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An R&D race with knowledge accumulation

Ulrich Doraszelski∗

I develop a model of an R&D race with knowledge accumulation. My model does not inherit the
memorylessness property of the exponential distribution that troubles existing models of R&D
races. Hence, firms’ knowledge stocks are no longer irrelevant to their behavior during the R&D
race, and knowledge accumulation has strategic implications. In this more general setting, I
obtain results that stand in marked contrast to the previous literature. In particular, under some
conditions, the firm that is behind in the race engages in catch-up behavior. This pattern of
strategic interactions (action-reaction) is consistent with empirical research.

1. Introduction
� In an R&D race, firms compete to be the first to make a discovery by investing in R&D. The
firm that makes the discovery first is awarded a prize, often in the form of a patent, whereas the
remaining firms receive either nothing at all or a smaller prize. As a byproduct of its investment
in R&D, a firm accumulates knowledge. This raises the question whether and how this knowl-
edge accumulation affects firms’ behavior. In particular, what are the strategic implications of
knowledge accumulation in an R&D race?

Suppose, for example, that the competing firms have unequal knowledge stocks. Does the
lagging firm succumb to the leading firm, or does it step up its investment in R&D in an attempt
to make up for the leader’s advantage? Casual observation suggests that the laggard strives to
catch up with the leader. When Transmeta unveiled its power-stingy Intel-compatible Crusoe chip
in 2000, Intel pledged to introduce a version of its Pentium III processor that matched Crusoe’s
power consumption in the first half of 2001 and announced a new set of technologies for 2002
or 2003 that would give it the lead over Transmeta.1 Similarly, after Celera Genomics in 1998
challenged the Human Genome Project to be the first to sequence the human genome, the Human
Genome Project announced that it would move up its target date from 2005 to 2003 and indeed
dramatically stepped up its own pace during 1999. And yet, although Celera Genomics started
the race as the underdog, it completed a draft of the human genome in 2000 and beat the Human
Genome Project.2 The existing models of R&D races cannot explain this pattern of strategic
interactions. In fact, in so-called memoryless races, knowledge accumulation has no strategic
implications, whereas the laggard gives way to the leader in multistage races.3
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class, models of repeated races. Since these models address quite different questions, I ignore them here. See Reinganum
(1989) for a survey.
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In memoryless R&D race models, the knowledge that firms have acquired as a result of their
past R&D efforts is irrelevant to their current R&D efforts (Loury, 1979; Lee and Wilde, 1980;
Reinganum, 1982). This is driven by the assumption that the time of a successful innovation is
exponentially distributed. Because of the memorylessness property of the exponential distribution,
memoryless R&D race models by design cannot capture history dependence. In other words,
knowledge accumulation has no strategic implications because there is no value to knowledge.

Multistage race models attempt to circumvent the memorylessness property in order to allow
for history dependence. These models account for the possibility that one firm may be ahead of
another by introducing intermediate steps into the research process. Thus, to win the race, a firm
must be the first to complete all stages of the R&D project. Deterministic multistage race models
assume that firms transit from one stage to the next in a deterministic fashion (Fudenberg et
al., 1983; Harris and Vickers, 1985a, 1985b; Lippman and McCardle, 1988). The outcome is
ε-preemption: The slightest advantage of one firm causes the other to immediately drop out of the
race. This strong result is moderated somewhat when the stage-to-stage transitions are assumed
to be probabilistic. Grossman and Shapiro (1987), Harris and Vickers (1987), and Lippman and
McCardle (1987) adopt the stochastic structure of the memoryless R&D race models and assume
that the time to completion of each stage is exponentially distributed. Consequently, while a firm’s
investment in R&D depends on the number of stages it and its rival have left to complete, within
each stage the memorylessness property renders firms’ current R&D efforts independent of their
past R&D efforts. In these models the follower devotes fewer resources to R&D than the leader.
The follower therefore tends to fall further behind as the race progresses, whereas the leader tends
to build up its advantage. This leads to increasing dominance.4

ε-preemption and increasing dominance imply that the R&D race is effectively decided once
a firm falls behind. Thus, the R&D race consists of a short but intense battle at the outset of game,
followed by a phase during which the winner of the battle completes the R&D project essentially
unimpaired by competitive pressures. In contrast, casual observation as well as empirical evidence
(Grabowski and Baxter, 1973; Scherer, 1992; Khanna, 1995; and Lerner, 1997) indicates that,
at least in some cases, the firm that is behind engages in catch-up behavior, thereby leading to
drawn-out battles between firms. This evidence therefore suggests that the pattern of strategic
interaction is more like action-reaction than increasing dominance.

I develop a general model of an R&D race with knowledge accumulation that is consistent
with this evidence. In particular, I provide conditions under which the follower invests more in
R&D than the leader, so that a pattern of action-reaction results. The model leads to a differential
game. As this game can no longer be solved analytically, I apply projection methods to solve the
partial differential equation that characterizes a firm’s value function. Special considerations arise
because I need not only a good approximation of the value function but also good approximations
of its partial derivatives to compute the Nash equilibrium in feedback strategies.

The memoryless R&D race models are a special case of my model. I show that, apart from
this special case, knowledge accumulation shapes firms’ equilibrium payoffs and strategies, and
therefore has strategic implications. This demonstrates how restrictive the memoryless R&D race
models are. The main findings are as follows. First, I show that a firm is inclined to scale back its
investment in R&D as its knowledge stock increases. Second, as the race progresses, the follower
eventually works harder than the leader. Underlying these results is what I call the pure knowledge
effect. The source of this effect is that a firm’s past R&D efforts contribute to its chances of winning
the R&D race. In other words, knowledge is productive in my model and therefore valuable to
firms. On the other hand, it is also possible that the follower works less than the leader in the early
stages of the race, provided that there are increasing returns to knowledge accumulation. Third,
a firm can respond either aggressively or submissively to an increase in its rival’s knowledge

4 Unfortunately, the terms “increasing dominance” and “action-reaction” have been used differently by different
authors. I take them to describe the relationship between state variables and firms’ actions. That is, increasing dominance
(action-reaction) means that the firm that is ahead in the race invests more (less) in R&D than its rival. This has also been
called “weak increasing dominance” by Athey and Schmutzler (2001).
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stock. I show that a firm responds aggressively if it has a sufficiently large knowledge stock and
submissively otherwise. Simulations of the evolution of the R&D race suggest that these strategic
considerations are dominated by the pure knowledge effect. Fourth, competition (as measured by
the sum of firms’ R&D expenditures) is not necessarily fiercest when firms are neck-and-neck.
This again contrasts with multistage race models. In multistage race models, competition is most
intense in these situations because the race is effectively decided once a firm pulls ahead of its
rival.

The remainder of this article is organized as follows. Section 2 develops the model. Section 3
outlines the computational strategy. Section 4 analyzes the impact of knowledge accumulation on
the equilibrium payoffs and strategies. I also describe how the equilibrium changes with the value
of the patent and the degree of patent protection. Section 5 discusses how the race unfolds over
time. While I study a small number of examples in Sections 4 and 5, I show in Section 6 that the
economic intuition underlying these examples generalizes. Section 7 concludes. The Appendix
gives further details on the numerical methods.

2. Model

� Consider an R&D race in which two firms compete to be the first to make a discovery. As a
firm invests in R&D, its chances to immediately make the discovery increase and, in addition, the
firm adds to its knowledge stock. On the other hand, the firm’s knowledge stock may depreciate
over time. Its knowledge stock is a measure of the firm’s past R&D efforts, and it is valuable
to the extent that, even if success is not immediate, it helps the firm to make the discovery later
on. Knowledge accumulation thus gives rise to history dependence. Incorporating knowledge
accumulation into the model is important because it allows me to capture phenomena like learning
and organizational forgetting. As I explain below in greater detail, history dependence also arises
if R&D is done through experimentation.

For simplicity, I assume that firms may differ in the knowledge stocks they possess at the
outset of the R&D race, but they are identical in every other respect. Time is continuous and the
horizon is infinite.

� Knowledge accumulation. Let zi (t) denote firm i’s accumulated knowledge and ui (t) its
rate of knowledge acquisition at time t . zi (t) is a measure of the firm’s past R&D efforts and ui (t)
represents its current R&D effort. To simplify notation, I write zi and ui instead of zi (t) and ui (t),
respectively. Firm 1’s accumulated knowledge evolves according to

ż1 = u1 − δz1, z1(0) = z0
1 ≥ 0, δ ≥ 0.

If δ > 0, the firm’s knowledge stock depreciates over time.

