¢ ciently small so that

1=N � � < � . 0:1 (3)

is satis�ed. This condition holds, for instance, if the �eet size is fairly large. For example, N = 200

and � = 0:1 imply that an average of 10 products out of 200 are being repaired at any point in time

and condition (3) is satis�ed. In the range of � de�ned by (3), we can apply the Normal approximation

of O(�) (with E[O(�)] =Var[O(�)] = 1=�), which yields very accurate evaluations of E[B j � ; s] =

E[maxfO(�) � s; 0g] and E[I j � ; s] = E[maxfs � O(�); 0g], the quantities of managerial interest (see

Zipkin 2000, pp. 205-209 for extensive discussion of the Normal approximation in this setting and for
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examples). For values of � above 0.1, the Normal approximation becomes suspect as Pr(O(�) < 0) > 0

can no longer be ignored. While (3) is somewhat restrictive, insights generated using this assumption

will not change as long as � � 1=N (including � above 0.1) even if we switch back to the Poisson

distribution.

To this end, let � and � be the pdf and the cdf of the standard Normal distribution. In addition,

let �(�) � 1� �(�) and the loss function L(x) � �(x)� x�(x). De�ne

z � (s� 1=�) =
p
1=� =

p
�s� 1=

p
� (4)

and its inverse

s(� ; z) � 1=� + z=
p
� : (5)

Care is needed when applying the Normal approximation because the lower bound on z (and hence on

s) is �1, not 0. See Appendix for notational conventions we use in the proofs to address this issue.

The expected backorder and the expected inventory on-hand are, respectively,

E[B j � ; s] = L(z)=
p
� , E[I j � ; s] ' [z + L(z)] =

p
� .

Note that the expression for E[I j � ; s] contains the negative domain of s, but its e¤ect is inconsequential

under (3). The following Lemma states several intuitive results with regards to these two metrics which

will prove useful shortly.

Lemma 1 For � satisfying (3),

(i) @E[B j � ; s]=@s = ��(z) � 0; @E[B j � ; s]=@� = ��(z)=
�
2�3=2

�
� �(z)=�2 � 0;

(ii) @E[I j � ; s]=@s = �(z) � 0; @E[I j � ; s]=@� = ��(z)=
�
2�3=2

�
+�(z)=�2 � 0:

Proof. Omitted proofs are found in the Appendix.

The following result characterizing interdependence of the two variables (� ; s) with respect to the

binding backorder constraint E[B j � ; s] = B� will be useful in the subsequent analysis.

Lemma 2 Suppose s(� ;B�) satisfying E[B j � ; s(� ;B�)] = B� exists for any � 2 [� ; �). Then

(i) @s(� ;B�)=@� < 0, (ii) @2s(� ;B�)=@�2 > 0, (iii) @s(� ;B�)=@B� < 0.

Result (i) implies that � and s are substitutes with respect to the binding backorder constraint, i.e.,

for any two pairs (�1; s1) and (�2; s2) such that �1 < �2 that make the backorder constraint binding,

12



we have s1 > s2. In other words, a more reliable product needs less inventory to meet the availability

requirement. Furthermore, result (ii) states that this substitution e¤ect exhibits a diminishing rate of

return, e.g., an increase of x hours in MTBF has a greater impact on inventory reduction when MTBF

is smaller. The last result (iii) shows that, for a �xed level of reliability, less inventory is needed if the

constraint is less stringent.

4.2 Integrated Firm: The First-Best Solution

To establish the benchmark, we �rst analyze the case in which the customer and the supplier are one

integrated �rm minimizing its total cost subject to the availability requirement (�rst-best or FB):

(FB) min
��� ;s�0

CFB(� ; s) � cs+K(�) + hE[I j � ; s] subject to E[B j � ; s] � B�:

The solution is stated in the following Proposition. Note that � appearing below is the Lagrangian

multiplier of the availability constraint. It plays a signi�cant role in the solution because optimal

choices of � and s are interdependent via the constraint E[B j � ; s] � B�, which will be shown to bind

at optimality.

Proposition 1 (Integrated �rm solution) Assume that

� < 1=B�; (6)

c < (1=B�)2K 0(1=B�): (7)

Let

zFB(�) � ��1
�
� � c
� + h

�
, 
FB(� ; �) � c

�2
+
� + h

2�3=2
�
�
zFB(�)

�
, �FB(�; �) � L(zFB(�))p

�
.

There exists a unique solution � > c to the equation �FB(�; �) = B�. Furthermore, if

1. 
FB(� ; �) � K 0(�), the �rm chooses �FB = � and sFB = s(� ; zFB(�)) > 0.

2. 
FB(� ; �) > K 0(�), the �rm chooses �FB = � y > � and sFB = s(� y; zFB(�y)) > 0 where � y 2

(� ; 1=B�) and �y 2 (c; �) are unique solutions to the simultaneous equations


FB(� ; �) = K 0(�), �FB(�; �) = B�.

13



Proof. The Lagrangian is

LFB = ��B� + cs+K(�) + hE[I j � ; s] + �E[B j � ; s]

where � is the Lagrangian multiplier. Di¤erentiating LFB with respect to s, we obtain

@LFB=@s = �(� � c) + (� + h)�(z), @2LFB=@s2 = (� + h)
p
��(z) � 0.

It can be shown that the condition (7) excludes the case � � c, which makes s = 0 optimal. Suppose

� > c. By setting @LFB=@s = 0, we obtain the optimality condition for s expressed in terms of z,

i.e., zFB(�) = ��1 ((� � c) = (� + h)). Notice that this expression is independent of � . Hence, if we

consider the (� ; z) space instead of the (� ; s) space after applying the z-transform (4), we will �nd

that for each � � � the optimal z is found on the horizontal line z = zFB(�). Therefore, the original

two-dimensional optimization problem is reduced to a one-dimensional problem of �nding optimal �

along the line z = zFB(�). Let eLFB(� ; �) be the reduced Lagrangian with z = zFB(�). Then

eLFB(� ; �) = ��B� + c=� +K(�) + (� + h)�(zFB(�))=p� :
Note that lim�!� eLFB(� ; �) =1. Di¤erentiating, we obtain

@ eLFB(� ; �)=@� = K 0(�)� c=�2 � (� + h)�(zFB(�))=(2�3=2) = K 0(�)� 
FB(� ; �);

@2 eLFB(� ; �)=@�2 = K 00(�) + 2c=�3 + 3(� + h)�
�
zFB(�)

�
=(4�5=2) > 0:

Suppose 
FB(� ; �) � K 0(�) for some �xed �. Then eLFB(� ; �) is increasing on [� ; �) due to convexity,
so it is optimal to choose �(�) = � . In order to verify that the optimal � indeed satis�es the assumption

� > c for this case, notice that

lim
�!c

E[B j � ; s(�)] = (1=
p
�) lim

�!c
L(zFB(�)) = L(z)=

p
� ' 1=� > B�,

lim
�!1

E[B j � ; s(�)] = (1=
p
�) lim

�!1
L(zFB(�)) = 0;

where we have used (14) for the �rst limit and the assumption (6) for the inequality. Since �FB(�; �) =

E[B j � ; s(�)] decreases in �, it crosses B� exactly once as � moves from c to in�nity, and the unique

solution � of the equation �FB(�; �) = B� satis�es � > c. This is the upper bound on �. To see this,

note that the constraint is binding as long as � > 0, i.e., E[B j � ; s(�)] = L(zFB(�))=
p
� = B�. For any

� above � , the denominator of the left-hand side is greater and hence the numerator should be greater
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as well since the right-hand side is a constant. Since

dL(zFB(�))

d�
= ��(zFB(�))dz

FB(�)

d�
= ��(zFB(�)) c+ h

(� + h)2
1

� (zFB(�))
� 0; (8)

we conclude that the optimal � for � > � should be less than �.

