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Abstract

A ridge function with shape function g in the horizontal direction is a function of the form g(x)h(y, 0). Along each horizontal
line it has the shape g(x), multiplied by a function h(y, 0) which depends on the y-value of the horizontal line. Similarly a ridge
function with shape function g in the vertical direction has the form g(y)h(x, �/2). For a given shape function g it may or may not
be possible to represent an arbitrary function f (x, y) as a superposition over all angles of a ridge function with shape g in each
direction, where h = hf = hf,g depends on the functions f and g and also on the direction, � : h = hf,g(·, �). We show that if g is
Gaussian centered at zero then this is always possible and we give the function hf,g for a given f (x, y). For highpass or for odd
shapes g, we show it is impossible to represent an arbitrary f (x, y), i.e. in general there is no hf,g . Note that our problem is similar
to tomography, where the problem is to invert the Radon transform, except that the use of the word inversion is here somewhat
“inverted”: in tomography f (x, y) is unknown and we find it by inverting the projections of f; here, f (x, y) is known, g(z) is known,
and hf (·, �) = hf,g(·, �) is the unknown.
© 2008 Elsevier B.V. All rights reserved.
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1. Posing the problem

We ask for which given “shape functions”, g = g(x), −∞ < x < ∞, is it possible to represent an arbitrary function,
f (x, y), as a superposition over angles or directions, of ridge functions with shape g? More precisely, when is there a
function h(z, �) such that we can write say every function f which is compactly supported and smooth in some sense
as f = h ◦ g, i.e.,

f (x, y) =
∫ 2�

0
g(x cos � + y sin �)h(−x sin � + y cos �, �) d�. (1)

Call such a shape function g “good” if it allows an arbitrary f to be so represented as f =h ◦ g. If g happens to be even,
g(−x) = g(x), then it is no loss of generality to assume that h is reflective in the sense that h(z, � + �) = h(−z, �). On
the other hand, if g happens to be odd and integrable then we cannot represent an arbitrary integrable f as f = h ◦ g,
with h integrable. This is because if f = h ◦ g, then f must integrate to zero as is immediately clear from (1). It seems
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likely that if g is good, then the even part of g, g(x) + g(−x)/2, is also good, but we have no proof of this. We will
focus attention in this paper on even g’s, though this is not the general case and there may well be cases of interest
where g is not even. In our application to ion implantation g is, at least ideally, even. Whether or not g is even, if we
restrict h to have the reflection property h(z, � + �) = h(−z, �), then we may as well replace g by its even part, which
is, of course, then even.

The problem arises in the design of a device to lay down a dopant distribution on a wafer if one can, at each angle
�, sweep out a dopant profile g(x cos � + y sin �), multiplied by an arbitrary constant, h(z, �), positive or negative,
which depends on the direction and on the distance, −x sin � + y cos � = z, along the line. We then superpose the
dopants that are laid down in all the directions. In the practical problem h(z, �)�0, since there is no way to lay down a
negative amount of dopant, but relative to an overall constant the dopant profile can be considered to be determinable
by negative as well as positive h, as we do.

In tomography (Shepp and Logan, 1974; Shepp and Kruskal, 1978) one represents an essentially arbitrary function
f (x, y) as a superposition of ridge functions via the algorithm of convolution-back-projection. This is related (as will
be seen later) to the problem of this paper but, at first glance, our problem seems more directly to do with the Fourier
inversion formula which can be stated for a quite general smooth function f of compact support (denote by F, the set
of all such f) as

f (x, y) = 1

8�2

∫ ∞

−∞
d�|�|

∫ 2�

0
d�f̂ (�, �)ei�(x cos �+y sin �),

where f̂ (r, �) is the Fourier transform of f,

f̂ (�, �) =
∫ ∞

−∞

∫ ∞

−∞
dx dyf (x, y)e−i�(x cos �+y sin �).

This Fourier representation of an arbitrary f already shows that the shape function g ≡ 1 is good since we may take
(for given f ∈ F),

hf (z, �) = 1

8�2

∫ ∞

−∞
ei�z|�|f̂

(
�, � − �

2

)
d�. (2)

Remark. For g ≡ 1, hf,g(z, �) depends only on the values of f̂ (r, �) with � = � − �/2. This is probably because
g ≡ 1 is very special, but we do not know if this is true in general. We shall see later on that g ≡ 1 is an overly special
instance.

To see that there are many g’s that are not good, observe that if f has a ridge function representation with some
function h, then we may write by substituting the ridge function representation for f,

∫ ∞

−∞

∫ ∞

−∞
f (x, y)ei(xu+yv) dx dy

=
∫ 2�

0
d�

[∫ ∞

−∞

∫ ∞

−∞
g(x cos � + y sin �)h(−x sin � + y cos �, �)ei(xu+yv) dx dy

]
.