� Distribution of success times. Firm 1’s hazard rate of successful innovation is given by

h1 = λu1 + γ zψ

1 , λ ≥ 0, γ ≥ 0, ψ > 0.

The hazard rate represents the rate at which the discovery is made at a certain point in time given
that it has not been made before. λ measures the effectiveness of current R&D effort in making the
discovery and γ the effectiveness of past R&D efforts. The parameter ψ determines the marginal
impact of past R&D efforts. Depending on the value of ψ , h1 is concave (ψ < 1), linear (ψ = 1),
or convex (ψ > 1) in z1.5

The special case of γ = 0 corresponds to the memoryless R&D race models analyzed by
Reinganum (1981, 1982). These models assume an exponential distribution of success times,

5 Ifψ < 1, a computational difficulty requires me to respecify firm 1’s hazard rate as h1 = λu1+γ
(
(z1 + z̃)ψ − z̃ψ

)
,

where z̃ > 0. Details are given in the Appendix.

© RAND 2003.
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which implies that the hazard rate is independent of past R&D efforts. If γ > 0, the model allows
for history dependence. Hence, the knowledge stocks that firms have acquired as a result of their
past R&D efforts are no longer irrelevant to firms’ current R&D efforts and thus to the outcome
of the race. This allows me to model learning and organizational forgetting and R&D through
experimentation.

� Learning and organizational forgetting. Many empirical studies have documented learn-
ing in a production context (“learning by doing”). In general, learning means that a firm’s past
experiences add to its current capabilities. Learning may occur when the practices of the organi-
zation as a whole are altered in light of past experiences. It may also occur when an R&D project
is cumulative in the sense that researchers need to draw on intermediate results in order to make
a discovery. I capture this in my model by setting γ > 0.

More recently, it has been shown that firms not only learn but also forget (Argote, Beckman,
and Epple, 1990; Benkard, 2000). To the extent that a firm’s experience is embodied in its work-
ers, organizational forgetting happens because of turnover and layoffs. If there is organizational
forgetting, a firm’s stock of experience depreciates over time. This implies that a firm’s recent
experiences are more relevant for making the discovery than its distant experiences. I allow for
organizational forgetting by setting δ > 0.

� R&D through experimentation. History dependence also arises if R&D is done through
experimentation.6 To see this, suppose that R&D is conducted by growing cultures of bacteria.
Because it takes time for the culture to grow, the results from a culture that is started in the present
will not be available for some time. To capture this, let u1 be the number of experiments that firm
1 starts in the present (i.e., the firm’s current R&D effort) and z1 the stock of experiments that
are still in progress (i.e., the firm’s past R&D efforts). If results become available at a hazard rate
of δ, then the law of motion for the stock of experiments is ż1 = u1 − δz1. The firm makes the
discovery and thus wins the race once an experiment ends in a success. Hence, if success occurs
among the results that become available at a hazard rate of γ

δ
, then the hazard rate of successful

innovation is h1 = δ
(

γ

δ

)
z1 = γ z1.

� Value of innovation and imitation. The firm that makes the innovation first is awarded a
patent of positive value P > 0, whereas its rival receives nothing if patent protection is perfect.
If patent protection is imperfect, the loser receives a positive payoff P , where P > P > 0.
P is understood to be the expected net present value of all future revenues from marketing the
innovation net of any costs the firm incurs in doing so.7 Similarly P is the expected net present
value of all future cash flows from imitating the discovery.

� Bellman equation. Let V 1(z1, z2) denote the value of the race to firm 1 when firm 1 has
accumulated z1 ≥ 0 units of knowledge and firm 2 has accumulated z2 ≥ 0 units of knowledge.
The Bellman equation that characterizes the value function under the presumption that firms
behave optimally is given by

r V 1(z1, z2) = max
u1≥0

h1
(
P − V 1(z1, z2)

)
+ h2

(
P − V 1(z1, z2)

)
− c(u1)

+ V 1
1 (z1, z2)ż1 + V 1

2 (z1, z2)ż2, (1)

where V 1
i denotes the partial derivative of V 1 with respect to zi . r > 0 is the interest rate, and the

cost incurred to acquire knowledge at rate u1 is c(u1) = 1
η
uη

1. η > 1 measures the elasticity of the
cost function.

6 I would like to thank an anonymous referee for suggesting this interpretation.
7 In general, further investments in R&D may be needed to arrive at a marketable product after the discovery has

been made. See Judd, Schmedders, and Yeltekin (2002) for a model that endogenizes the value of innovation along these
lines.
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The value function V 1(z1, z2) can be interpreted as the asset or option value to firm 1 of
participating in the race. This option is priced by requiring that the opportunity cost of holding it,
r V 1(z1, z2), equals the current cash flow, −c(u1), plus the expected capital gain or loss flow. The
latter is composed of three parts, namely the capital gain from winning the race, P − V 1(z1, z2),
times the likelihood of doing so, h1, the capital loss from losing the race, P − V 1(z1, z2), times
the likelihood of doing so, h2, and the capital gain or loss flow attributable to changes in the
knowledge stocks, V 1

1 (z1, z2)ż1 + V 1
2 (z1, z2)ż2.

� Current R&D effort. Differentiating the right-hand side of the Bellman equation (1) yields
firm 1’s first-order condition for an interior solution. Since η > 1, the FOC is also sufficient.
Hence,

u1∗(z1, z2) =
(
λ(P − V 1(z1, z2)) + V 1

1 (z1, z2)
) 1

η−1 , (2)

where the asterisk indicates an optimum. The firm has two incentives to engage in R&D. First, as
the firm invests an additional dollar in R&D, its chances of making the discovery at this point in
time increase by λ. Since the capital gain from winning the race is P − V 1(z1, z2), the marginal
benefit accruing to the firm is λ(P − V 1(z1, z2)). Second, the firm adds to its knowledge stock,
which carries a marginal benefit of V 1

1 (z1, z2).

� Equilibrium. Tractability requires a restriction of the notion of a strategy when analyzing
differential games. I focus on symmetric stationary Nash equilibria in feedback strategies as
given by equation (2) (e.g., Basar and Olsder, 1995). A firm’s strategy thus maps the accumulated
knowledge of firms 1 and 2 into a rate of knowledge acquisition. The feedback strategy in equation
(2) is constructed using the Bellman equation (1), and thus it ensures that the firm behaves optimally
at all points (z1, z2) of the state space, irrespective of whether these knowledge stocks are on or
off the equilibrium path.

Define V 1(z1, z2) = V (z1, z2) and u1∗(z1, z2) = u∗(z1, z2). Then, using symmetry, the value
of the race to firm 2 when firm 1 has accumulated z1 units of knowledge and firm 2 has accumulated
z2 units of knowledge is given by V 2(z1, z2) = V (z2, z1), and firm 2’s equilibrium strategy is
u2∗(z1, z2) = u∗(z2, z1). At a symmetric Nash equilibrium in feedback strategies, the Bellman
equation (1) at u1 = u∗(z1, z2) and u2 = u∗(z2, z1) can be rewritten as the operator equation

N (V ) = 0, (3)

where

N (V )(z1, z2) =
(
λu∗(z1, z2) + γ zψ

1

)
P +

(
λu∗(z2, z1) + γ zψ

2

)
P − 1

η
u∗(z1, z2)η

−
(

r + λu∗(z1, z2) + γ zψ

1 + λu∗(z2, z1) + γ zψ

2

)
V (z1, z2)

+ V1(z1, z2)(u∗(z1, z2) − δz1) + V2(z1, z2)(u∗(z2, z1) − δz2). (4)

The operator equation (3) defines a nonlinear first-order partial differential equation (PDE). This
PDE does not in general allow for an analytic solution, and in the next section, I present a numerical
method for solving it.

3. Computation

� I employ projection methods or, more precisely, collocation techniques (Judd, 1992; Judd
1998) to solve the PDE defined by the operator equation (3). The idea underlying projection
methods is to convert the infinite-dimensional problem of solving the PDE for the unknown value
function into a finite-dimensional problem of finding a zero of a system of equations. I accomplish
this by approximating the value function by a high-order polynomial. Hence, instead of having
© RAND 2003.
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to solve for the unknown value function, I only need to solve for the unknown coefficients of the
polynomial approximation. The unknown coefficients in turn are chosen such that the polynomial
approximation satisfies the PDE at some appropriately chosen points in the state space.