Now consider the case in which 
FB(� ; �) > K 0(�). Since eLFB(� ; �) initially decreases on [� ; �) and
is convex in � , there is a unique global minimum �(�) > � that solves 
FB(� ; �) = K 0(�). Since optimal

� and z for �xed � are unique, optimal s is also unique via (5). Let the solutions be (�(�); s(�)).

It remains to �nd the optimal value for �, which will be shown to satisfy the assumption � > c

under conditions (6) and (7) and is determined from the binding constraint E[B j �(�); s(�)] = B�.

Di¤erentiating both sides of the �rst-order condition 
FB(�(�); �) = K 0(�(�)) with respect to �, we

obtain

�2c
�3
d�(�)

d�
�3(� + h)

4�5=2
�
�
zFB(�)

� d�(�)
d�

+
1

2�3=2
�
�
zFB(�)

�
�� + h
2�3=2

zFB(�)�
�
zFB(�)

� dzFB(�)
d�

= K 00(�)
d�(�)

d�
;

or after collecting terms

�
K 00(�) +

2c

�3
+
3(� + h)

4�5=2
�
�
zFB(�)

�� d�(�)
d�

=
L(zFB(�))

2�3=2
:

It is clear that d�(�)=d� � 0. Combined with (8), we �nd that E[B j �(�); s(�)] = L(zFB(�))=
p
�(�) is

decreasing in �. Since

lim
�!c

E[B j �(�); s(�)] = L(z)=
p
�(c) ' 1=�(c), lim

�!1
E[B j �(�); s(�)] = 0;

we see that the necessary condition for having a unique � > c that satis�es the binding backorder

constraint E[B j �(�); s(�)] = B� is 1=�(c) > B�. Suppose, on the contrary, �(c) � 1=B�. Letting � = c

in the �rst-order condition 
FB(�(�); �) = K 0(�(�)), we obtain c ' �(c)K 0(�(c)) � (1=B�)K 0(1=B�),

which contradicts the assumption c < (1=B�)K 0(1=B�) from (7). Therefore, the optimal solution is

characterized by two equations, 
FB(�(�); �) = K 0(�(�)) and E[B j �(�); s(�)] = B�.

The conditions (6) and (7) eliminate the cases that rarely occur in practice. Without (6), a corner

solution (��; s�) = (� ; 0) is possible. The condition (7) avoids a situation whereby the cost to acquire one

spare unit is so high that the supplier meets the availability constraint using reliability improvement

alone, i.e., �� > � and s� = 0. Note that both conditions are satis�ed if the availability target is

su¢ ciently high.

15



The �rst-best solutions in the Proposition are interpreted as follows. If the marginal cost of im-

proving reliability outweighs the savings in acquisition and holding costs of a unit of product as well

as the bene�ts of the reduced expected backorders resulting from such activities (
FB(� ; �) � K 0(�)),

then the integrated �rm does not need to invest in reliability improvement and instead meets the avail-

ability target by acquiring an inventory of spares alone (Case 1). Otherwise reliability improvement is

combined with a positive target inventory level (Case 2). The solutions (�FB; sFB) characterized is in

the Proposition will serve as benchmarks.

4.3 Supplier�s Response to Contract Terms

In this subsection we start solving the problem backwards by studying the supplier�s response to the

generalized payment function T = w + ps � vB, which covers both T = w + ps (under material

contract) and T = w� vB (under performance contract). We employ this form for two reasons. First,

it allows expositional brevity in Propositions 2 and 3. Second, it o¤ers a general description of the

supplier�s reaction to both contract parameters p and v, generating useful insights that cannot be

obtained when two contracts are considered separately. Note that having T = w + ps� vB here does

not con�ict with our observability assumptions on s which di¤er across the two contract types: recall

from Section 3.2 that s is assumed observable under material contract while it is assumed unobservable

under performance contract. Nevertheless, s is unobserved at this stage independent of which contract

is used, since it can only be revealed at the end when the �nal �nancial transaction is made under

material contract. Later when we analyze the customer�s problem, however, we will not consider the

case with p > 0 and v > 0.

The supplier�s optimization problem is

max
��� ;s�0

�(� ; s) = E[T j � ; s]�  (� ; s) = w + (p� c)s�K(�)� vE[B j � ; s]� �hE[I j � ; s]:

We use the superscript � to denote the supplier�s optimal response.

Proposition 2 (Supplier�s response to contract terms) Assume that the condtion (2) holds. Let

z�(v; p) � ��1
�
v + p� c
v + �h

�
, 
�(� ; v; p) �

c� p
�2

+
v + �h

2�3=2
� (z�(v; p)) , ��(v; p; �) �

L(z�(v; p))p
�

:

De�ne bz � z�(v; p): Then if

1. c� p � v: �(� ; s) is concave. If v � �2K 0(�) the supplier chooses �� = � and s� = 0. Otherwise,

he chooses �� = bb� > � and s� = 0 where bb� is the unique solution to the equation �2K 0(�) = v.
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2. �v < p� c < �h: �(� ; s) is concave if p � c and quasiconcave if p > c. If 
�(� ; v; p) � K 0(�); the

supplier chooses �� = � and s� = s(� ; bz) > 0. Otherwise, he chooses �� = b� > � and s� = s(b� ; bz)
where b� is the unique solution to the equation 
�(� ; v; p) = K 0(�).

3. p� c � �h: the supplier chooses �� = � and s� !1.

In Case 1, the unit price paid to the supplier for the product is below its unit cost (p � c, since

v � 0) while the backorder penalty v is small (v � c � p). Since the supplier earns negative revenue

for each unit he acquires for the customer, he chooses not to stock any spares. The supplier can be

persuaded to act otherwise if there is a strong incentive to reduce backorders (large v) � but it is

not strong enough in this case, hence s� = 0. Moreover, the supplier may be incentivized to improve

reliability, i.e., �� > � , if v is su¢ ciently large, speci�cally if �2K 0(�) < v � c� p.

In Case 2, v is large enough so that the supplier can be incentivized to increase both � and s

beyond their respective minimal values (� and 0) if condition 
�(� ; v; p) > K 0(�) is satis�ed. Note that

this case includes scenarios with both negative and positive margins. When p > c; the supplier makes

positive pro�t for each spare product he manufactures, but does not stock too many spares since he

cannot recoup his inventory ownership cost (represented by �h) with a relatively small pro�t margin

p� c < �h.

Case 3 di¤ers from Case 2 in that the pro�t margin is greater than �h. In this case the supplier tries

to acquire as many spare products as possible since unit-revenue outweighs inventory ownership cost.

At the same time, he is not incentivized to invest in reliability improvement because more frequent

failures lead to demand for more spare products, each contributing to higher pro�tability. Since in

this case the customer cannot e¤ectively control the supplier�s inventory decision (s� ! 1), it seems

unlikely that a contract with p � c � �h would be o¤ered by the customer in equilibrium (we will

demonstrate this shortly).

To gain further insights into the supplier�s behavior, we study the supplier�s response (i.e., changes

in ��, s�, E[B j ��; s�], and E[I j ��; s�]) to changes in contract terms p and v as well as to changes in the

ownership parameter �. First, we show an intermediate result that is used in the proof of Proposition

3. It is introduced here for its general applicability beyond the current model.8 Note that this result is

proved for an arbitrary distribution that has an increasing failure rate (IFR) property, which is shared

by the Normal distribution that we use throughout the paper.