Now if we change variables, x, y, inside the integral to rotated coordinates, x′, y′,

x′ = x cos � + y sin �, y′ = −x sin � + y cos �,

we have, with u = � cos �, v = � sin �, that f̂ (�, �) is given by
∫ ∞

−∞

∫ ∞

−∞
f (x, y)ei(xu+yv) dx dy

=
∫ 2�

0
d�

∫ ∞

−∞
g(x′)eix′(u cos �+v sin �) dx′

∫ ∞

−∞
h(y′, �)eiy′(−u sin �+v cos �) dy′.
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Now if the Fourier transform

ĝ(z) =
∫ ∞

−∞
g(y)e−iyz dy

vanishes for |z| < A, then the last line shows that

f̂ (�, �) ≡ 0

for |�| < A because

| − u sin � + v cos �|�
√

u2 + v2 < A,

for every � and so the last integral is identically zero. This means that a highpass function g cannot be a good shape
since f must be highpass in two dimensions if g is highpass in one dimension. On the other hand, bandpass functions
are a very this set and they may be approximated by function which are not bandpass, so it is not clear whether or not
an essentially arbitrary function, g is good.

2. Gaussian shapes

Suppose next that g is a Gaussian shape so that

g(z) = e−z2/2�2
.

A neat trick enables a reduction to the case � = ∞ or g ≡ 1, which we have already handled above. Namely, let
h(z, �) = k�(z, �)e−z2/2�2

. Then from (1) we must have that

f (x, y) =
∫ 2�

0
k�(x cos � + y sin �, �)e−(x cos �+y sin �)2/2�2

g(x cos � + y sin �) d�.

But for the Gaussian choice of g we see that this equation is the same as

f (x, y) =
∫ 2�

0
k�(−x sin � + y cos �, �)e−(x2+y2)/2�2

d�,

which is the same as (1) with g ≡ 1, if we replace f (x, y) by

f�(x, y) = f (x, y)e(x2+y2)/2�2
,

and h(z, �) by k�(z, �). We have already solved this in (2), so we can find h = hf (z, �), namely

k�(z, �) = 1

8�2

∫ ∞

−∞
ei�z|�|f̂�(�, �) d�,

and, finally,

h(z, �) = k�(z, �)e−z2/2�2
.

It should be pointed out that if � → ∞, then g becomes the � function at zero, noting that multiplying g by a large
constant for normalization is allowed since the large constant can be absorbed in h. So if we formally allow g to be the
� function at zero, we can ask whether this g is good. The answer is no, because if we write x = r cos �, y = r sin �,
then

lim
�→0

∫ 2�

0
h(x cos � + y sin �, �)

e−(−x sin �+y cos �)2/2�2

√
2��

d�

= lim
�→0

∫ 2�

0
h(r cos(� − �), �)

e−r2sin2(�−�)/2�2

√
2��

d�,
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and if we set � = � + �� the limit becomes

lim
�→0

∫ �/�

−�/�
h(r cos(��), � + ��)

e−r2sin2(��)/2�2

√
2�

d� = h(0, �)

r
,

which is not a general function f (x, y).

3. Relating the problem to tomography

Now we will show that one really should think about tomography, and not Fourier transforms, if one wants to solve
the problem of this paper.

Remark. In the application, it is only necessary to match f (x, y) with the superposition of ridge functions for x2 +
y2 < 1, because we may assume, by choosing units, that the wafer is the unit disk, and outside the wafer we are allowed
to paint dopant arbitrarily. If g is good then f may be specified arbitrarily outside the unit disk, which shows that many
different h’s will produce the same f (x, y) on the unit disk. This is interesting in itself, but it also suggests that we can
study the problem numerically which will be done in the next sections.

In thinking more deeply about the above Remark, it is clear that if g is good, then hf (z, �) can depend on f (x, y)

only for
√

x2 + y2 � |z|. This is true for |z| = 1, because if we extend f (x, y) arbitrarily in the region outside the unit
disc to another function f̂ (x, y), say, with

f̂ (x, y) ≡ f (x, y) for x2 + y2 �1,

subject to f̂ still being of compact support and smooth, then the function h
f̂
(z, �) when back-projected to recover

f̂ (x, y) still produces f (x, y) for x2 + y2 �1. This means that we must have h
f̂
(x, y) ≡ hf (x, y) for x2 + y2 �1

so that hf (x, y) does not depend on the values of f outside the unit disc. Of course there is nothing special about the
unit disc so the same must hold outside the disc of radius |z| for any z. More precisely, it follows that hf (x, y) only

depends on the values of f in the disc centered at (0, 0) with radius
√

x2 + y2, i.e.,

hf (z, �) =
∫

{
√

x2+y2 � |z|}
Kg(z, �; x, y)f (x, y) dx dy,

where the integral kernel Kg depends only on the good function g.
We can give the kernel Kg for g ≡ 1 or, as a consequence, for any of the Gaussian g’s as follows: Let Pf (t, �) denote

the Radon transform of the function f (x, y) which is set equal to zero for x2 + y2 > 1, i.e.,

Pf (t, �) =
∫ +

√
1−t2

−
√

1−t2
f (t cos � + s sin �, −s cos � + t sin �) ds,

as in Shepp and Logan (1974) and Shepp and Kruskal (1978). Then since the one-dimensional Fourier transform of Pf

is the same as f̂ (�, �), which is the key theorem underlying tomography, we may replace f̂ in (2) by P̂f ; see Shepp
and Logan (1974) and Shepp and Kruskal (1978), where it is also shown that with an appropriate filter function, 	,
which realizes the derivative of the Hilbert transform of Pf , we have

f (x, y)
.= 1

2�

∫ 2�

0
d�

∫ ∞

−∞
dt	(x cos � + y sin � − t)Pf (t, �).