In a previous attempt to model an R&D race without the restrictive assumption of an ex-
ponential distribution of success times, Judd (1985) employs perturbation methods. However,
the validity of his approximations hinges on the value of the innovation being sufficiently small.
The reason is that Judd uses the degenerate case of P = 0 as a starting point to approximate the
solution to “nearby” cases in which the value of the patent is small.8 In contrast, the projection
methods I use do not rely on P ≈ 0, and they allow me to solve the PDE for an arbitrary value of
the patent.

� Approximating the value function. I approximate V (z1, z2) using a tensor product basis9

of univariate Chebyshev polynomials,

V̂ (z1, z2) =
K∑

k1=0

K∑
k2=0

θk1,k2 Tk1 (z1)Tk2 (z2),

where Tki (zi ) is a ki th-order Chebyshev polynomial in zi (Judd, 1998) and θ = (θk1,k2 ) is a vector
of (K + 1)2 unknown coefficients. K is the order of the approximation.

� Determining the unknown coefficients. Substituting V̂ (z1, z2) for V (z1, z2) in the operator
equation (3), I define the residual function

�V (z1, z2; θ ) =
1

r P
N (V̂ )(z1, z2), (5)

where I divide by r P to make the residual function unit-free. While the unknown true value
function by construction satisfies N (V )(z1, z2) = 0 at all points (z1, z2) of the state space, the
polynomial approximation will generally not. Hence, there will generally be a nonzero residual. By
choosing the unknown coefficients θ such that the residual is “small,” I ensure that the polynomial
approximation is “close to” the value function.

Collocation methods choose θ to ensure that the residual function is zero at (K + 1)2 so-
called collocation points (zk1

1 , zk2
2 ).10 Hence, θ is the solution to the (K + 1)2 nonlinear equations

�V (zk1
1 , zk2

2 ; θ ) = 0. While it is possible to use any collection of (K + 1)2 points, the Chebyshev
interpolation theorem suggests using the Cartesian product of the zeros of a (K + 1)th-order
univariate Chebyshev polynomial. It turns out that the “fit” is improved by employing the so-
called expanded Chebyshev array (as defined by Judd, 1998) instead. Thus I use

zki
i = sec

(
π

2(K + 1)

) (
1 − cos

(
2(ki + 1) − 1

2(K + 1)
π

)) (
z − z

2

)
+ z, ki = 0, . . . , K ,

which implies that zki
i ∈ [z, z]. Consequently, I am able to approximate V (z1, z2) in the region

[z, z]2. Since the value of the race depends on the knowledge stocks of both firms, V (z1, z2) has
domain [0,∞)2, and I set z = 0. Clearly, z has to be large enough so that the R&D race will have
ended with probability close to one by the time that either z1(t) or z2(t) reaches z given its initial

8 Judd assumes that patent protection is perfect and thus sets P = 0. Hence, if the benefits to innovation are zero,
and then the equilibrium strategy is not to invest in R&D, u∗(z1, z2) = 0, which yields a payoff of V (z1, z2) = 0.

9 A comparison between tensor products and complete polynomials indicated little difference.
10 I explored two alternatives to Chebyshev collocation. First, I chose the unknown coefficients to minimize the

residual sum of squares at M > (K + 1)2 collocation points. Second, I turned to Galerkin methods. Galerkin methods
integrate the residual against the basis functions and solve the resulting system of (K + 1)2 nonlinear equations for the
unknown coefficients. The differences were negligible.

© RAND 2003.



mss # Doraszelski; AP art. # 02; RAND Journal of Economics vol. 34(1)

26 / THE RAND JOURNAL OF ECONOMICS

value of z0
1 and z0

2, respectively. Of course, the appropriate choice of z is only known ex post and
thus must be determined by experimentation. I use z = 1 in what follows.11

� Accuracy check. The quality of the polynomial approximation of the value function depends
on the order of the approximation K . As K increases, the polynomial approximation becomes
more flexible and “fits” the value function better. Indeed, I can make the residuals arbitrarily
small (i.e., zero up to machine precision) by choosing K large enough. On the other hand, as K
increases, so does the computational burden, because a larger number of unknown coefficients has
to be determined. I choose an intermediate value of K that ensures that the residuals �V (z1, z2; θ )
are on the order of 10−7 to 10−10 (depending on the parameter values). That is, the error a firm
makes in computing the value of the race is 107 to 1010 times smaller than the value of the patent
at all points of the state space. Put differently, if the patent is worth a million dollars, then the
firm errs by less than a cent. In addition to being small, the residuals come close to exhibiting the
equioscillation property necessary for a best polynomial approximation. This indicates that there
are no systematic errors in the polynomial approximation. Details are presented in the Appendix.

A firm’s behavior during an R&D race is described by its policy function u∗(z1, z2), which
in turn depends on the value function V (z1, z2) and on the partial derivatives of the value function.
Hence, it is important to obtain good approximations of V1(z1, z2) and V2(z1, z2) in addition to a
good approximation of V (z1, z2). I take the partial derivatives of the approximation V̂1(z1, z2) and
V̂2(z1, z2) as approximations of the partial derivatives V1(z1, z2) and V2(z1, z2). In general, even
if V̂ (z1, z2) converges to V (z1, z2), this does not imply that V̂1(z1, z2) and V̂2(z1, z2) converge to
V1(z1, z2) and V2(z1, z2), respectively. This raises the question of how good the partial derivatives
of the approximation are as approximations of the partial derivatives, a question that has received
scant attention in the literature to date.

I develop a general method that allows me to answer this question. The idea is that although the
partial derivatives of the true value function are unknown, expressions for them can be derived.12

Analogously to the residual function �V (z1, z2; θ ) in equation (5), I define two additional residual
functions

�V1 (z1, z2; θ ) =
z

r P

∂

∂z1
N (V̂ )(z1, z2),

�V2 (z1, z2; θ ) =
z

r P

∂

∂z2
N (V̂ )(z1, z2)

corresponding to the two partial derivatives of the value function.13 If these residuals are small,
then the partial derivatives of the polynomial approximation should be close to the unknown true
partial derivatives. Given the intermediate value of K that I have chosen, it turns out that the
residuals �V1 (z1, z2; θ ) and �V2 (z1, z2; θ ) are on the order of 10−4 to 10−8 (again depending on
the parameter values; see the Appendix). That is, the error a firm makes in computing the value
of additional knowledge is 104 to 108 times smaller than the value of the patent at all points
of the state space. In short, the collocation techniques I employ deliver an extremely accurate
approximation not only of the value function but also of the policy function.

� Simulating the time paths. Once approximations of the value function and its partial
derivatives have been obtained, they can be used to simulate the evolution of the R&D race over

11 The exact value of z has little or no effect on the value and policy functions once I compensate for increasing z
by increasing K .

12 This idea has also been exploited by Vedenov and Miranda (2001) in the context of a discrete-time stochastic
game.

13 The resulting expressions can be simplified using the envelope theorem. The application of the envelope theorem
is justified because û∗(z1, z2) by construction satisfies the FOC exactly.
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time. I employ Euler’s method (Judd, 1998) to solve the system of ordinary differential equations
(ODEs)

żi (t) = ûi∗(z1(t), z2(t)) − δzi (t), zi (0) = z0
i , (6)

over the interval [0,T], where T is constrained by the requirement that z ≤ zi ≤ z.14 z0
i is firm

i’s initial knowledge stock and ûi∗(z1, z2) is given by equation (2) (with V (z1, z2) replaced by
V̂ (z1, z2)).

Solving the system of ODEs given by equation (6) yields hi (t), the hazard rate of a successful
innovation by firm i , as a byproduct. Although the hazard rates are not of immediate interest
themselves, they allow me to compute the probability that the R&D race has ended at or before
time t , which is given by

p(t) = Pr(τ ≤ t) = 1 − exp

(
−

∫ t

0
h1(s) + h2(s)ds

)
, (7)

where τ = min{τ1, τ2} and τi is the random date of a successful innovation by firm i . In addition,
I compute the probability that firm i has won the race given that the race has ended at or before
time t ,

pi (t) = Pr(τi = τ |τ ≤ t) =

∫ t
0 hi (s)(1 − p(s))ds

p(t)
. (8)

I numerically integrate using the trapezoid rule (Judd, 1998).15

� Parameterization. Since the emphasis of this article is on the role of knowledge accumula-
tion in an R&D race, the functional form of the hazard rate is of primary importance. In Sections
4 and 5 I shall focus on five scenarios that capture a wide range of functional forms (see Table
1). First, I look at the special case in which the hazard rate depends on current R&D effort alone
(γ = 0). Next, I analyze the polar case in which the hazard rate depends on past R&D effort
alone (λ = 0). In this case, a firm’s current R&D effort does not directly help it to win the race,
but indirectly helps it to win the race by adding to its knowledge stock. Between these extreme
cases are parameterizations in which both current and past R&D efforts enter the hazard rate. My
starting point is λ = γ = ψ = 1, leading to a model in which the hazard rate is linear in the firm’s
knowledge stock. Then I allow for a nonlinear influence of past R&D efforts, and set ψ = 1

2 and
ψ = 2 to obtain a concave or a convex hazard rate, respectively. Moreover, I set δ = .2, r = .105,
η = 2, and P/P = .2 in all five scenarios. Hence, the degree of patent protection is intermediate
(I also examine the extreme cases of P = 0 and P = P in Section 4).