Lemma 3 Let X be a random variable with an IFR property whose pdf f is di¤erentiable and vanishes

8The quantity !(x) de�ned in Lemma 3 arises frequently in game-theoretic supply chain models (for example, see
Cachon 2004 and Perakis and Roels 2006).
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at both extremes of its support [y; y], where y = �1 and y =1 are permitted. Let F be the cdf of X

and F (�) � 1� F (�). Then !(y) � f(y)E[(X � y)+]=[F (y)]2 � 1.

Proof. Note that IFR means d
dy

�
f(y)=F (y)

�
=
�
f 0(y)F (y) + [f(y)]2

�
=[F (y)]2 � 0 , which in turn

implies

�f 0(y)=f(y) � f(y)=F (y): (9)

It can easily be shown that !0(y) � 0 (a similar result for a distribution exhibiting increasing generalized

failure rate was shown in Cachon 2004). To derive the upper bound, we only need to show m �

limy!y !(y) � 1. Since m is of 0/0 form, we apply L�Hopital�s rule to obtain:

m = lim
y!y

f(y)E[(X � y)+]�
F (y)

�2 = lim
y!y

f 0(y)E[(X � y)+]� f(y)F (y)
�2f(y)F (y)

=
1

2
� 1
2
lim
y!y

f 0(y)E[(X � y)+]
f(y)F (y)

� 1

2
+
1

2
lim
y!y

f(y)E[(X � y)+]�
F (y)

�2 =
1

2
+
m

2
;

where we have used (9) to prove the inequality. m � 1 follows by rearranging both sides.

In the following Proposition, we limit consideration to Case 2 of Proposition 2 because this is the

most interesting scenario, and because this is the only case which will emerge in equilibrium. We show

results only for the interior solution �� = b� > � and s� = s(b� ; bz) but similar results for the case �� = �

and s� = s(� ; bz) are straightforward to obtain.
Proposition 3 Assume that the condtion (2) holds. Suppose �v � p � c < �h; 
�(� ; v; p) > K 0(�),

and let bs � s(b� ; bz).
1. @b�=@p < 0, @bs=@p > 0, @E[B jb� ; bs]=@p < 0, and @E[I jb� ; bs]=@p > 0.
2. @b�=@v > 0, @bs=@v > 0, @E[B jb� ; bs]=@v < 0, and @E[I jb� ; bs]=@v > 0.
3. @b�=@� > 0, @bs=@� < 0, and @E[I jb� ; bs]=@� < 0.
We observe that higher unit price motivates the supplier to have more spare products in stock

(higher bs) but at the same time the supplier is indirectly incentivized to increase his demand, i.e.,
design a product that fails more often (reduce b�), so that bs can be increased even further. In contrast,
the backorder penalty v induces the supplier to increase both b� and bs. Thus, the Proposition provides
a crucial intuition with respect to the fundamental di¤erence between the incentive e¤ects of the unit

price (p) and the backorder penalty (v); these two contract terms induce opposite reactions from

the supplier with respect to the reliability improvement decision. Finally, the impact of spare asset
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Figure 1: An illustration that bs may not always increase in v. In this example, a performance contract
(p = 0) with full supplier asset ownership (� = 1) is assumed. Parameter values c = 1, � = 0:01,
� = 0:1, and K(�) = 0:1

�
(� � �)�3 � (� � �)�3

�
are chosen.

ownership structure is as follows: with higher ownership responsibility (higher �), the supplier cares

more about reliability (b� goes up) while reducing the stocking quantity (bs goes down).
Although the results in Proposition 3 appear quite intuitive, they are not to be taken for granted

since they do not necessarily hold in all circumstances. In particular, violation of condition (2) may

break down monotonicities. To illustrate, we show a counterexample of @bs=@v > 0 in Figure 1. Recall
that bs = b��1 + b��1=2��1 ((v + p� c) = (v + �h)) :
Thus, when v increases, there are two opposing forces at work. On the one hand, the supplier, who

is incentivized to reduce backorders by the contract, reduces the probability of being backordered by

increasing the z-value (or the normalized fractile), ��1 ((v + p� c) = (v + �h)). This decision results in

a higher bs. On the other hand, the supplier reduces the expected number of backorders by investing
into product reliability (higher b�), leading to a smaller bs. The combined e¤ect is such that bs may not
always increase in v as stated in Proposition 3. This observation o¤ers a reminder that care is needed

when describing the full impact of contractual relationships in this setting.

4.4 The Material Contract

The material contract represents a pre-PBL contractual relationship and, as the following Proposition

shows, it is not e¤ective in incentivizing the supplier to improve reliability beyond the default level � .

Proposition 4 (Optimal material contract) Assume that the conditions (6) and (7) hold. With T =
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w + ps and � > 0, the customer chooses

p = c+ �h(� � c)=(� + h) (10)

where the unique value � > c satisfying the equation �FB(�; �) = B� was found in Proposition 1. As a

response, the supplier will choose �M = � and sM = s(� ; z�(0; p)) = s(� ; zFB(�)) � sFB. On the other

hand, the optimal solution does not exist if � = 0, i.e., there is no p that guarantees satisfaction of the

backorder constraint while incurring �nite cost.

Proof. We begin our proof by showing that the supplier will not invest in reliability improvements,

i.e., �� = � , under the material contract. Consider each case in Proposition 2 with v = 0. In Case

1, �� = � since v � �2K 0(�) is satis�ed. In Case 2, we have p > c with v = 0. Observe from

�0(�) = �K 0(�) + 
�(� ; 0; p) that

lim
p!c

�0(�) = �K 0(�) + �h�(z)=(2�3=2) ' �K 0(�) < 0,

@�0(�)=@p = �1=�2 � bz=(2�3=2) = �1=(2�2)� bs=2� < 0
for all � 2 [� ; �). Therefore �0(�) < 0, which implies �� = � . In Case 3, �� = � follows automatically.

We now turn to the customer�s problem. Assume � > 0. From Proposition 2 notice that p will

be chosen so that Case 3 will not result in at equilibrium, since in that case the contract will force

the customer to make an in�nite payment to the supplier who chooses s ! 1 as long as p > c.

Similarly, v = 0 rules out Case 1 since the supplier will choose �� = � and s� = 0 which will violate the

backorder constraint due to the assumption (6) with E[B j � ; 0] ' 1=� . Only Case 2 remains in which

0 < p � c � �h. Recall that the supplier chooses �� = � and that �0(�) = �K 0(�) + 
�(� ; 0; p) � 0,

implying s� = s(� ; bz)) where bz = ��1 ((p� c) = (�h)). Using these values, the Lagrangian for the

customer�s problem can be expressed as follows:

LM = ��B� +K(�) + c

�
+
� + h
p
�
�(bz) + (� + h)bzp

�

�
p� c
�h

� � � c
� + h

�
:

Di¤erentiating, we obtain
@LM
@p

=
� + h

�h
p
��(bz)

�
p� c
�h

� � � c
� + h

�
:

If � � c, @LM=@p > 0 and it is best for the customer to have p ! c, but we have already ruled

out p � c so it cannot be the optimal solution. Suppose � > c. Then the optimal p is given by
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p(�) = c+ ((� � c) = (� + h)) �h and

@2LM
@p2

����
p=p(�)

=
(� + h)bz

(�h)2
p
��(bz)

�
p(�)� c
�h

� � � c
� + h

�
+

� + h

(�h)2
p
��(bz) = � + h

(�h)2
p
��(bz) > 0;

which implies that the solution is unique. The optimal � is determined from the binding backorder

constraint E[B j � ; s(� ; bz)] = E[B j � ; s(�)] = B� (it binds since � > c by assumption). Its solution

� was already speci�ed in Proposition 1 and was found to satisfy � > c, thus con�rming the earlier

assumption. Finally, assume � = 0. Due to the reasons noted above, p < c and p > c are not optimal.