Now replace Pf (t, �) by the previous formula to get

f (x, y)
.= 1

2�

∫ 2�

0
d�

∫ ∞

−∞
dt	(x cos � + y sin � − t)

∫ ∞

−∞
ds f (t cos � + s sin �, t sin � − s cos �).
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We see that

hf (z, �) = 1

2�

∫ ∞

−∞
dt	(z − t)

∫ ∞

−∞
dsf (t cos � + s sin �, t sin � − s cos �).

Changing variables from (s, t) to (x, y) by setting

x = t cos � + s sin �, y = t sin � − s cos �

shows that the kernel Kg(z, �; x, y) is just for g ≡ 1 is

K1(z, �; x, y) = 1

2�
	(z − x cos � − y sin �).

For 	, we may use the Shepp–Logan filter given in Shepp and Logan (1974) and Shepp and Kruskal (1978),

	(ka) = − 4

(�a2(4k2 − 1))
, k = 0, ±1, ±, . . . ,

extended to be linear in between each ka and (k + 1)a where a = 2/(n + 1) if the interval [−1, 1] is divided into n
steps. Then we have

K(z, �; x, y) = a

4�n
	(z − x cos � − y sin �).

This will give a good approximation to f (x, y) when f is reasonably smooth; see Shepp and Logan (1974) and Shepp
and Kruskal (1978). Similarly, we can find the kernel Kg for Gaussian

g(z) = g�(z) = e−(1/2)�2z2
,

by replacing f (x, y) by f (x, y)e(�2/2)(x2+y2) as we have done and then using the above formula for convolution
back-projection. The result is that with K�(z, �; x, y) = Kg�(z, �; x, y),

K�(z, �, x, y) = 1

2�
	(z − x cos � − y sin �)e(�2/2)(x2+y2−z2).

The above method is not general. We discuss below general methods which unfortunately are not effective. Indeed
obtaining an analytic formula for the case of general shape function seems impossible. Nevertheless, we shall solve
the problem in the last section by an effective numerical approach, which is more practical anyway.

4. A Fourier series approach to the general problem

To reiterate, we are assuming that g is even which of course does not imply that g is good since there are bandpass
functions which are even. Nevertheless, we shall expand our desired function h = hf,g(z, 
) in a Fourier series to get

h(z, 
) =
∞∑

k=0

�k(z) cos(k
) +
∞∑

k=1

�k(z) sin(k
),

where we seek the coefficients �k(z), k�0, �k(z), k�1. Since we may as well choose h reflexive, h(z, �+�)=h(−z, �),
we see that we must have, for all z,

�k(z) = (−1)k�k(−z), �(z) = (−1)k�(−z), k�0.

Thus �k and �k are odd or even according as k is odd or even.
If we set x = r cos �, y = r sin �, from (1),

f (r cos �, r sin �) =
∫ 2�

0
d
h(r cos(� − 
), 
)g(r sin(� − 
)).
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Replace h by its Fourier series, multiply by cos(n�) (resp. by sin(n�)), and integrate over � ∈ (0, 2�) to get after
cancelling odd terms which integrate to zero,

f (1)
n (r) = 1

4�

∫ 2�

0
f (r cos �, r sin �) cos(n�) d� =

∫ �/2

0
d��n(r cos �)g(r sin �) cos(n�),

f (2)
n (r) = 1

4�

∫ 2�

0
f (r cos �, r sin �) sin(n�) d� =

∫ �/2

0
d��(r cos �)g(r sin �) cos(n�).

We can bring these equations to nearly convolution form if we substitute for �, r cos � = u, to obtain, with Tn(z) =
cos(n cos−1 z), the Chebysheff polynomial of degree n of the first kind,

f (1)
n (r) =

∫ r

0
du�n(u)Tn

(u

r

) g(
√

r2 − u2)√
r2 − u2

, n�0,

f (2)
n (r) =

∫ r

0
du�n(u)Tn

(u

r

) g(
√

r2 − u2)√
r2 − u2

, n�1.

We need to invert these equations to find �n and �n. It is fairly easy to find �0(z) since the equation for �0 becomes
after the substitutions, r = √

s, u = √
v,

2f
(1)
0 (

√
s) =

∫ s

0

�0(
√

v)√
v

g(
√

s − v)√
s − v

dv,

which is easily solved by deconvolution, at least in principle. Taking Laplace transforms gives the Laplace transform
of �0(z):

∫ ∞

0
e−�s �0(

√
s)√

s
ds = 2

∫ ∞
0 e−�sf

(1)
0 (

√
s) ds∫ ∞

0 e−�s(g(
√

s)/
√

s) ds
.