By changing the functional form of the hazard rate, I change the distribution of success
times and thereby the duration of the race. It is to be expected that knowledge accumulation is
per se of greater importance in a longer race than in a shorter race. Thus, to isolate the role of
the functional form of hazard rate, I hold the expected duration of the race constant. To this end,
I choose the remaining parameter P such that the expected duration of the race is three years in
all five scenarios. Clearly, the expected duration also depends on the initial knowledge stocks of
the competing firms, and I set z0

1 = z0
2 = 0 for now (I allow for an initial asymmetry in firms’

knowledge stocks in Section 5). The expected duration of the race along with the values for δ,

14 To apply Euler’s method, I specify a grid of points on the time axis, t� = �dt, � = 0, 1, . . . , where the step
size dt is small but positive, and approximate the system of differential equations with a system of difference equations,
z�+1 = z� + ż�dt, where z� = (z1(t�), z2(t�)) and ż� = (ż1(t�), ż2(t�)). Starting from z0 = (z0

1, z0
2) this allows me to

compute z1 = (z1
1, z1

2), which in turn enables me to compute z2 = (z2
1, z2

2), and so on. The error of Euler’s method is
proportional to dt , thus displaying linear convergence.

15 The accuracy of the numerical integration procedure is readily checked using the fact that p1(t) + p2(t) = 1.
For dt = 10−2, the difference between p1(t) + p2(t) and unity is on the order of 10−6 (or better depending on the exact
parameterization); for dt = 10−1 (dt = 10−3) the error is on the order of 10−4 (10−8). I therefore choose dt = 10−2 in
what follows.
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TABLE 1 Parameter Values

λ γ ψ P

Polar Cases
Current R&D effort alone 1 0 — .248

Past R&D effort alone 0 1 1 .137

Intermediate Cases

Linear hazard rate 1 1 1 .0435

Concave hazard rate 1 1 1/2 .0350

Convex hazard rate 1 1 2 .1035

r , η, and P/P are chosen to be somewhat representative of the R&D process in a wide range of
industries.16

4. Equilibrium payoffs and strategies
� In this and the next two sections, I discuss the strategic implications of knowledge accu-
mulation in an R&D race. The results of the numerical analysis are presented as follows: I first
look at firms’ behavior given their knowledge stocks as implied by the value and policy functions
(Section 4). To track the evolution of the race, I then analyze the time paths of some variables of
interest (Section 5). While Sections 4 and 5 focus on the five scenarios listed in Table 1, I solve
the model for a wide range of parameter values in Section 6 to arrive at general results.

In what follows, I discuss the properties of the value and policy functions. I start with the case
of γ = 0, where the hazard rate is a function of current R&D effort alone. This case corresponds
to the memoryless R&D race models analyzed by Reinganum (1981, 1982). The equilibrium
payoffs and strategies are constant and thus independent of firms’ knowledge stocks.

Figure 1 depicts R&D expenditures for the remaining scenarios listed in Table 1. I focus on
R&D expenditures c(u∗(z1, z2)), an increasing and convex transformation of current R&D effort
u∗(z1, z2), because R&D expenditures are measured in terms of monetary units divided by time
units rather than “knowledge units” per unit of time.

� The pure knowledge effect. Once I relax the restrictive assumption of an exponential
distribution of success times, the equilibrium payoffs and strategies are no longer constant. The
reason is that in this more general setting, knowledge is productive. Indeed, it can be shown that
limz1→∞ V (z1, z2) = P and limz2→∞ V (z1, z2) = P . That is, a firm benefits in the limit as the size
of its own knowledge stock approaches infinity because it wins the race for sure, whereas the firm
loses the race for sure as the size of its rival’s knowledge stock approaches infinity.

The fact that knowledge is productive influences firms’ behavior. Indeed, as Figure 1 shows,
a firm’s R&D expenditures c(u∗(z1, z2)) are decreasing in its own knowledge stock z1 in the case
of past R&D effort alone (top left panel), the case of a linear hazard rate (top right panel), and the
case of a concave hazard rate (bottom left panel). Underlying this result is what could be called
the pure knowledge effect. The pure knowledge effect is independent of strategic considerations.
It comes about because a firm’s past R&D efforts contribute to its chances of winning the R&D
race. Due to the pure knowledge effect, the firm can afford to scale back its investment in R&D
as its knowledge stock increases.

In the case of a convex hazard rate (bottom right panel), the increasing-returns nature of
the hazard rate gives a firm a strong and growing incentive to invest in R&D that initially

16 The empirical literature has studied the pharmaceutical industry in great detail (e.g., Cockburn and Henderson,
1994; Grabowski and Vernon, 1994; and Henderson and Cockburn, 1996), and I use these studies to pick parameter values.
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FIGURE 1

R&D EXPENDITURES

offsets the pure knowledge effect. However, the pure knowledge effect eventually dominates, i.e.,
c(u∗(z1, z2)) first increases in z1, then decreases.

� Leader versus follower. One of the most important aspects of a race is how the strategic
interactions between the racing firms depend on their relative positions. In memoryless R&D
races, the leading firm invests the same in R&D as the lagging firm because, as noted previously,
the equilibrium strategies are independent of firms’ knowledge stocks. Hence, the distinction
between leader and follower is irrelevant in these models, and there is no sense in which one
can properly speak of one competitor being ahead of another, or of the two competitors being
neck-and-neck.

In multistage models, the follower devotes fewer resources to R&D than the leader. That is,
the follower tends to give way to the leader, and a pattern of increasing dominance (or its stronger
form—ε-preemption) arises. The reason lies in the pure progress effect, which, independently of
strategic considerations, causes a firm to increase its investment in R&D as it gets closer to the
finishing line (Grossman and Shapiro, 1987). The intuition is simply that the gain from winning
the race from the intermediate stage of a two-stage race is larger than the gain from making the
intermediate discovery from the initial stage.

In my model, a firm is able to conserve on its R&D investment as its knowledge stock increases
due to the pure knowledge effect. Moreover, the firm with the larger knowledge stock is able to
conserve more on its investment in R&D than the firm with the smaller knowledge stock. The
follower thus devotes more resources to R&D than the leader, i.e., c(u∗(z1, z2)) > c(u∗(z2, z1)) if
and only if z1 < z2. The pattern of strategic interactions among the racing firms is thus more like
action-reaction than increasing dominance.
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As can be seen from the levels of R&D expenditures in Figure 1, the follower tries to catch
up with the leader in the case of past R&D effort alone, the case of a linear hazard rate, and
the case of a concave hazard rate. The case of a convex hazard rate is again somewhat different
because the increasing-returns nature of the hazard rate initially offsets the pure knowledge
effect. Consequently, the follower at first devotes fewer resources to R&D than the leader, i.e.,
c(u∗(z1, z2)) < c(u∗(z2, z1)) if z1 is small and z1 < z2, whereas the follower later on devotes
more resources to R&D than the leader, i.e., c(u∗(z1, z2)) > c(u∗(z2, z1)) if z1 is large and
z1 < z2. A closer inspection shows that a sufficient condition for c(u∗(z1, z2)) > c(u∗(z2, z1)) is
z1 ≥ .6446 − z2 and z1 < z2. In sum, in the case of a convex hazard rate, the laggard strives to
catch up with the leader once he has a sufficiently large knowledge stock himself.