Suppose p = c. Then the supplier�s expected pro�t (1) is independent of s and thus he may choose any

s � 0. Hence, the backorder constraint may or may not be satis�ed.

As is evident from the Proposition, p only serves as an incentive to increase the stocking level and

not the reliability.9 Anticipating this behavior, the best the customer can do in order to meet the

backorder constraint (which binds at optimality under (6) and (7)) is to choose p appropriately so that

it induces the supplier to pick a large enough stocking quantity of spares s. The resulting equilibrium

solution under the optimal price p leads to lower product reliability and higher inventory than under

the �rst-best solution. The only situation in which the �rst-best solution is achieved occurs when the

marginal cost of reliability improvement is su¢ ciently high (
FB(� ; �) � K 0(�); see Proposition 1), in

which case the integrated �rm would also �nd it optimal to have minimal product reliability, �FB = � .

Further, we see that, at equilibrium, the optimal price is chosen such that the margin is positive,

i.e., p � c > 0, given that � > 0 (otherwise the supplier would not meet the availability requirement).

With the positive margin, the supplier chooses a �nite s > 0 (recall from Proposition 3 that s� increases

with p) because of holding costs. We see from (10) that the optimal p is an increasing function of �;

with a larger share of the supplier�s asset ownership (causing higher holding cost), a higher margin is

needed to persuade the supplier to select the desired level of inventory. This argument, of course, is

invalid if � = 0 (full customer ownership), since the supplier does not incur holding costs. It turns out

that there is no equilibrium solution in this case: if p > c, the supplier chooses to in�ate s as much

as possible, resulting in excessive compensation amount;10 if p = c, the supplier is indi¤erent towards

inventory s and his behavior becomes unpredictable. Therefore, our model suggests that the material

contract should not be implemented under full customer asset ownership. Interestingly, the prevalent

9However, the supplier might have incentives to invest into reliability improvement if we include explicit repair cost in
the supplier�s cost structure (see Section 5 for further discussion). Similarly, if we were to adopt a longer-term perspective
beyond the life of the current contract, then a supplier would have an incentive to improve reliability since it would a¤ect
the likelihood that his product would be selected initially, or that the support contract would be renewed. Modeling such
a long-term relationship is beyond the scope of this paper but will be considered in our future work.
10 In reality, the customer would be limited in her compensation amount because of budget constraint, which we omit

in our model.
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practice before the advent of PBL was precisely to let the customer own spare assets. We conjecture

that the inherent shortcoming that we have identi�ed using our model contributed to often adversarial

relationships between the DoD and the contractors under material contracts and may have led to the

eventual shift towards the PBL relationship.

We also �nd that the optimal material contract always leads to the same supplier�s decisions,

�M = � and sM = s(� ; zFB(�)); which are independent of � as long as � > 0. Thus, e¢ ciency loss due

to inability to motivate reliability improvement is uniform across the spectrum of ownership structures

and the customer is indi¤erent to the ownership structure under the material contract, insofar as � 6= 0.

To summarize, the material contract does not incentivize the supplier to improve reliability and

therefore leads to excess inventory in the system. The intuition behind this observation is as follows.

Since the supplier generates revenue by selling spare parts and repair services, his business improves

when more frequent needs for them arise. Unfortunately, these needs are triggered by product failures,

which have a negative impact on product availability and consequently on the customer�s ability to

generate value through product use. Hence, the supplier�s interest in making pro�t in the after-sales

market is in direct con�ict with the customer�s goal of achieving product readiness.

4.5 The Performance Contract

We now turn to the performance contract. We �rst note that the implicit nature of the solution to

the supplier�s sub-problem makes analysis of second-order properties intractable; thus we are unable

to show that the customer�s problem is well-behaved (quasi-convex). Fortunately, the monotonicity

results in Proposition 3 allow us to circumvent this di¢ culty. Observe that the customer�s objectiveeCSB = cbs+K(b�)+hE[I jb� ; bs] is increasing in v while E[B jb� ; bs] is decreasing in v, under the condition
(2). Since the feasible domain E[B jb� ; bs] � B� de�nes the lower bound on v and eCSB has to be

minimized, optimal v is determined at the boundary, i.e., where E[B jb� ; bs] = B�.

Proposition 5 (Optimal performance contract) Assume that the conditions (2), (6), and (7) hold. Let

zP� (v) � z�(v; 0), 
P� (� ; v) � 
�(� ; v; 0), �
P
� (v; �) � ��(v; 0; �), i.e.,

zP� (v) = �
�1
�
v � c
v + �h

�
, 
P� (� ; v) =

c

�2
+
(v + �h)

2�3=2
�
�
zP� (v)

�
, �P� (v; �) =

L(zP� (v))p
�

:

De�ne

v �
�
c+ �h

c+ h

�
� +

(1� �)ch
c+ h

; (11)

where the unique value � > c that solves the equation �FB(�; �) = B� was found in Proposition 1.

Then:
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1. If 
P� (� ; v) � K 0(�), the customer chooses vP = v. As a response, the supplier will choose �P = �

and sP = s(� ; zP� (v)) = s(� ; zFB(�)).

2. If 
P� (� ; v) > K 0(�), there exists a unique solution �P� (v) > � to the equation 
P� (� ; v) = K 0(�)

for any v 2 (c; v). It represents the supplier�s optimal choice of � in response to v. The customer

chooses vP = vz 2 (c; v), which is the unique solution to equation �P� (v; �
P
� (v)) = B�. As a

response, the supplier will choose �P � �P� (v
z) > � and sP � s(�P� (v

z); zP� (v
z)).

A reader will notice that the solution structure resembles that of the �rst-best solution (Proposition

1) but with some notable departures. First, the condition for having an interior solution (�P > �) is

more restrictive. To see this, it su¢ ces to compare 
P� (� ; v) > K 0(�) and 
FB(� ; �) > K 0(�) and it is

apparent that


P� (� ; v) =
c

�2
+
v + �h

2�3=2
�(zP� (v)) �

c

�2
+
� + �h

2�3=2
�(zP� (�)) �

c

�2
+
� + h

2�3=2
�(zP1 (�)) = 
FB(� ; �);

where the �rst inequality follows from v � � for � 2 [0; 1], as can be veri�ed from (11), and the second

inequality follows from Lemma 4 found in the Appendix. Hence, if �P is the interior solution under the

performance contract, then �FB is the interior solution under the �rst-best contract. In other words,

it is possible to have �FB > � and �P = � , but not vice versa. Clearly, the di¤erence between �FB and

�P disappears when � = 1 since v = � in such a case, but it becomes larger as � decreases. Intuitively,

with a higher degree of customer asset ownership, it becomes more di¢ cult to induce the supplier to

improve reliability under performance contract. Notice also that the equilibrium interior solutions �P

and sP are, in general, di¤erent from their �rst-best counterparts, � y and s(� y; zFB(�y)). The following

result summarizes the comparison of these two solutions.

Proposition 6 At the equilibrium,

1. �P = �FB = � and sP = sFB if 
FB(� ; �) � K 0(�).