Since we know f
(1)
0 (r) and g(z), the right side is known in principle, and so the left side is also known and so we can

obtain �0(z) in principle by inverting a Laplace transform. The result is

∫ ∞

0
e−�s�1(

√
s) ds = 2

∫ ∞
0 e−�sf

(1)
1 (

√
s)

√
s ds∫ ∞

0 e−�s(g(
√

s)/
√

s) ds
.

We have to obtain all the other �n, as well as the �n, n�1. Finding �n involves solving the same integral equation as
�n, except the left side is f

(2)
n (r) instead of f (1)(r). Thus we only need to study

fn(r) =
∫ r

0
�n(u)Tn

(u

r

) g(
√

r2 − u2)√
r2 − u2

du.

The substitutions r = √
s, u = √

v bring the equation to the form

2fn(
√

s) =
∫ s

0

�n(
√

v)√
v

g(
√

s − v)√
s − v

Tn

(√
v

s

)
dv. (3)

For n = 1, (3) becomes, since T1(z) = z,

2f1(
√

s)
√

s =
∫ s

0
�1(

√
v)

g(
√

s − v)√
s − v

dv,

which is again a convolution, and we can solve it for �1(z) in the same way as we solved for �0(z) above. Similarly
we can obtain �1(r). When n > 1, (3) is no longer a convolution because T2(z) = 2z2 − 1. The equation becomes for
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n = 2, after multiplying by s,

2f2(
√

s)s =
∫ s

0

�2(
√

v)√
v

g(
√

s − v)√
s − v

(v + v − s) dv,

which is the sum of two convolutions. If we write

F(�) =
∫ ∞

0
2f2(

√
s)se−�s ds,

G(�) =
∫ ∞

0

�2(
√

v)√
v

e−�v dv,

ĝ(�) =
∫ ∞

0

g(
√

s)√
s

e−�s ds,

then the above equation becomes after taking Laplace transforms,

F(�) = −G′(�)ĝ(�) + G(�)ĝ′(�),

which is a differential equation for the unknown G(�). It is easily solved by multiplying by 1/ĝ(�). The answer is

G(�) = ĝ(�)

∫ ∞

�

F(u)

ĝ2(�)
du,

from which, in principle, we can determine �2(z). Similarly we can, in principle, determine �2(z). The same simple
differential equation works to obtain the Laplace transform of �3(z) and �3(z), but for n = 4, T4(z) = 8z4 − 8z2 + 1,
and to obtain �4(z) involves solving a second order differential equation, which we do not pursue here.

5. Expanding in Hermite polynomials

If we could find Kg for any good function g of the form

g(z) = e−(z2/2)P (z),

where P is a non-zero polynomial in z, then since such functions are dense in all of L2, by Hermite polynomial theory,
this might completely settle the practical as well as the theoretical problem and show that the good functions are those
that are not highpass. We would need to show that for any non-zero polynomial P, g is a good function. Indeed suppose
P is given and non-zero we will show that if we choose

h(z, �) = e−(z2/2)Q(z, �),

where Q is a polynomial in z whose coefficients depend on �, then we can approximate any f (x, y). It will then follow
that the good functions are essentially those which are not highpass. Using this h will give the following f = fQ:

fQ(x, y) =
∫ 2�

0
e−(x2+y2)/2Q(x cos � + y sin �, �)P (−x sin � + y cos �) d�.

Let F denote the class of all f ∈ L2(D), with D the unit disk, which can be so represented with a choice of polynomial
Q(z, �) whose coefficients depend on �. We claim that F is dense in L2(D) as Q(x, �) varies. If not, there exists an
f ∈ L2(D) which is orthogonal to all fQ’s. This means that in particular, for any m and any k, letting Q(z, �)=zmeik�,

∫
D

dx dy

∫ 2�

0
d�(x cos � + y sin �)meik�P(−x sin � + y cos �)f (x, y) = 0.

But if this holds, we can interchange the order of integration to obtain that identically in �,∫
D

dx dy(x cos � + y sin �)mP (−x sin � + y cos �)f (x, y) = 0.
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But the left side is a trigonometric polynomial in � for any m and so we must have that f ≡ 0, a.s. That is we can
represent any f ∈ L2(D). Thus any g of the form P(z)e−z2/2 is good, and since this is a dense set of g ∈ L2(R), we
see that the good functions are dense in L2(R). This is an existence proof that except for the highpass functions, all
functions are good. But we need more than an existence proof: Can we get a formula for hf in terms of f? This is the
practical problem to solve.

6. A power series approach

Let us suppose that g is analytic in the unit disk, D, that is

g(z) =
∞∑

n=0

gnz
n,

and let us drop the assumption that g is even for a moment. We seek a function h(z, �) which we also expand
analytically as

h(z, �) =
∞∑

n=0

∞∑
k=−∞

hn,kz
ne−ik�.