The extent to which the follower’s current R&D effort exceeds the leader’s depends on the
functional form of the hazard rate. In the case of a linear hazard rate, for example, the difference
between the follower’s and the leader’s current R&D effort is larger than in the case of past R&D
effort alone. To see the reason for this, note that the follower works harder than the leader if and
only if c(u∗(z1, z2)) > c(u∗(z2, z1)) for all z1 < z2, which is equivalent to

−λV (z1, z2) + V1(z1, z2) > −λV (z2, z1) + V1(z2, z1)

for all z1 < z2. In the case of λ = 0, a necessary and sufficient condition is thus V1(z1, z2) >

V1(z2, z1). In the case of λ > 0, V1(z1, z2) > V1(z2, z1) and V (z1, z2) < V (z2, z1) are jointly
sufficient. But since the leader’s chances of winning the race ceteris paribus exceed that of the
follower, the value of the race to the follower is less than the value to the leader, i.e., V (z1, z2) <

V (z2, z1) if and only if z1 < z2. Hence, the effect of the slope of the value function is reinforced
by the effect of its level.17

� Aggressive versus submissive response: size of knowledge stock. A further question of
interest is how a firm’s R&D expenditures depend on its rival’s knowledge stock. There are two
possibilities. First, the firm may decide to invest more as its rival’s knowledge stock increases,
i.e., the firm may respond aggressively. Alternatively, it may reduce its investment in R&D in
response to an increase in its rival’s knowledge stock, i.e., it may respond submissively.

Multistage models suggest a submissive response on the part of the follower, thus reinforcing
the pattern of increasing dominance. Specifically, the follower slows down as he falls further
behind, whereas the leader may or may not speed up as he gets further ahead. In contrast, I find
that a firm can respond either aggressively or submissively to an increase in its rival’s knowledge
stock, i.e., c(u∗(z1, z2)) can be either increasing or decreasing in z2. In my model, an aggressive
or submissive response is not tied to a firm’s relative position.

To see what determines whether a firm responds aggressively or submissively, consider the
case of past R&D effort alone. Inspection of the partial derivatives of c(u∗(z1, z2)) reveals that
(∂/∂z2)c(u∗(z1, z2)) > 0 whenever z1 ≥ .6886 + .4856z2. Hence, a firm with a sufficiently
large knowledge stock increases its own R&D effort as its rival accumulates knowledge. This
aggressive response is confined to the leading firm (i.e., to points below the diagonal of the state
space), whereas the lagging firm always responds submissively.

For other functional forms of the hazard rate, the lagging firm also may respond aggressively.
Compared to the case of past R&D effort alone, the region of the state space where c(u∗(z1, z2))
increases in z2 expands to include points above the diagonal in the case of a linear hazard rate.
Indeed, a closer inspection shows that a sufficient condition for (∂/∂z2)c(u∗(z1, z2)) to be positive
is z1 ≥ .2157 + .1894z2. To see the reason for this, note that the firm responds aggressively if and
only if

−λV2(z1, z2) + V12(z1, z2) > 0.

17 While V (z1, z2) determines u∗(z1, z2), the value function also takes the equilibrium strategy into account. Hence,
the nature of my argument is more suggestive than formal.
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FIGURE 2

VALUE OF PATENT: LINEAR HAZARD RATE

From the above expression it is clear that in the case of λ = 0, a necessary and sufficient condition
for an aggressive response is V12(z1, z2) > 0. In the case of λ > 0, V12(z1, z2) > 0 and V2(z1, z2) <

0 are jointly sufficient. But since the value of the race to the firm is decreasing in its rival’s
knowledge stock, the first effect is reinforced by the second. Hence, unlike the case of past R&D
effort alone, the laggard may respond aggressively.

To summarize, in my model a firm responds aggressively if it has a sufficiently large knowl-
edge stock and submissively otherwise. The finding that the lagging firm may respond aggressively
seems counterintuitive at first glance, because one would expect the laggard to realize that there is
no point in trying even harder as its rival advances. On the other hand, each firm invests in R&D up
to a point where the expected marginal benefit equals the marginal cost. Since the probability that
firm 2 wins the R&D race in the next short interval of time dt is increasing in z2, the probability
that firm 1 has to sustain whatever current R&D effort it chooses beyond time t + dt is decreasing
in z2. Hence, the point where the expected marginal benefit of investment in R&D equals its
marginal cost is reached for an increasing level of R&D investment. Phrased differently, as firm
2 advances, firm 1 takes its chances and invests heavily but briefly in R&D. Moreover, since the
expected duration of the remainder of the race is also decreasing in z1, an aggressive response
from firm 1 becomes more likely as it accumulates knowledge.

� Aggressive versus submissive response: value of patent. Whether a firm responds ag-
gressively or submissively to an increase in its rival’s knowledge stock may also depend on the
value of the patent. Figure 2 illustrates this for the case of a linear hazard rate. It presents the
policy functions for P = .00435 (left panel) and P = .435 (right panel). Current R&D effort
and the value of the race are increasing in P . Moreover, as the value of the patent increases and
competition becomes fiercer, a firm tends to respond aggressively rather than submissively as its
rival accumulates knowledge. In fact, if P = .00435, then (∂/∂z2)c(u∗(z1, z2)) < 0 (submissive
response), whereas if P = .435, then (∂/∂z2)c(u∗(z1, z2)) > 0 (aggressive response). Put differ-
ently, in this example, (∂/∂z2)c(u∗(z1, z2)) switches sign as P increases. This demonstrates the
limitations of Judd’s (1985) analysis, which assumes that the value of the patent is close to zero
in order to obtain (∂/∂z2)c(u∗(z1, z2)) < 0.

� Intensity of competition. I measure the intensity of competition as the sum of firms’ R&D
expenditures c(u∗(z1, z2)) + c(u∗(z2, z1)). As Figure 3 shows for the scenarios listed in Table 1,
c(u∗(z1, z2)) + c(u∗(z2, z1)) is quasi-concave in the case of a convex hazard rate and convex in the
remaining cases involving γ > 0.

In multistage races, once a firm has gained an advantage over its rival, it tends to win
the race. Consequently, the outcome of the race is “decided” while firms are neck-and-neck,
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FIGURE 3

INTENSITY OF COMPETITION

and competition is fiercest in these situations. I obtain a similar result in the case of a convex
hazard rate: Since c(u∗(z1, z2)) + c(u∗(z2, z1)) is quasi-concave, competition is equally intense
on an ellipsis with center on the diagonal. This implies that, holding the combined amount of
knowledge constant, competition is more intense among firms with equal knowledge stocks than
among firms with unequal knowledge stocks. In contrast, c(u∗(z1, z2))+c(u∗(z2, z1)) is convex for
the other functional forms of the hazard rate. Hence, holding their combined knowledge constant,
competition is most intense when firms have unequal knowledge stocks.

� Degree of patent protection. Patent protection is perfect if P = 0 and completely ineffective
if P = P . Figure 4 illustrates the impact of the degree of patent protection for the case of a linear
hazard rate. It describes the equilibrium strategies for P = 0 (left panel) and P = P (right panel).
Current R&D effort is decreasing and the value of the race to a firm is increasing in P/P . As the
value of imitation increases from zero to P , competition softens and, as Figure 4 shows, the policy
function changes its shape. Moreover, a firm’s value function is no longer decreasing in its rival’s
knowledge stock. The reason is that the character of the R&D race changes from a preemption
game into a waiting game as the degree of patent protection decreases.

To see this, I compare the planner’s solution (collusive solution) to the noncooperative
outcome. In a winner-take-all situation in which the winning firm is awarded a patent of positive
value and the losing firm receives nothing (P = 0), there is rent dissipation because each firm
invests excessively in R&D. Since the two firms compete for the same discovery, each additional
dollar invested in R&D brings a firm closer to winning the race and, at the same time, brings
its rival closer to losing the race. Hence, its R&D efforts impose a negative externality on its
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FIGURE 4

DEGREE OF PATENT PROTECTION: LINEAR HAZARD RATE

rival, and the firm consequently invests excessively in R&D. In the polar case in which the loser
can costlessly and immediately imitate the winner and thus both firms receive the same payoff
(P = P), there is again rent dissipation, but the reason is now that firms invest too little in R&D.
In contrast to a winner-take-all situation, each additional dollar invested in R&D brings both
firms closer to the finish line. Hence, a firm’s R&D efforts impose a positive externality on its
rival, which causes the firm to underinvest in R&D. In other words, depending on whether patent
protection is perfect or completely ineffective, a firm’s R&D efforts impose a negative or a positive
externality on its rival, and the character of the R&D race changes from a preemption game into
a waiting game.18

5. Time paths

� Given firms’ knowledge stocks, the value and policy functions provide a “snapshot” of the
R&D race. But since firms’ knowledge stocks are changing over time, it is crucial to know how
these snapshots fit together. Thus, in this section, I look at the time paths of some variables of
interest and show how knowledge accumulation affects the evolution of the race.