2. �P � �FB and sP � sFB if 
FB(� ; �) > K 0(�). The equalities hold if and only if � = 1.

Furthermore, �P (�1) < �P (�2) and sP (�1) > sP (�2) for 0 � �1 < �2 � 1.

The last Proposition demonstrates how the �rst-best solution can be attained using the performance

contract. In particular, the only ownership structure such that �P = �FB and sP = sFB regardless

of relative costs (i.e., whether 
FB(� ; �) � K 0(�) or 
FB(� ; �) > K 0(�)) involves complete supplier

ownership of spare assets, � = 1. When endowed with full ownership cost responsibility, the supplier

absorbs the entire cost of the integrated supply chain and becomes a full residual claimant of the
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stochastic �nancial outcome of the trade, i.e., he assumes all �nancial risks associated with realizations

of B and I (provided that the backorder penalty is set equal to the �rst-best Lagrangian multiplier,

v = �y). Since the supplier is risk-neutral, he accepts the risk associated with performance uncertainty

as long as the ex-ante participation constraint (IR) is satis�ed (see La¤ont and Martimort 2002, p.

147). When � < 1, on the other hand, the �rst-best solution is only achieved in the special Case 1,

in which the condition 
FB(� ; �) � K 0(�) is satis�ed. In this case, high marginal cost associated with

reliability improvement leads the supplier to choose �� = � , so v only serves as an incentive to increase

s. The �rst-best solution is achieved in this case because the impact of v is limited to one decision

variable and there is no e¢ ciency loss arising from a substitution between � and s.

On the other hand, in Case 2, reliability improvement is a viable option for the supplier since its

cost is relatively low. However, the degree to which the supplier improves reliability depends on his

share of holding cost. With smaller responsibility (smaller �), it is less expensive for the supplier to hold

spares, and therefore he is more willing to accept an increase in holding cost that he trades o¤ against

the cost of reliability improvement. In other words, the mix of �� and s� changes with decreasing �

in such a way that the supplier invests less in reliability and more in inventory. Anticipating this, the

customer chooses v appropriately to balance reliability and inventory in order to meet the availability

requirement. It turns out that the equilibrium reliability in this case is never greater than �FB, and, as

a result, there is more inventory in the supply chain compared to the �rst-best solution. The e¢ ciency

loss occurs because (1) the supplier is only a partial residual claimant and (2) the customer cannot

fully control the supplier�s opportunistic behavior with a single incentive term v when a substitution

e¤ect between � and s exists. The degree of the e¢ ciency loss depends on �: the smaller the �, the

further the solution is from �rst-best.

The impact of unit and holding costs on the optimal combination of � and s is also interesting

and provides a useful managerial insight. From the optimality condition 
P� (� ; v) = K 0(�) in Part 2 of

Proposition 5, it is straightfoward to infer that an increase in c and/or h results in higher �P , given

that the solution is interior. In other words, performance contract terms should be structured such

that the supplier is induced to invest more in reliability and less in inventory when the costs related to

acquiring and holding the products is relatively high.

Finally, it should be noted that the results in Propositions 5 and 6 are derived under the condition

(2), which ensures monotonicities of supplier decisions �� and s� as a function of v (according to

Proposition 3) as well as of the customer�s objective eCSB. If (2) is violated, there may be cases where
the backorder constraint does not bind at the equilibrium, i.e., E[B jb� ; bs] < B�. The implication is

that the system may end up with expected availability beyond the speci�ed target that comes at a

cost beyond what the customer is willing to pay. Such a situation arises only in a decentralized supply
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Figure 2: An illustration that the customer�s objective eCSB = cbs + K(b�) + hE[I jb� ; bs] is not always
increasing in v if the condition (2) is violated. The arrows indicate the feasible domains of v de�ned
by the constraint E[B jb� ; bs] � B�, where B� = 60. Same parameter values as in the example of Figure
1 are chosen.

Cases � s

0 � � < 1


FB(� ; �) � K 0(�) �M = �P = �FB sM = sP = sFB


P� (� ; v) � K 0(�) < 
FB(� ; �) �M = �P < �FB sM = sP > sFB


P� (� ; v) > K 0(�) �M < �P < �FB sM > sP > sFB

� = 1


FB(� ; �) � K 0(�) �M = �P = �FB sM = sP = sFB


FB(� ; �) > K 0(�) �M < �P = �FB sM > sP = sFB

Table 1: Comparison of equilibrium � and s.

chain, in which the customer is unable to perfectly control the supplier�s behavior through contracting.

See Figure 2 for an example showing that eCSB is not necessarily increasing.
4.6 Comparisons of the Material and Performance Contracts

For convenience, we summarize the comparisons of equilibrium decisions by the supplier (� and s) in

Table 1. As is evident from the Table, the most important distinction between material and performance

contracts is that the latter incentivizes the supplier�s voluntary reliability improvement e¤ort while the

former does not. Clearly, the di¤erence between the two contracts will vanish if the cost of reliability

improvement is high enough so it is not economically feasible to increase � beyond the default level

� . Thus, if the technology underlying the product is such that improving its reliability is too costly or

impractical, the material contract performs just as well as does the performance contract. However, if

product modi�cation is a viable option for the supplier in the sense that improved reliability is worth

the cost, then a performance contract is the preferred option.
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The distortions of equilibrium solutions for � and s are due to misalignment of incentives borne by

the limited nature of the contracts. It is convenient to represent the distortions as follows.11 We can

construct a vector yj = (� j � �)e� + sjes where e� and es are orthogonal unit vectors in the direction

of � - and s-axes respectively, with j 2 fFB;M;Pg. One way to measure the distortion is by an angle

between yFB and either yM or yP . Denote this angle by 'i, i 2 fM;Pg. From

(� i � �)(�FB � �) + (si)(sFB) = yi � yFB =
��yi�� ��yFB�� cos'j ,

we obtain

cos'i =
(� i � �)(�FB � �) + (si)(sFB)p

(� i � �)2 + (si)2
p
(�FB � �)2 + (sFB)2

: (12)

As discussed above, the distortion is greater with the material contract than with the performance

contract, i.e., 'M > 'P . This is illustrated in Figure 3.

Finally, we analyze changes in contract terms and equilibrium decisions by the supplier in response

to changes in the availability target.

Proposition 7 Let pM and vP be the optimal unit price and penalty rate under the material and

performance contracts found in Propositions 4 and 5, respectively.

(i) Under the material contract, @pM=@B� < 0. Furthermore, @�M=@B� = 0 and @sM=@B� < 0.

(ii) Under the performance contract, @vP =@B� < 0. Furthermore, @�P =@B� � 0 and @sP =@B� < 0,

where the equality holds only if �P = � .

11This representation is inspired by a geometric interpretation of multitask principal-agent models in Baker (2002).
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Intuitively, incentive terms (p and v) increase as the availability target increases (B� decreases).

Since the material contract does not induce the supplier to improve reliability, lower target availability

also results in less inventory. Under the performance contract, on the other hand, both reliability and

inventory decrease to meet the new (lower) availability target. These e¤ects are illustrated in Figure

4.

5 Discussion of Modeling Assumptions

In order to highlight the main issues of interest, we have made several simplifying assumptions through-

out the paper. In this section, we outline possible consequences of relaxing some of these assumptions.