As seen in the first section that when g is even we may as well assume that h(z, � + �) = h(−z, �) which implies that

hn,k((−1)k − (−1)n) ≡ 0,

so that unless n − k is even, we have hn,k = 0. Since we are not going to assume g is even, we have to find hn,k for all
values of n, k.

Assume that f (x, y) is an arbitrary analytic function in D, with power series

f (x, y) =
∞∑

j=0

∞∑
k=0

fj,kx
j yk, x2 + y2 < 1.

Setting x = r cos �, y = r sin �, and replacing the earlier use of � by �, we get the equation, for every choice of the
coefficients, fj,k ,

∞∑
n=0

n∑
j=0

fn−j,j (r cos �)n−j (r sin �)j =
∫ 2�

0
h(r cos(� − �), �)g(r sin(� − �)) d�.

Expanding the right side analytically and equating powers of r on both sides,

n∑
j=0

fn−j,j (cos �)n−j (sin �)j =
∫ 2�

0

n∑
j=0

∞∑
k=−∞

hn−j,k(cos(� − �))n−j gj (sin(� − �))j e−ik� d�.

Setting � = � − 
, and interchanging sides, we get that

∫ 2�

0

n∑
j=0

∞∑
k=−∞

hn−j,k(cos 
)n−j gj (sin 
)j e−ik(�−
) d
 =
n∑

j=0

fn−j,j (cos �)n−j (sin �)j .

The only way this can happen is if the right side expanded as a trigonometrical series in � has the coefficients given on
the left side, i.e., for all n, k, with n� |k|, n − k even, we have

n∑
j=0

(hn−j,kgj − fn−j,j )An,j,k ≡ 0, (4)
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Fig. 1. This is a 128 × 128 plot of f (x, y).
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Fig. 2. This is a 16 × 16 plot of the original f (x, y) phantom.

where

An,j,k =
∫ 2�

0
(cos 
)n−j (sin 
)j eik
 d
,

noting that An,j,k = 0 if n − k is odd. We can solve for all the non-zero values of hn,k, |k|�n, n − k, even, in order, as
follows: first set n = 0. There is only one non-zero value of h0,k , that for k = 0, and we get from (4),

h0,0g0 = f0,0,
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Fig. 3. A 16 × 16 plot of the sum of 10 ridge functions with shape g(z) = e−0.5z2
, optimally chosen to reconstruct f (x, y) to within the smallest

tolerance possible, which turns out to be �= 0.01978. If instead we use 20 angles, we get �= 0.001886, and there is no visual difference with Fig. 2.
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Fig. 4. The difference between the original f (x, y) phantom on a 16 × 16 grid and the reconstruction of Fig. 3. Note that the largest difference is
� = 0.001886 and there are about as many positive as there are negative errors.

which we can solve as long as g0 
= 0. For n = 1, the non-zero values of h1,k are two, h1,1, h1,−1. From (4) these are

h1,1g0 = h1,−1g0 = f1,0.

For n = 2, we need to find h2,k , k = −2, 0, 2. From (4) we get for n = 2, k = −2, 0, 2, taking into account that

(h2,−2g0 − f2,0)A2,0,−2 + (h1,−2g1 − f1,1)A1,1,−2 = 0,
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Fig. 5. A plot of the weights h(zi , �, k), i = 1, . . . , 16; k = 1, . . . , 10 in sequence for 10 angles. Note the weights are all positive, and the dynamic
range seems quite reasonable.
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Fig. 6. A plot of the weights h(zi , �, k), i = 1, . . . , 16; k = 1, . . . , 20 in sequence for 20 angles. Note the weights are all positive, and the dynamic
range seems even more reasonable than for 10 angles.

(h2,0g0 − f2,0)A2,0,0 + (h1,0g1 − f1,1)A1,1,0 = 0,

(h2,2g0 − f2,0)A2,0,2 + (h1,2g1 − f1,1)A1,1,2 = 0.

Noting that the terms hn,k = 0 if n − k is odd, we can solve for hn,k in terms of earlier known quantities because
An,0,k 
= 0 whenever |k|�n and n − k is even. This algorithm allows a solution to the general problem at least
for even analytic profile functions g with g(0) 
= 0. It remains to see whether or not this will give a truly practical
solution.
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Fig. 7. A plot of the weights h(zi , �, k), i = 1, . . . , 16; k = 5, . . . , 8 in sequence for the case in Fig. 6. These are the values of h for four directions.
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Fig. 8. This is a 32 × 32 plot of the original f (x, y) phantom.