� Knowledge stocks. Figure 5 shows the vector field for the case of a convex hazard rate (see
Table 1). The vector field indicates the direction and speed of movement of the state variables
as given by (ż1, ż2) for each point (z1, z2) in the state space. It thus summarizes the time paths
of firms’ knowledge stocks for all possible initial positions. Note that since the equilibrium is
symmetric and accumulated knowledge evolves deterministically, firms are neck-and-neck at all
times during the R&D race if they start from the same position. Moreover, starting from different
positions, firms’ knowledge stocks eventually reach a symmetric steady state.19 Hence, an initial
asymmetry in firms’ knowledge stocks vanishes over time. The fact that the gap between firms’
knowledge stocks closes over time contrasts with the pattern of increasing dominance that emerges
in multistage races.

Figure 6 illustrates the evolution of the race when firm 1 starts with 50% of the steady-state
knowledge stock and firm 2 starts from scratch. I use the system of ODEs given by equation (6)
to compute the time path of firm i’s accumulated knowledge, zi (t), and then obtain the time path
of its R&D expenditures, c(u∗

i (t)).20 A dash-dotted (dashed) line designates firm 1 (firm 2). As
can be seen in the top panel of Figure 6, the follower catches up with the leader as the knowledge

18 See Doraszelski (2002) for details.
19 Of course, the existence of a steady state presupposes nonzero depreciation.
20 c(u∗

i (t)) is shorthand for c(ui∗(z1(t), z2(t))).
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FIGURE 5

VECTOR FIELD: CONVEX HAZARD RATE

stocks monotonically approach the steady state over time, i.e., zi (t) → .5435 as t → ∞. There
are two reasons for this: First, at all times the impact of depreciation is worse for the leader than it
is for the follower. Second, as the middle panel of Figure 6 shows, the leader decreases its R&D
expenditures over time, whereas the follower initially increases its R&D expenditures markedly
and eventually decreases them slightly. Overall, although the follower at first invests less in R&D
than the leader, he eventually invests more, which causes the gap to shrink.

FIGURE 6

TIME PATHS: CONVEX HAZARD RATE
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FIGURE 7

TIME PATHS: LINEAR HAZARD RATE

� The pure knowledge effect versus strategic considerations. The pure knowledge effect
provides a firm with an incentive to decrease its R&D expenditures as its own knowledge stock
becomes larger. A firm may, however, also decide to be aggressive and increase its R&D ex-
penditures as its rival’s knowledge stock becomes larger. The question then is which incentive
dominates.

Consider again the case of a convex hazard rate and recall that firm 1’s R&D expendi-
tures decrease over time (middle panel of Figure 6). A closer inspection shows that the time
paths of z1(t) and z2(t) traverse a region of the state space where (∂/∂z1)c(u1∗(z1, z2)) < 0 and
(∂/∂z2)c(u1∗(z1, z2)) > 0. This gives rise to two contradicting incentives: First, as firm 1 increases
its knowledge stock, the pure knowledge effect provides it with an incentive to decrease its R&D
expenditures. Second, as firm 2 increases its knowledge stock, firm 1 responds aggressively and
thus has an incentive to increase its R&D expenditures. The pure knowledge effect prevails, and
firm 1 decreases its investment in R&D as the race unfolds.

The pure knowledge effect also prevails in the case of a linear hazard rate (see again Table
1). For example, if firm 1 begins the race with 150% of the steady-state knowledge stock and firm
2 starts from scratch, then z1(t) is monotonically decreasing and z2(t) is monotonically increasing
(top panel of Figure 7). Since (∂/∂z2)c(u2∗(z1, z2)) < 0 and (∂/∂z1)c(u2∗(z1, z2)) < 0 along
these time paths, as firm 2 extends its knowledge stock, it has an incentive to decrease its R&D
expenditures, whereas it has an incentive to increase its R&D expenditures as firm 1 curtails its
knowledge stock. The middle panel of Figure 7 shows that firm 2’s R&D expenditures decrease
over time. Hence, the pure knowledge effect dominates over strategic considerations

� Conditional probability of winning the race. In the case of γ = 0, where the hazard rate
is a function of current R&D effort alone, both firms have equal chances of winning the race.
In particular, a firm’s chances of winning are independent of the knowledge stocks at the outset
of the race. In contrast, once the restrictive assumption of an exponential distribution of success
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times is relaxed, an initial asymmetry in the knowledge stocks affects a firm’s chances of winning
the race.

To see this, consider again the case of a linear hazard rate. I use equation (7) to compute p(t),
the probability that one of the firms wins the race at or before time t , and equation (8) to compute
pi (t), the probability that firm i has won the race given that the race has ended at or before time
t . A solid line refers to p(t) and a dash-dotted (dashed) line designates firm 1 (firm 2). Firm 2
works harder than firm 1 at all times, thereby narrowing the gap between the firms’ knowledge
stocks over time. As a result, firm 2’s conditional probability of winning increases from .1437 to
.2817, whereas firm 1’s conditional probability decreases from .8563 to .7183 (bottom panel of
Figure 7).

In sum, although the gap between the firms’ knowledge stocks closes over time, this does
not quite suffice to make up for an initial asymmetry. The laggard’s conditional probability of
winning remains less than the leader’s. This also clarifies why the leader is willing to cut back
on its R&D investment in the first place: Doing so simply does not severely reduce its chances of
winning the race.

6. General results

� In this section, I solve the model for a wide range of parameter values in order to “establish”
general results about the equilibrium payoffs and strategies and the induced time paths. I consider
all parameterizations such that P ∈ {.00435, .0435, .435}, P/P ∈ {0, .2, .8}, λ ∈ {.1, 1, 10},
γ ∈ {.1, 1, 10}, ψ ∈ {1, 2}, δ ∈ {0, .2, 2}, and η ∈ {2, 3, 4}. Note that the interest rate r
merely determines the time scale, and is therefore not of interest by itself.21 This set of 1,458
parameterizations contains the case of a linear hazard rate (see Table 1) that I have studied in
Sections 4 and 5. There I have also highlighted the differences between a linear and a convex
hazard rate. Consequently, I specify a linear hazard rate (ψ = 1) in 729 parameterizations and a
convex hazard rate (ψ = 2) in the others.22

To compute the value and policy functions, I proceed as follows. Given a parameterization,
I first solve the model for different orders of approximation. Specifically, I use K = 3, 5, 7, 9, 11
for all parameterizations and, in addition, K = 13, 15, 17, 19 for some parameterizations. Then
I pick the order of approximation that yields the smallest residuals of the value function and its
partial derivatives. In 3% of the parameterizations, the residuals are unacceptably large,23 and
I ignore these parameterizations. There is a small number (less than 1%) of parameterizations
that contradict some of the results stated below. A closer inspection shows that these contradic-
tions arise because of numerical problems (e.g., round-off error or numerical instability of the
polynomial approximation). I therefore disregard these parameterizations in what follows.

� Median duration of the race. I use equation (7) to compute p(t), the probability that
the race ends at or before time t . Judging from the median durations (defined as the solution to
p(t) = .5), the remaining parameterizations capture a wide range of R&D processes: In 10%
of parameterizations the median duration of the race is below .1 years, in 50% it is below one
year, and in 90% it is below 30.2 years. The following result summarizes the comparative statics
properties of the median duration.

Result 1. The median duration is decreasing in P , λ, γ , and η.

The effect of a change in P/P , ψ , and δ is ambiguous.

21 I continue to set r = .105.
22 To double check my conclusions, I analyze an additional set of 1,458 parameterizations that entails P ∈

{.01035, .1035, 1.035} instead of P ∈ {.00435, .0435, .435}. This set contains the case of a convex hazard rate.
23 In the notation of the Appendix, a parameterization is deemed acceptable if LV

∞ < 10−4, LV1∞ < 10−2, and
LV2∞ < 10−2.
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� Knowledge stocks. I argued in Section 5 that the knowledge stocks approach a steady state
provided that the rate of depreciation is positive. The following result summarizes the comparative
statics properties of the steady-state knowledge stock z∞ = limt→∞ zi (t).

Result 2. The steady-state knowledge stock z∞ is increasing in P and λ and decreasing in P/P
and δ.

To get a sense for how fast the steady-state knowledge stock is approached, I linearize the
system of ODEs given by equation (6) around z∞ and compute its eigenvalues.

Result 3. The eigenvalues of the linearized system are real and negative. The eigenvalues are
decreasing in δ.