First, in the paper, we treat each spare product as an integrated �kit�instead of an assembled product

consisting of many di¤erent parts. In reality, contracts are often enforced at the subsystem or part level

(e.g., a PBL contract is often awarded for an engine or an avionics subsystem). An explicit model of

subsystems raises the issue of how to break down the availability requirement for the �nal product into

the requirements for each component. The solution is well-known in the literature and is computational

in nature (�the greedy algorithm�, see Sherbrooke 2004). Understandably, a game-theoretic analysis

of the setup in which there are multiple suppliers of an assembly system is quite di¢ cult and insights

are limited (see Kim et al. 2007). The complexity is exacerbated further when product reliability is

set endogenously. In this paper we ignored the multi-indentured structure of the supply chain because

of the apparent complexity it would introduce into our model, but it may prove to be a promising

direction for future research.

Furthermore, we have chosen to omit the variable repair cost from the supplier�s cost function

 (� ; s). In practice, product repairs may incur both �xed and variable costs, and the latter is typically

proportional to the failure rate �. We believe that in practice the �xed cost associated with setting

up the repair facility, buying equipment, and paying salaried workers is orders of magnitude higher

than any variable costs associated with repairs, making our simpli�cation quite reasonable. In cases

when the variable cost of repairs cannot be ignored, most of our insights remain unchanged except that

under the material contract the supplier may choose to improve reliability, i.e., �� > � . This is because

the variable repair cost motivates the supplier to reduce the number of costly product failures. While

this is an interesting observation, introduction of the variable repair cost poses analytical di¢ culty

described above: the customer�s objective eCSB may not be monotone in p (as opposed to v above) and
the availability constraint may not bind. Again, we believe that such situations rarely, if ever, arise in

practice and hence our modeling choice is reasonable.
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6 Conclusion

In this paper we propose a stylized economic model to evaluate the trade-o¤ between investing in

reliability improvements and stocking spares under two contracts that are commonly observed in after-

sales support for complex equipment. The motivation for our research comes from the new contracting

strategy, Performance Based Logistics, which is gaining wide acceptance in the aerospace and defense

industries today. Performance contracts are designed to replace more conventional material contracts

in an attempt to better align the incentives of customers and suppliers. However, even several years

after the PBL strategy has been announced, signi�cant confusion surrounds the implementation of

PBL contracts. Our conversations with many suppliers to the Department of Defense indicate that

they face di¢ culties estimating the costs and bene�ts of PBL contracts, whereas this was relatively

straightforward under material contracts, when suppliers were paid per spare part. At the same time,

early implementations of PBL relationships seem to indicate their superiority to material contracts.

Our model suggests that material contracts are not as e¤ective as PBL contracts in incentivizing

suppliers to invest into reliability improvements. Instead, under a material contract, suppliers tend

to meet the availability target by increasing the inventory of spares. Under a PBL contract, on the

other hand, the supplier achieves the availability target by both improving reliability and stocking

inventory. In general, both contracts result in ine¢ ciencies manifested in less reliable products and

more inventory than the �rst-best solution prescribes. Compared to material contract, however, PBL

enables a potential win-win scenario where the product is more reliable and lower inventory investment

is needed. This result contrasts the earlier �nding by Kim et al. (2007), in which PBL was shown to

provide incentives to increase inventory investment as no reliability improvement was allowed.

Moreover, we found that the e¢ ciency of the PBL contract depends heavily on the asset ownership

structure, while the e¢ ciency of the material contract is largely independent of it. The predominant

PBL practice we observe today is for the customer to own spare assets. However, our model predicts

that this arrangement is suboptimal because the supplier does not fully internalize the operating (hold-

ing) costs. Instead, our analysis advocates giving suppliers full ownership responsibility and thereby

transforming them into total service providers. When this is done, the PBL contract does achieve

the �rst-best solution, thus coordinating the supply chain. Naturally, practical implementation of our

policy recommendation will not be straightforward since many military customers believe that asset

ownership protects them from mismanagement by the supplier and endows them with more control

over �eet availability. Despite the di¢ culties, we see evidence that customer organizations are slowly

moving towards increased levels of asset ownership transfer to their suppliers. For example, in a case

we are familiar with, a foreign military service is currently in negotiation with one of its US aircraft
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suppliers to transfer the title of its spares assets.

While focusing on the tradeo¤ between investment in reliability and spare parts management, we

ignored several important aspects of the contractual relationships prevalent in the defense and aerospace

industries. Perhaps the most important aspect is the long-term nature of most such relationships, which

is partially driven by the fact that there is a single monopolistic customer and very few potential system

suppliers. We found that, in practice, in addition to explicit contractual terms (such as availability),

the customer often evaluates suppliers based on a variety of other metrics which are used to award

contract renewals. A natural modeling framework for such practice is a repeated game, which introduces

additional methodological challenges. We are currently pursuing this avenue of research in a separate

paper. Furthermore, while we believe that reliability improvement is an important consideration for

suppliers, an argument can be made that suppliers can also a¤ect repair lead times. We hope that

future work will explore this avenue of research. Last but not least, practitioners we communicated

with expressed interest in formalizing insights from stylized economic models into a decision-support

tool that can aid the negotiation process between customers and suppliers. Clearly, this is an important

and di¢ cult problem that requires an explicit model of the multi-echelon, multi-indentured structure

of the military supply chain, a direction we wish to pursue in the future.
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Appendix

In the proofs, we use the following conventions related to Normal approximation. To circumvent

the conceptual di¢ culty of having negative s, we will regard 0 as the lower bound on s and, as a

consequence, we de�ne the lower bound on z as z � (0 � 1=�)=
p
1=� = �1=

p
� . This de�nition does

not cause a problem because all quantities of our interest on the domain (�1;�1=
p
�) are insigni�cant

in the range of � de�ned in (3). Thus,

p
�� (z) ' 0, � (z) ' 0: (13)

These approximations require us to use the following conventions

L(z) = �(z)� z�(z) =
�p
�� (z) + � (z)

�
=
p
� ' 1=

p
� = �z, (14)

��1 (0) ' z = �1=
p
� ; (15)

in order to be consistent with (13).

Proof of Lemma 1. Only @E[I j � ; s]=@� � 0 needs to be shown. Fix � and let �(s) � @E[I j � ; s]=@� .

It can be shown that �(0) � 0 for � . 0:1 since �0(s) = z�(z)= (2�) + �(z)=�3=2 � 0 for all s � 0 when

(3) is satis�ed.

Proof of Lemma 2. We suppress arguments in s(� ;B�) for notational convenience. Di¤erentiating

both sides of the binding constraint E[B j � ; s] = L(z)=
p
� = B� with respect to � , we obtain

@z=@� = �B�=
�
2
p
��(z)

�
< 0;

@2z=@�2 = B�[�(z)=
�
2
p
�
�
�
p
�� (z) (@z=@�)]=(2�

�
�(z)

�2
) > 0:

Furthermore, from s = 1=� + z=
p
� and z � z = �1=

p
� (see (15)), we obtain

@s

@�
= � 1

�2
� z

2�3=2
+

1p
�

@z

@�
� � 1

2�2
+

1p
�

@z

@�
< 0;

@2s

@�2
=

2

�3
+

3z

4�5=2
� 1

�3=2
@z

@�
+

1p
�

@2z

@�2
� 5

4�3
� 1

�3=2
@z

@�
+

1p
�

@2z

@�2
> 0:
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Similarly, di¤erentiating L(z)=
p
� = B� with respect to B� yields @z=@B� = �

p
�=�(z) and

@s=@B� =
�
1=
p
�
�
(@z=@B�) = �1=�(z) < 0:

Proof of Proposition 2. After di¤erentiating �(� ; s) with respect to s, we obtain

@�(� ; s)=@s = p� c+ v � (v + �h)�(z); @2�(� ; s)=@s2 = �(v + �h)
p
��(z) � 0:

(Case 1) If p� c+ v � 0, @�(� ; s)=@s � 0 regardless of � and it is optimal to set s = 0. Then the

simpli�ed pro�t expression is �(�) � �(� ; 0) = w�K(�)� vE[B j � ; 0]� �hE[I j � ; 0] ' w�K(�)� v=�

and

d�(�)=d� = �K 0(�) + v=�2, d2�(�)=d�2 = �K 00(�)� 2v=�3 � 0:

and Case 1 follows.