7. A general linear programming approach to the problem

In the early days of CT scanning a direct equation-solving approach, called ART, was widely used. Convolution-
back-projection eventually became the method of choice, for several reasons, cf. Shepp and Kruskal (1978). In emission
tomography, the method of EM and maximizing likelihood (Vardi et al., 1985) is regarded as at least competitive with
convolution-back-projection, despite having longer execution times, because it deals with low count as the main physics
based limiting factor. If one turns to numerical methods of equation-solving for our problem here, then which method
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Fig. 9. A 32 × 32 plot of the sum of 16 ridge functions with shape g(z) = e−0.5z2
, optimally chosen to reconstruct f (x, y) to within the smallest

tolerance possible, which turns out to be � = 0.020097. If instead we will use 32 angles, we will probably have � small enough that there is no visual
difference with Fig. 8. Unfortunately the program does not terminate when mc = mv = n = 32. This needs a better linear programming package
than was available to me.

should be used? The previous sections seem to indicate that there is no way to solve the problem with Fourier analysis
or with any other closed form solution, so we seem to be forced into numerics. We could use the EM algorithm (Vardi
et al., 1985) or some other ART type approach to find hf (z, �) numerically. We have not tried such alternatives, but,
we argue that there are advantages to the linear programming approach.

For general g’s we can formulate the practical problem as a linear program as follows: First suppose that f =f (x, y)

is given and that we seek values of unknowns h(z, �), 0���2�, |z|�1 and � to satisfy the constraints, for x2 +y2 < 1,
∫ 2�

0
g(x cos � + y sin �)h(−x sin � + y cos �, �) d� < f (x, y) + �,

∫ 2�

0
g(x cos � + y sin �)h(−x sin � + y cos �, �) d� > f (x, y) − �.

Remark. To help the reader think about �, note that in practice, the dose error, �, across the wafer, is described and
specified statistically as the proportion of chips dosed-to-target within a specified dose range. If the target is N atoms per
square centimeter, then a common semiconductor industry specification is that the standard deviation of the measured
distribution of dose on chips across a wafer is less than 0.5% of the target level. Similar and concurrent statistical limits
on dose variation exist for sets, or “batches”, of wafers. These dose specifications on f (x, y) provide limits on the
confidence level of � as it is derived from the measurement of the noisy beam current, I (t), while it is profiled in x and
y in measuring the beam shape, g(x, y).

An example will help make this clear. For a given measure of g(x, y), there is calculated a confidence level of g
at each point (x, y). If the confidence level at any point, or the average of all points, is too high, then more measures
are made, thus taking advantage of the uncorrelated nature of the time-noise of the ion beam. If the confidence level
does not improve with added measures, then the beam is returned for lower and different noise. While the discussion
heretofore focuses on the calculations using the best estimate of g(x, y), in practice there exist at least two additional
and parallel calculations at the upper and lower confidence level estimates. If any of these calculations yield an estimate
of f (x, y) outside the specified dose limits, then the wafers are not implanted.
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Fig. 10. A plot of the weights h(zi , �, k), i = 1, . . . , 32; k = 1, . . . , 16 in sequence for the case in Fig. 9.

We wish to minimize � subject to the above constraints. In case g is good, then it follows that � = 0 is the answer. In
general this is a convex or infinite dimensional linear program whose solution will provide the needed hf,g(z, �). Even
if g is not good, we can treat the problem as a linear program and obtain the solution for the minimum �. Note that
from the point of view to maximize the territory on the wafer for chip production it is desirable to use this so-called
l∞ approximation rather than l2 or l1. That is we want to match f (x, y) within � by choosing our hf,g , uniformly, all
across the wafer, otherwise we are giving up wafer territory for chip production. Linear programming provides a proof
of optimality for the best available � once the number, n, of angles has been set, and once the spacing or number m of
lines has been set at which to match f (xi, yj ) within � at an m × m array of points (xi, yj ) on the wafer. Although
minimizing other lp norms on the error can be done for any value of p < ∞, the choice of l∞ is simpler from a linear
programming point of view, and also is better because of the “wafer territory” optimization point of view.

In the next section we describe a set of numerical experiments which shows the performance of the linear programming
algorithm is flexible and good.

8. Wafer corrections via linear programming

We model, rather artificially, f (x, y), the known and given distortion to the wafer, which is to be corrected by
hf,g(z, �), for a given shape function, g. We chose the wafer to be the unit disc, x2 + y2 < 1, we choose g(z) = e−z2/2,
and we choose f (x, y) to be a variant of the phantom used in Shepp and Logan (1974) and Shepp and Kruskal (1978),
except we make the gray levels of the phantom vary only between 1 and 1.1. See Fig. 1 (128 × 128 resolution) and
Fig. 2 (16 × 16 resolution). Related results are given in Figs. 3–10. We are restricted to low resolution phantoms
because our program (see the Appendix) is limited by the size of the matrix that the called linear programming package
we are presently using, ddlprs (part of the package provided by the International Mathematical Statistical Language,
IMSL), can handle. This limitation can be gotten around with more effort and a better linear programming package
(see Fig. 11).

9. Conclusion

The experiments indicate that for the Gaussian shape g, a rather arbitrary f can be represented as a sum of ridge
functions with shape g. Of course we already proved this in theory. The situation here is rather different than in
tomography where Radon’s theorem already provided a complete solution in theory, and this was borne out in practice
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Fig. 11. A 128×128 plot of the sum of 128 ridge functions with shape g(z)=e−0.5z2
, optimally chosen to reconstruct f (x, y) to within the smallest

tolerance possible, which turns out to be �= 0.00420. This is quite comparable to the original 128 × 128 phantom in Fig. 1. We are grateful to David
Applegate who ran the Cplex program which terminated in 5819.30 s using interior point method. The simplex program of Cplex did not terminate
successfully.

as well. Here theory only allowed us to handle the Gaussian g. Further experiments should allow us to study the problem
for more general g’s.