Since the eigenvalues are real and negative, the system of ODEs given by equation (6) is
locally stable. The largest (in absolute value) eigenvalue determines the rate of convergence in
the vicinity of the steady state. The above result indicates that the steady-state knowledge stock
is approached faster as the rate of depreciation increases.

Recall that I approximate the value and policy functions in the region [0, 1]2. For some
parameterizations the steady-state knowledge stock lies outside this region, so that I am unable
to exactly determine its value. In what follows, I restrict attention to the region [0, z∞]2, where
z∞ = min{z∞, 1}. The reason is that if z∞ ≤ 1, then firm i’s knowledge stock zi (t) remains
below z∞ at all times provided that its initial knowledge stock z0

i is sufficiently small. Otherwise,
the race has ended with high probability before zi (t) reaches z∞.

My next result is that the laggard adds to its knowledge stock as long as its knowledge stock
is below the steady state.

Result 4. If z1 ≤ z2 < z∞, then ż1 > 0.24

In contrast, z1 ≤ z2 < z∞ does not imply ż2 > 0. That is, the leader may not add to its
knowledge stock. In fact, if the firm is far ahead of its rival, then the leader may relax and allow
himself to fall back (ż2 < 0) while the laggard builds up its knowledge stock. Then, once the
gap between the firms has closed somewhat, the leader resumes (ż2 > 0). It follows that the
convergence to the steady state need not be monotonic.

� The pure knowledge effect. Recall that the pure knowledge effect arises because a firm’s
past R&D efforts contribute to its chances of winning the race. Hence, as I argued in Section 4,
a firm is inclined to decrease its R&D expenditures as its knowledge stock increases. In general,
the pure knowledge effect determines the shape of the policy function if the hazard rate is linear.

Result 5. If ψ = 1, then (∂/∂z1)c(u∗(z1, z2)) < 0.

On the other hand, there is a counteracting force if the hazard rate is convex and there are
increasing returns to knowledge accumulation. However, as the following result establishes, once
the pure knowledge effect starts to dominate, it continues to do so.

Result 6. If z′1 > z1 and (∂/∂z1)c(u∗(z1, z2)) < 0, then (∂/∂z1)c(u∗(z′1, z2)) < 0.

To see that the above result has content, note that (∂/∂z1)c(u∗(0, 0)) < 0 in 51% of parameter-
izations, (∂/∂z1)c(u∗(z∞/2, z∞/2)) < 0 in 79% of parameterizations, and (∂/∂z1)c(u∗(z∞, z∞))
< 0 in 83% of parameterizations. Hence, it frequently happens that a firm decreases its investment
in R&D in response to an increase in its knowledge stock, so that the above result applies.

� Leader versus follower. Perhaps the most important implication of the pure knowledge
effect is that the follower devotes more resources to R&D than the leader, thus giving rise to a

24 I verified this result at 302 equidistant grid points in [0, z∞]2 for each parameterization. A similar remark pertains
to the subsequent results.
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pattern of action-reaction. The economic intuition developed for the case of a linear hazard rate
in Section 4 again generalizes.

Result 7. If ψ = 1 and z1 < z2, then c(u∗(z1, z2)) > c(u∗(z2, z1)).

A corollary to the above result is that ψ = 1 and z1 < z2 imply ż1 > ż2. Consequently, the
gap between the leader’s and the follower’s knowledge stocks closes over time.

In contrast, z1 < z2 implies c(u∗(z1, z2)) > c(u∗(z2, z1)) in 13% of parameterizations with
ψ = 2, and z1 < z2 implies ż1 > ż2 in 68% of parameterizations with ψ = 2. As I pointed out in
Section 4, the reason is that the laggard may not strive to catch up with the leader until he has a
sufficiently large knowledge stock himself.

� Aggressive versus submissive response. A firm can either respond aggressively or sub-
missively to an increase in its rival’s knowledge stock. As I claimed in Section 4, a firm responds
aggressively if it has a sufficiently large knowledge stock and submissively otherwise. The fol-
lowing result pertains to all parameterizations with ψ = 1 and establishes that once a firm starts
to respond aggressively, it continues to respond aggressively.

Result 8. If ψ = 1, z′1 > z1, and (∂/∂z2)c(u∗(z1, z2)) > 0, then (∂/∂z2)c(u∗(z′1, z2)) > 0.

Moreover, the above result extends to 98% of parameterization with ψ = 2. Again this has
content because (∂/∂z2)c(u∗(0, 0)) > 0 in 49% of parameterizations, (∂/∂z2)c(u∗(z∞/2, z∞/2))
> 0 in 57% of parameterizations, and (∂/∂z2)c(u∗(z∞, z∞)) > 0 in 65% of parameterizations.

� Intensity of competition. My final result shows that, holding the combined amount of
knowledge constant, competition is fiercest when firms have unequal knowledge stocks; it pertains
to all parameterizations with ψ = 1.

Result 9. If ψ = 1 and 0 < λ < 1, then

{
c(u∗(z, 0)) + c(u∗(0, z)) > c(u∗(λz, (1 − λ)z)) + c(u∗((1 − λ)z, λz)), z ≤ z∞,
c(u∗(z∞, z − z∞)) + c(u∗(z − z∞, z∞)) > c(u∗(z∞1 , z∞2 )) + c(u∗(z∞2 , z∞1 )), z > z∞,

where z∞1 = (2λ − 1)z∞ + (1 − λ)z and z∞2 = (1 − 2λ)z∞ + λz.

In contrast, in 74% of parameterizations with ψ = 2, competition is fiercest when firms have
equal knowledge stocks.

7. Conclusions

� I develop a general model of an R&D race that incorporates knowledge accumulation. The
model does not allow for an analytic solution, and I use projection methods to obtain the equi-
librium payoffs and strategies. I propose a method to check the accuracy of the approximations.
The approximations seem to be close to both the true value function and its partial derivatives,
and thus give an accurate description not only of the equilibrium payoffs but also of the equilib-
rium strategies. This suggests that projection techniques are a promising tool for the analysis of
differential games.

My model does not inherit the memorylessness property of the exponential distribution that
troubles existing models of R&D races. Indeed, the memoryless R&D race models analyzed by
Reinganum (1981, 1982) are a special case of my model, and I show how relaxing the restric-
tive assumption of an exponential distribution of success times affects the equilibrium payoffs
and strategies. In the more general setting of my model, knowledge accumulation has strategic
implications.

In particular, I show that a firm has an incentive to reduce its R&D expenditures as its
knowledge stock increases. Underlying this result is the pure knowledge effect. The source of this
effect is that a firm’s past R&D efforts contribute to its chances of winning the R&D race because
© RAND 2003.
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the firm’s knowledge stock enters its hazard rate. If the hazard rate is concave or linear, the pure
knowledge effect determines the shape of the policy function and implies that the follower works
harder than the leader. If the hazard rate is convex and there are increasing returns to knowledge
accumulation, then a firm has a strong and growing incentive to invest in R&D. While this gives
rise to a counteracting force, the pure knowledge effect gathers force as the race unfolds. Hence,
once the laggard has a sufficiently large knowledge stock himself, he strives to catch up with the
leader. The pattern of strategic interactions among the racing firms is thus more like action-reaction
than increasing dominance, the pattern that emerges in multistage race models.

In multistage race models, the follower slows down as he falls further behind, whereas the
leader may or may not speed up as he gets further ahead. In contrast, I find that a firm can respond
either aggressively or submissively to an increase in its rival’s knowledge stock. In my model, an
aggressive or submissive response is not tied to a firm’s relative position. Rather, a firm responds
aggressively if it has a sufficiently large knowledge stock and submissively otherwise. These
strategic considerations appear to be dominated by the pure knowledge effect in the sense that
the response in the firm’s investment in R&D to a change in its own knowledge stock swamps the
response to a change in its rival’s knowledge stock.

Also in contrast to multistage race models, I show that competition is not necessarily fiercest
when firms are neck-and-neck. If the hazard rate is concave or linear, competition among firms
is most intense when their knowledge stocks are of unequal size and least intense when they are
of equal size, whereas this need not be the case if the hazard rate is convex.