(Case 2) bz = ��1 ((v + p� c) = (v + �h)) is obtained at optimality and we see that it is independent
of � . As described in the proof of Proposition 1, the original problem is reduced to a one-dimensional

optimization

max� �(�) = w � (c� p) =� �K(�)� �(bz) (v + �h) =p� :
Observe that �(�)! �1 as � ! � . Di¤erentiating,

�0(�) = �K 0(�) +
c� p
�2

+
v + �h

2�3=2
�(bz) = �K 0(�) + 
�(� ; v; p);

�00(�) = �K 00(�)� 2(c� p)
�3

� 3(v + �h)
4�5=2

�(bz):
It is straightforward to see that �(�) is concave if p � c. To see that it is quasiconcave if p > c, we

evaluate �00(�) at its critical point b� (by multiplying the �rst-order condition �0(�) = 0 by 3=(2�) and
substituting it in �00(�)) to obtain

�00(b�) = �K 00(b�)� 3K 0(b�)= (2b�) + (p� c) = �2b�3� < �K 00(b�)� 3K 0(b�)2b�=+ h= �2b�3�
� �3

�b�2K 0(b�) + h� = �2b�3� < 0;
where the �rst inequality comes from the assumption that p � c < �h � h and the second inequality

comes from (2), because � � b� and K 000(�) > 0 imply b�3K 00(b�) � �3K 00(�) � 2h or �K 00(b�) � �2h=b�3.
Finally, �00(b�) < 0 implies that a critical point, if it exists, is never a local minimum, and quasiconvexity
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follows. The solution is then characterized by the �rst-order condition as stated in the Proposition.

(Case 3) For a �nite z, �(z) < 1 and thus @�(� ; s)=@s � p� c+ v � (v + �h) = p� c� �h > 0, so

it is optimal for the supplier to choose s =1. The same result is true for z =1. Observe that

lim
s!1

@�(� ; s)

@�
= lim
s!1

�
�K 0(�) +

v�(z)

2�3=2
+
v�(z)

�2
+
�h�(z)

2�3=2
� �h�(z)

�2

�
= �K 0(�)� �h

�2
< 0

for any � � � . Therefore, the supplier chooses � = � .

Proof of Proposition 3. Before we prove this result, we need the following auxiliary Lemma, which

is used in the proof along with the result in Lemma 3.

Lemma 4 Assume p � c < �h and let ��(v; p) � (v + �h)� (z�(v; p)). For v de�ned on (c � p;1),
@��(v;p)
@v = L(z�(v; p)) > 0 and

@��(v;p)
@� = h

�
� (z�(v; p)) +

z�(v;p)
v+�h

�
> 0.

Proof. limv!c�p ��(v; p) = 0 by (13) and by L�Hopital�s rule,

lim
v!1

��(v; p) = lim
v!1

� (z�(v; p))

1=(v + �h)
= lim
v!1

� �h�p+c
(v+�h)2

z�(v; p)

�1=(v + �h)2 = lim
v!1

(�h� p+ c)z�(v; p) =1:

Also,
@��(v; p)

@v
= � (z�(v; p))�

�
�h� p+ c
v + �h

�
z�(v; p) = L(z�(v; p)) > 0

for v 2 (c�p;1). These results imply that limv!c�p [��(v; p) + z�(v; p)] = 0, limv!1 [��(v; p) + z�(v; p)] =

1 , and
@

@v
[��(v; p) + z�(v; p)] = L(z�(v; p)) +

�h� p+ c
(v + �h)2� (z�(v; p))

> 0:

Thus ��(v; p) + z�(v; p) > 0 for v 2 (c� p;1) and

@��(v; p)

@�
= h� (z�(v; p)) +

hz�(v; p)

v + �h
=
h [��(v; p) + z�(v; p)]

v + �h
> 0:

We are now ready to prove the main results. Note that

@bz
@p
=

1

v + �h

1

� (bz) > 0; @bz
@v
=
�h� p+ c
(v + �h)2

1

� (bz) > 0; @bz
@�
= � h

(v + �h)2
1

� (bz) < 0: (16)

Case 1. By di¤erentiating both sides of the �rst-order condition 
�(b� ; v; p) = K 0(b�) with respect to
p, we obtain

K 00(b�)@b�
@p

= �2(c� p)b�3 @b�
@p
� 3(v + �h)

4b�5=2 �(bz)@b�
@p
� 1b�2 � bz

2b�3=2 .
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After collecting terms, we have

@b�
@p

=
1

�00(b�)
�
1b�2 + bz

2b�3=2
�
=

1

�00(b�)
�
1

2b�2 + bs
2b�
�
< 0; (17)

where �00(b�) = �K 00(b�) � 2(c � p)=b�3 � 3�(bz)(v + �h)=
�
4b�5=2� < 0 since b� is the local maximizer.

Moreover,

@bs
@p
=

@

@p

�
1b� + bzpb�

�
= �

�
1b�2 + bz

2b�3=2
�
@b�
@p
+

1pb� @bz@p = �
�
1

2b�2 + bs
2b�
�
@b�
@p
+

1pb� @bz@p > 0;
since @bz=@p > 0 and @b�=@p < 0, and similarly (using Lemma 1)
@E[I jb� ; bs]

@p
=

@E[I jb� ; bs]
@�

@b�
@p
+
@E[I jb� ; bs]

@s

@bs
@p

=

�
� �(z)

2b�3=2 + 1b�2
�
v + p� c
v + �h

��
@b�
@p
+

�
v + p� c
v + �h

��
�
�
1b�2 + bz

2b�3=2
�
@b�
@p
+

1pb� @bz@p
�

= �E[I jb� ; bs]
2b� @b�

@p
+

�
v + p� c
v + �h

�
1pb� @bz@p > 0:

@E[B jb� ; bs]=@p < 0 will be shown below.
Case 2. We �rst di¤erentiate both sides of the �rst-order condition 
�(b� ; v; p) = K 0(b�) with respect

to s to obtain
@b�
@v

= � L(bz)
2b�3=2�00(b�) > 0: (18)

Next,
@E[B jb� ; bs]

@v
=

@

@v

�
L(bz)pb�

�
= � L(bz)

2b�3=2 @b�@v � �(bz)pb� @bz
@v

< 0:

To show @bs=@v > 0, notice that (2) together with the assumption p � c < �h imply that b�3K 00(b�) �
�3K 00(�) � 2h � 2�h > �h+ p� c. Furthermore

��00(b�) = K 00(b�) + 2(c� p)b�3 +
3(v + �h)

4b�5=2 �(bz) > �h+ p� cb�3 +
2(c� p)b�3 +

3(�h� p+ c)bz
4b�5=2

=
�h� p+ cb�3 +

3(�h� p+ c)
4b�5=2

�p
�bs� 1p

�

�
=
�h� p+ c
4b�3 +

3(�h� p+ c)bs
4b�2

>
�h� p+ c

2b�
�
1

2b�2 + bs
2b�
�
; (19)

where we used �(bz) � bz�(bz) = bz (�h� p+ c) = (v + �h) in the �rst inequality. From Lemma 3,