The method we introduce here and the simulations parallel the method used in Shepp and Kruskal (1978), Shepp and
Logan (1974) and Vardi et al. (1985), which gave much insight into the engineering problems of setting tolerances on
various parameters; see Shepp and Stein (1976). In ion implantation, the method can be used to determine the necessary
precision on knowing f, g, and on the precision of knowing the steps in z and in �. The method should give insight into
each step of the chip manufacturing process.

Appendix

The following is the listing of a Fortran program which calls the LP packageddlprs(ncon,nvar,a,ncon,bl,
bu,c,irtype,xlb,xub,obj,xsol,dsol). In the program, there is a matrix, a, dimensioned ncon by nvar,
where ncon is the number of constraints and nvar is the number of variables. In general one seeks variables x = xj ,
j = 1, . . . , nvar , for which

∑
ai,j xj �bi, i = 1, . . . , ncon.

Here the vector b=bu=bl is specified, and one wants to minimize the inner product, x ·c with c a given vector of length
ncon. In our application we take ncon = 2 × m3, where m3 is the number of points (x, y) at which we want to match a
given “phantom” f (x, y) and the factor of 2 is because we want to bound the difference between f (x, y) and the sum
of the ridge functions with shape g between ±�. We specify f (x, y) in the program below. The unknowns, or variables,
xj , are the values of hf,g(zi, �k) for a discrete set z = zi, i = 1, mv, and a discrete set of angles �k, k = 1, . . . , n, where
n is the number of angles. The angles need only go from 0 to � if g = g(z) is even, which it is in these experiments,
where g(z) = e−0.5z2�2

, though g need not be even in general, and then �k would range from 0 to 2�.
The number of variables is mv×n+2, where the extra two variables are � and Q. � is the overall best l∞ approximation

to f (x, y) by the sum of ridge functions with the shape g. Q is used to keep hf,g(zi, �k) non-negative, if needed. The
vector c is zero except at the special unknowns � and Q.
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The arrayirtype is used in this package to specify the type of inequalities used. Other linear programming packages
could replace this one and are widely available.

program varian
integer mc,mv,n,ncon,nvar,m3
parameter(mc = 32, n = 10, mv = 44, nvar = mv*n+2)
parameter(ncon = 1624)
double precision a(ncon,nvar),bl(ncon),bu(ncon),c(nvar),xlb(nvar)
double precision xub(nvar), xic(mc), xiv(mv), f(mc,mc), f1(mc,mc)
double precision xsol(nvar),dsol(ncon), obj, sig,Tw,Tz,g
double precision cs(n),sn(n),pi,sum,scr1,scr2,w,z,tot
double precision x0(10),y0(10),th0(10),a0(10),b0(10),g0(10)
integer irtype(ncon), k,i,i1,i2,lw,lz,iv,lump
sig = 1.
pi = 3.14159265
do 71 i = 1,ncon
irtype(i) = 1

71 continue
x0(1) = 0., y0(1) = 0., a0(1) = .69, b0(1) = .92, th0(1) = 0., g0(1) = 0.1
x0(2) = 0., y0(2) = −0.0184, a0(2) = .6624, b0(2) = .874, th0(2) = 0., g0(2) = −0.08
x0(3) = 0.22, y0(3) = 0., a0(3) = .11, b0(3) = .31, th0(3) = −.1 ∗ pi, g0(3) = −0.02
x0(4) = −0.22, y0(4) = 0.a0(4) = .16, b0(4) = .41, th0(4) = .1 ∗ pi, g0(4) = −0.02
x0(5) = 0., y0(5) = 0.35, a0(5) = .21, b0(5) = .25, th0(5) = 0., g0(5) = 0.01
x0(6) = 0., y0(6) = 0.1, a0(6) = .046, b0(6) = .046, th0(6) = 0., g0(6) = 0.01
x0(7) = 0., y0(7) = −0.1, a0(7) = .046, b0(7) = .046, th0(7) = 0., g0(7) = 0.01
x0(8) = −.08, y0(8) = −.605, a0(8) = .046, b0(8) = .023, th0(8) = 0., g0(8) = 0.01
x0(9) = 0., y0(9) = −0.605, a0(9) = .023, b0(9) = .023, th0(9) = 0., g0(9) = 0.01
x0(10) = 0.06, y0(10) = −.605, a0(10) = .023, b0(10) = .046, th0(10) = 0., g0(10) = 0.01

do 1 k = 1,n
cs(k) = cos(pi*(k−1.)/n)
sn(k) = sin(pi*(k−1.)/n)