Despite the abundance of anecdotal evidence, empirical research on R&D races is sparse.
In line with my model, the available studies observe patterns of strategic interactions that are
more akin to action-reaction than to increasing dominance. Grabowski and Baxter (1973), for
example, find that in the chemical industry, firms increase R&D expenditures in response to
rivals’ outlays. Based on a sample of 28 U.S. manufacturing industries, exploratory research
by Richard Caves25 indicates that major firms tend to react aggressively to increases in each
other’s R&D expenditures, and Scherer (1992) shows that firms with greater domestic sales in
more concentrated U.S. markets are likely to react much more aggressively to increasing import
competition than smaller firms or firms in less concentrated markets. More recent studies attempt
to operationalize the notion of a knowledge stock. Khanna (1995) proposes to measure a firm’s
technological position relative to its rivals by constructing a technological frontier for the high-
end computer industry. He shows that firms that fall behind the technological frontier engage
in catch-up behavior. In his study of the disk drive industry, Lerner (1997) attempts to directly
measure a firm’s technological position relative to its rivals and demonstrates that the firms that
trail the industry leader display a greater propensity to innovate. This again lends more support
to action-reaction than to increasing dominance.

At the same time, empirical research points to a number of extensions of my model. Studies
of the pharmaceutical industry in particular highlight the role of spillovers in the R&D process
(Cockburn and Henderson, 1994; Henderson and Cockburn, 1994, 1996). It is often argued that
firms have an incentive to engage in R&D in order to learn from their competitors. This notion
of absorptive capacity suggests that a firm’s current R&D effort may be essential in absorbing
its rival’s current and/or past R&D efforts (see, e.g., Cohen and Levinthal (1989) and Adams
and Jaffe (1996) for evidence). While I abstract from spillovers in order to focus on the strategic
implications of knowledge accumulation, the numerical techniques that I use readily extend to a
model with spillovers.

The notion of absorptive capacity may also carry over to the relationship between a firm’s
current R&D effort and its own knowledge stock, but this is beyond the presently employed
additive form of the hazard rate. With an additive hazard rate a firm can always rely on its past
R&D efforts to make the discovery. In the limit, as the size of its knowledge stock approaches

25 Personal communication. See also Meron and Caves (1991).
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infinity, the firm therefore wins the race without expending any effort.26 This implication could be
avoided by specifying a nonadditive hazard rate. With a multiplicative hazard rate, for example,
the firm’s past R&D efforts would not be productive unless combined with current R&D effort
(i.e., both current and past R&D efforts are essential in making the discovery). To the extent
that this gives the leader a greater incentive to engage in R&D than the follower, it would also
tend to shift the pattern of strategic interactions away from action-reaction and toward increasing
dominance. Exploring how the functional form of the hazard rate affects the R&D race therefore
appears to be a promising venue for future research.

Finally, the studies by Khanna and Iansiti (1997) and Lerner (1997) testify to the important
role that product market competition and repeated interactions between competing firms play
in determining the outcome of an R&D race. This suggests modelling the two-way relationship
between innovative activity and market structure, a task that is left to future research.

Appendix

� Below I give further details on the numerical methods. All programs are written in Matlab 5.3. I use the equation
solver c05nbf from the NAG toolbox, a Newton method, to solve the (K + 1)2 nonlinear equations �V (zk1

1 , zk2
2 ; θ ) = 0

for θ . My starting values for the elements of θ are zeros except for θ0,0, which is chosen to solve (with θ0,0 replacing V )

0 = λu∗(P + P) − 1

η

(
u∗)η − (r + 2λu∗)V,

where

u∗ =
(
λ(P − V )

)1/(η−1)
.

The above equations characterize the unique constant solution to the PDE defined by the operator equation (3) in the
special case of γ = 0. Good starting values are essential to ensure convergence of the equation solver.

To validate the approximations of the value function and its partial derivatives, I compute�V (z1, z2; θ ),�V1 (z1, z2; θ ),
and �V2 (z1, z2; θ ) at 302 equidistant grid points in [z, z]2. Since the grid points differ from the collocation points,
�V (z1, z2; θ ) is not necessarily zero at these grid points. Moreover, there is no reason for �V1 (z1, z2; θ ) and �V2 (z1, z2; θ )
to be zero anywhere in [z, z]2. Nevertheless, as I argued before, if all three sets of residuals are small, then the polynomial
approximation and its partial derivatives should be close to the value function and its partial derivatives. I summarize each
residual function by picking its largest (absolute) value and denote their sup-norms as LV

∞, LV1∞ , and LV2∞ , respectively.
The system of equations generally admits multiple zeros. It turns out, however, that exactly one of these zeros gives

rise to small residuals; the residuals that correspond to the other zeros are larger by several orders of magnitude. Moreover,
the equation solver converges to this zero whenever I use the starting values described above. This suggests that there
exists a unique solution to the PDE.

Among the five scenarios listed in Table 1, the ones involving a nonlinear hazard rate are the most troublesome, and
I devote particular attention to them in what follows. In general, a nonlinear hazard rate adds curvature to the model,
thereby making it harder to approximate the value function. Moreover, a hazard rate of the form hi = λui + γ zψ

i does not

TABLE A1 Accuracy Check: Convex Hazard Rate

K LV
∞ LV1∞ LV2∞

3 5.54 × 10−2 1.15 3.81 × 10−1

7 1.92 × 10−5 1.09 × 10−3 8.43 × 10−4

11 4.92 × 10−8 3.99 × 10−6 5.81 × 10−6

15 1.37 × 10−10 1.48 × 10−8 3.58 × 10−8

19 7.51 × 10−13 8.88 × 10−11 1.55 × 10−10

Note: Sup-norms LV
∞, LV1∞ , and LV2∞ for different orders of approximation K .

26 As an anonymous referee has remarked, this resembles somebody who first obtains a Ph.D. and then sits on the
couch and makes great scientific discoveries.
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TABLE A2 Accuracy Check: Concave Hazard Rate

K LV
∞ LV1∞ LV2∞

3 1.40 × 10−1 3.27 2.12

7 2.87 × 10−3 2.70 × 10−1 1.74 × 10−1

11 8.86 × 10−5 2.31 × 10−2 1.51 × 10−2

15 4.98 × 10−6 2.01 × 10−3 1.35 × 10−3

19 1.78 × 10−7 1.76 × 10−4 1.20 × 10−4

23 1.66 × 10−8 1.54 × 10−5 1.06 × 10−5

27 7.40 × 10−10 1.34 × 10−6 9.31 × 10−7

Note: Sup-norms LV
∞, LV1∞ , and LV2∞ for different orders of approximation K .

have a derivative at zi = 0 if ψ < 1. This gives rise to a singularity in the case of a concave hazard rate. I move this
singularity from zi = 0 to zi = −z̃ by respecifying firm i’s hazard rate as

hi = λui + γ
(
(zi + z̃)ψ − z̃ψ

)

if ψ < 1. Since the curvature of the hazard rate decreases as z̃ increases, a small value for z̃ is appropriate, and I set z̃ = .1
in what follows.

Table A1 lists the sup-norms LV
∞, LV1∞ , and LV2∞ for various orders of approximation K for the case of a convex

hazard rate and Table A2 does so for the case of a concave hazard rate. The repercussions of the singularity in the case
of a concave hazard rate are still fairly pronounced. In particular, for fixed K , the residuals for the concave hazard rate
are larger by several orders of magnitude than the residuals for the convex hazard rate, and as K increases, they approach
zero at a much slower rate. Nevertheless, the approximation improves steadily for both parameterizations and is already
quite good for intermediate values of K . Moreover, the elements of θ that correspond to higher-order terms are extremely
small (in absolute value) for both parameterizations.

Next I plot the residual functions �V (z1, z2; θ ), �V1 (z1, z2; θ ), and �V2 (z1, z2; θ ) for the case of a convex hazard rate
with K = 11 (omitted). The residuals �V (z1, z2; θ ) oscillate around zero and are close to exhibiting the equioscillation
property necessary for a best (with respect to the sup-norm) polynomial approximation. The residuals �V1 (z1, z2; θ ) and
�V2 (z1, z2; θ ) are large at the “upper” and “lower” boundaries of [z, z]2. However, the residuals are much smaller in the
interior of [z, z]2 and, as a closer inspection reveals, fluctuate around zero. Despite the fact that the partial derivatives of
the value function are approximated somewhat worse than the value function itself, overall the choice of K = 11 leads to
extremely accurate approximations.

It remains to choose the order of approximation for the remaining parameterizations. I set K = 19 in the case of a
concave hazard rate and K = 11 in the case of past R&D effort alone and in the case of a linear hazard rate. For the case
of past R&D effort alone, I obtain LV

∞ = 2.01 × 10−10, LV1∞ = 2.52 × 10−8, and LV2∞ = 1.75 × 10−8, and for the case of
a linear hazard rate I obtain LV

∞ = 5.81 × 10−10, LV1∞ = 5.32 × 10−8, and LV2∞ = 6.35 × 10−8.
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