�(bz)L(bz)
[�(bz)]2 =

�
v + �h

�h� p+ c

�2
�(bz)L(bz) � 1;
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or similarly,

�L(bz) + ��h� p+ c
v + �h

�2 1

�(bz) � 0: (20)

After combining (16), (18), (19), and (20), we obtain

@bs
@v

= �
�
1

2b�2 + bs
2b�
�
@b�
@v
+

1pb� @bz@v
= �

�
1

2b�2 + bs
2b�
�

L(bz)
2b�3=2 (��00(b�)) + �h� p+ c

(v + �h)2
1pb�� (bz)

> �
�
1

2b�2 + bs
2b�
�

L(bz)
pb�(�h� p+ c)� 1

2b�2 + bs
2b�
� + �h� p+ c

(v + �h)2
1pb�� (bz)

=
1pb�(�h� p+ c)

"
�L(bz) + ��h� p+ c

v + �h

�2 1

� (bz)
#
� 0:

Note that

@bs
@v
= �

�
1b�2 + bz

2b�3=2
�
@b�
@v
+

1pb� @bz@v = L(bz)
2b�3=2 @b�@p + �(bz)pb� @bz

@p
= �@E[B jb� ; bs]

@p

where the second equality follows from (16), (17), (18), and Lemma 1. Thus @E[B jb� ; bs]=@p < 0 in

Case 1. In addition,
@E[I jb� ; bs]

@v
=
@E[I jb� ; bs]

@�

@b�
@v
+
@E[I jb� ; bs]

@s

@bs
@v

> 0:

Case 3. We di¤erentiate both sides of the �rst-order condition 
�(b� ; v; p) = K 0(b�) with respect to
�, obtaining

@b�
@�
= � h

2b�3=2�00(b�)
�
�(bz) + bz

v + �h

�
> 0;

where the inequality follows from the second result of Lemma 4. With (16), this implies

@bs
@�
= �

�
1

2b�2 + bs
2b�
�
@b�
@�
+

1pb� @bz@� < 0:
Also,

@E[I jb� ; bs]
@�

= �E[I jb� ; bs]
2b� @b�

@�
+

�
v + p� c
v + �h

�
1pb� @bz@� < 0

where the equality is derived similarly to @E[I jb� ; bs]=@p above.
Proof of Proposition 5. With p = 0, only Cases 1 and 2 in Proposition 2 are possible. It can be

shown that the condition (7) excludes the case v � c, which lead to s = 0. Thus only Case 2 remains.

Suppose v > c. According to Proposition 2, the supplier chooses �� = � and s� = s(� ; zP� (v)) if


P� (� ; v) � K 0(�) and �� = b� and s� = s(�P� (v); z
P
� (v)) otherwise, where �

P
� (v) solves 


P
� (� ; v) = K 0(�).
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Consider 
P� (� ; v) � K 0(�) �rst. In this case, the Lagrangian for the customer�s problem is

LP = ��B� +K(�) + c

�
+
� + h
p
�
�(zP� (v)) +

(� + h)zP� (v)p
�

�
v � c
v + �h

� � � c
� + h

�
:

Di¤erentiating it with respect to v, we obtain

@LP
@v

=
(� + h)(c+ �h)

(v + �h)2
p
��(zP� (v))

�
v � c
v + �h

� � � c
� + h

�
:

If � � c, @LP > @v, and hence v = c is optimal, violating the assumption. Thus � > c and the optimal

v is

v(�) = � (c+ �h) = (c+ h) + (1� �)ch= (c+ h) :

In view of this relationship, �nding optimal v is equivalent to �nding optimal �. Since zP� (v(�)) =

��1 ((v(�)� c) = (v(�) + �h)) = ��1 ((� � c) = (� + h)), the optimal � is the solution to the binding

constraint which is identical to that of the �rst-best case: �P (v(�); �) = �FB(�; �) = B�. The solution

� was shown to be unique in Proposition 1, hence uniqueness of v = v(�) follows. Next, suppose


P (� ; v) > K 0(�). Existence and uniqueness of vz can be shown similarly to those of �y in the proof of

Proposition 1, so we omit details.

Proof of Proposition 6. Case 1 is clear after comparing Propositions 1 and 4. For Case 2, there are

two cases to consider: 
P (� ; v) � K 0(�) < 
FB(� ; �) and 
P (� ; v) > K 0(�). For the former, �P = � <

� y = �FB and sP = s(� ; zFB(�)) > s(� y; zFB(�y)) = sFB since � � �y implies zFB(�) � zFB(�y). Since

v � � and �y � �; the sign of v � �y is not clear. For the latter, let vy be the penalty rate that induces

the supplier to choose �rst-best � , � y. We will now demonstrate that, for � 2 [0; 1), the customer has

to choose v > �y in order to induce �� = � y, the �rst-best interior solution for � . Suppose that vy

induces the supplier to choose �� = � y at equilibrium. From the optimality conditions in Propositions

1 and 2, we have

c

(� y)2
+
vy + �h

2(� y)3=2
�(zP� (v

y)) = K 0(� y) =
c

(� y)2
+

�y + h

2(� y)3=2
�(zFB(�y));

or similarly (vy+ �h)�(z�(vy; 0)) = (�y+h)�(z1(�y; 0)). Since Lemma 4 implies that (v+ �h)�(z�(v; 0))

increases in v and (v + �h)�(z�(v; 0)) < (v + �h)�(z1(v; 0)) for � 2 [0; 1), we conclude that vy > �y:

Using this result, we obtain that

zP (vy) = ��1((vy � c)=(vy + �h)) � ��1((�y � c)=(�y + �h)) � ��1((�y � c)=(�y + h)) = zFB(�y)
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where the �rst inequality comes from the fact that (x� c)=(x+ �h) is increasing in x. Since L(z) is a

decreasing function, we have

E[B j � y; s(� y; zP (vy))] = L(zP (vy))=
p
� y � L(zFB(�y))=

p
� y = E[B j � y; s(� y; zFB(�y))]:

Combined with the fact that E[B j �P (v); s(�P (v); zP (v))] is decreasing in v (see Proposition 3), this

inequality implies that vz, the optimal v under performance contract, should be such that vz � vy in

order to have the backorder constraint binding. Hence �P (vz) � �P (vy) = � y, since �P (v) is increasing.

Then s(�P (vz); zP (vz)) � s(� y; zFB(�y)) by Lemma 2. The last statement in the Proposition follows

from similar logic.

Proof of Proposition 7. Case 1. Since �M = � is �xed as long as v = 0, it does not change with

B�. @sM=@B� < 0 follows from Lemma 2. @pM=@B� < 0 is inferred from (10) and @�=@B� < 0,

which is evident from the relation �FB(�; �) = L(zFB(�))=
p
� = B�. Case 2. If 
FB(� ; �) < K 0(�),

then �P = � and the results identical to Case 1 are obtained. The statements in (ii) are true with

@�P =@B� = 0 and
��@sP =@B��� = ��@sM=@B���. Suppose 
FB(� ; �) � K 0(�), in which case �P > � is

optimal. The condition (2) ensures that the backorder constraint is binding, i.e., �P (v; �P� (v)) = B�.

Since �P (v; �P� (v)) is a decreasing function of v (see Proposition 3), we �nd @v
P =@B� < 0. This in turn

implies @�P =@B� =
�
@�P =@v

� �
@vP =@B�

�
< 0 and @sP@B�= =

�
@sP =@v

� �
@vP =@B�

�
< 0 via results

in Proposition 3.
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