1 continue
do 2 i = 1,mc
xic(i) = −1. + (2.*i−1.)/mc

2 continue
do 20 i = 1,mv
xiv(i) = −1. + (2.*i−1.)/mv

20 continue
ic = 0
do 3 i1 = 1,mc
do 4 i2 = 1,mc
sum = 1.
do 5 lump = 1,10
scr1 = (xic(i1)−x0(lump))*cos(th0(lump))
scr1 = scr1 + (xic(i2)−y0(lump))*sin(th0(lump))
scr2 = −(xic(i1)−x0(lump))*sin(th0(lump) )
scr2 = scr2 + (xic(i2)−y0(lump))*cos(th0(lump))
tot = scr1*scr1/(a0(lump)*a0(lump) )
tot = tot + scr2*scr2/(b0(lump)*b0(lump) )
if(tot .gt. 1) go to 5
sum = sum + g0(lump)

5 continue
f(i1,i2) = sum
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write(6,*) f(i1,i2)
if(xic(i1)*xic(i1) + xic(i2)*xic(i2) .ge. 1) go to 4
ic = ic+1
bl(ic) = sum
bu(ic) = sum

4 continue
3 continue

m3 = ic
write(6,*) m3, ncon, nvar
do 11 i = 1,m3
bl(m3+i) = −bl(i)
bu(m3+i) = −bu(i)

11 continue
do 12 i1 = 1,ncon
do 13 i2 = 1,nvar
a(i1,i2) = 0.0d0

13 continue
12 continue

ic = 0
do 21 i1 = 1,mc
do 22 i2 = 1,mc
if(xic(i1)*xic(i1) + xic(i2)*xic(i2) .ge. 1) go to 22
ic = ic+1
a(ic,nvar−1) = −1
a(ic+m3,nvar−1) = 1
a(ic,nvar) = −1
a(ic+m3,nvar) = −1
do 24 k = 1,n
w = −xic(i1)*sn(k) + xic(i2)*cs(k)
ww = .5*( (w+1)*mv + 1)
z = xic(i1)*cs(k) + xic(i2)*sn(k)
zz = .5*( (z+1)*mv + 1)
lw = ww
lz = zz
Tw = ww −lw
Tz = zz −lz
g = exp(−.5*z*z*sig)
if( (lw .gt. 0) .and. (lw .lt. mv) ) then
a(ic,lw+(k−1)*mv) = (1−Tw)*g
a(m3+ic,lw+(k−1)*mv) = −(1−Tw)*g
a(ic,lw+1+(k−1)*mv) = Tw*g
a(m3+ic,lw+1+(k−1)*mv) = −Tw*g
end if
if(lw .eq. 0) then
a(ic,lw+1+(k−1)*mv) = Tw*g
a(m3+ic,lw+1+(k−1)*mv) = −Tw*g
end if
if(lw .eq. mv) then
a(ic,lw+(k−1)*mv) = (1−Tw)*g
a(m3+ic,lw+(k−1)*mv) = −(1−Tw)*g
end if

24 continue
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22 continue
21 continue

do 30 i = 1,nvar
xlb(i) = 0.0d0
xub(i) = 100.d0
c(i) = 0.

30 continue
c(nvar−1) = 1.
c(nvar) = 1.
do 40 i1 = 1,ncon
do 41 i2 = 1,nvar

41 continue
40 continue

do 42 i = 1,nvar
42 continue

call ddlprs(ncon,nvar,a,ncon,bl,bu,c,irtype,xlb,xub,obj,xsol,dsol)
do 54 i = 1,ncon

54 continue
do 55 i = 1,nvar
write(6,*) i,xsol(i)

55 continue
write(6,*) obj, xsol(nvar), xsol(nvar−1)
do 61 i1 = 1,mc
do 62 i2 = 1,mc
if(xic(i1)*xic(i1) + xic(i2)*xic(i2) .ge. 1) then

write(6,*) 1.
go to 62
end if
sum = 0
do 64 k = 1,n
ww = .5*(1+ mv*(1−xic(i1)*sn(k) + xic(i2)*cs(k) ) )
lw = ww
Tw = ww −lw
z = xic(i1)*cs(k)+xic(i2)*sn(k)
g = exp(−.5*z*z*sig)
if(lw .gt. 0. .and. lw .lt. mv) then
sum = sum + xsol(lw+(k−1)*mv)*(1−Tw)*g
sum = sum + xsol(lw+1+(k−1)*mv)*Tw*g
end if
if(lw .eq. 0) then
sum = sum + xsol(lw+1+(k−1)*mv)*Tw*g
end if
if(lw .eq. mv) then
sum = sum + xsol(lw+(k−1)*mv)*(1−Tw)*g
end if

64 continue
f1(i1,i2) = sum
write(6,*) f1(i1,i2),f(i1,i2),f1(i1,i2)−f(i1,i2)

62 continue
61 continue

do 81 i1 = 1,mc
do 82 i2 = 1,mc
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if(xic(i1)*xic(i1) + xic(i2)*xic(i2) .ge. 1) then
write(6,*) 1.
go to 82
end if
write(6,*) f1(i1,i2)

82 continue
81 continue

end
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