NOTES

CORRECTION TO

"RADON-NIKODYM DERIVATIVES OF
GAUSSIAN MEASURES"

BY L. A. SHEPP

Bell Laboratories

Introduction. J. R. Klauder kindly pointed out that the first statement of Theorem 11 of my paper [2] is incorrect. It was claimed incorrectly that if \(h = h(t), \ 0 \leq t \leq T \) is a (strictly) increasing absolutely continuous function with \(h(0) = 0 \), then a necessary and sufficient condition that the Gauss–Markov process

\[X(t) = \frac{1}{(h'(t))^{1/2}} W(h(t)), \quad 0 \leq t \leq T \]

is equivalent to the Wiener process \(W, X \sim W \), is that

\[\int_0^T \left(\frac{1}{(h'(t))^{1/2}} \right)^2 \, dt < \infty. \]

The case

\[h(t) = t + t^3, \quad 0 \leq t \leq T = 1 \]

gives an example where (2) fails although \(X \sim W \). We will prove that the condition

\[\int_0^T h(t) \left(\frac{1}{(h'(t))^{1/2}} \right)^2 \, dt < \infty \]

is necessary and sufficient for \(X \sim W \). Note that (3) satisfies (4) but not (2). Theorem 1 of [2] gives a general condition for a Gaussian process to be equivalent to \(W \) but the condition is difficult to apply in this case. Instead we use the elegant results of M. Hitsuda [1]. Note that [4] gives necessary and sufficient conditions among a restricted class of \(h \) for \(X \sim W \). Of course the exact scale normalization \(1/(h'(t))^{1/2} \) in (1) is necessary for \(X \sim W \) (e.g., note that \(cW \sim W \) only for \(c = 1 \)).

The error in the argument in [2] that \(X \sim W \) implies (2) occurs in the ninth line from the bottom of page 344 where it is incorrectly claimed that \(v' \in L^2(0, T) \) if \(u'(\min(s, t))v'(\max(s, t)) \in L^2[0, T] \times [0, T] \).

The argument given for the converse assertion, that (2) implies \(X \sim W \), tacitly assumes that \(h \) is bounded and under this assumption is correct since then (2) implies (4) which implies that \(X \sim W \). However for unbounded \(h \), i.e., \(h(T) = \infty \), e.g.,

\[h(t) = t/(1 - t), \quad 0 \leq t \leq T = 1, \]

\[v'(s) v'(t) \in L^2(0, T) \]

implies

\[\int_0^T \frac{1}{h'(t)^{1/2}} \, dt = \infty. \]
if (1) is defined by continuity at \(t = 1 \) so that \(X \) is the pinned Wiener process with \(X(1) = 0 \), then (2) holds but \(X \sim W \) is false since \(W(1) \neq 0 \) w.p.1. Thus the assertion \("1 \notin sp(K)" \) holds automatically" on page 344 of [2] tacitly assumes bounded \(h \). Of course, Hitsuda’s method avoids the spectral condition altogether and has other advantages [1, page 299].

Proof that (4) is necessary and sufficient that \(X \sim W \). If (4) holds then

\[
\begin{align*}
 l(s, u) &= - (h'(u))^{t} (1/(h'(s))^{t})' ; & s > u \\
 &= 0 ; & s \leq u
\end{align*}
\]

is a Volterra kernel in \(L^{2}[0, T] \times [0, T] \) the primes denoting differentiation with respect to \(s \) or \(u \) as indicated in each term by the variable in parentheses. By Theorem 2 of [1], \(Y \sim W \) where \(Y \) is defined in terms of a Wiener process \(W \) by

\[
Y(t) = W(t) - \int_{0}^{t} \int_{0}^{s} l(s, u) dW(u) \, ds
\]

where we have used the argument on the top of page 306 of [1] to interchange the integrals in the second line of (7), and (6) in the third line. Since the last line of (7) is a Gaussian process with the same covariance as \(X \) in (1), it follows that \(X \) and \(Y \) are the same process (induce the same measure). Since \(Y \sim W \) and \(W \) is a Wiener process we have proved that (4) implies \(X \sim W \).

To prove that \(X \sim W \) implies (4), note that the process

\[
X(t) = \frac{1}{(h'(t))^{t}} \int_{0}^{s} (h'(u))^{t} dW(u)
\]

is the same process as \(X \) in (1) as observed above. Since \(X \) is equivalent to a Wiener process, by Theorem 1 of [1] there exists on the same space as \(X \) and \(W \) in (8), another Wiener process \(W \) for which

\[
X(t) = W(t) - \int_{s}^{t} l(s, u) dW(u) \, ds
\]

where \(l \) is a (unique) \(L^{2} \) Volterra kernel. Moreover \(W \) is a Wiener process with respect to the same \(\sigma \)-fields \(\mathcal{F}_{t} \) as \(W \).

Since \((h'(t))^{t} X(t) = \int_{0}^{s} (h'(u))^{t} dW(u) \) is a martingale with respect to \(\mathcal{F}_{t} \), we have for any \(\tau < t \)

\[
E[X(t)(h'(t))^{t} | \mathcal{F}_{\tau}] = X(\tau)(h'(\tau))^{t}.
\]

From (9) and (10) with \(s \wedge \tau = \min(s, \tau) \), for \(\tau < t \)

\[
(h'(t))^{t} W(\tau) - (h'(t))^{t} \int_{0}^{s \wedge \tau} l(s, u) dW(u) \, ds
\]

\[
= (h'(\tau))^{t} W(\tau) - (h'(\tau))^{t} \int_{0}^{s \wedge \tau} l(s, u) dW(u) \, ds.
\]
Interchanging integrals as before since \(I \in L^2 [0, T] \times [0, T] \) we obtain
\[
(12) \quad W(\tau) ((h'(t))^\sharp - (h'(\tau))^\sharp) = \int_0^\tau ((h'(t))^\sharp \int_0^t I(s, u) \, ds - (h'(\tau))^\sharp \int_0^\tau I(s, u) \, ds) \, dW(u).
\]
Considering \(\tau \) and \(t \) as fixed and noting that \(\int_0^\tau \varphi \, dW = 0 \) for an \(L^2 \) function \(\varphi \) implies \(\varphi \equiv 0 \) a.e., we obtain that for each \(0 < u < \tau < t \), a.e.
\[
(13) \quad (h'(t))^\sharp - (h'(\tau))^\sharp = (h'(t))^\sharp \int_u^\tau I(s, u) \, ds - (h'(\tau))^\sharp \int_0^\tau I(s, u) \, ds.
\]
Setting \(\tau = u \) we obtain easily that \(h \) is twice differentiable and \(I = I \) in (6). Thus \(l \in L^2 [0, T] \times [0, T] \), and since \(\int_0^T \int_0^t P(s, u) \, ds \, du \) is the left side of (4), we have shown that (4) holds.

We remark that since \(X \sim W \) implies the scale changed processes \(X \) and \(W \) where, for any \(Y \),
\[
(14) \quad Y(t) = \frac{1}{(g'(t))^\sharp} Y(g(t))
\]
are also equivalent, we have \(X \sim W \), for any increasing differentiable function \(g \) with \(g(0) = 0 \). Taking \(g \) to be \(h^{-1} \) and noting that \(X = W \) in this case we see that \(X \sim W \) and only if \(X \sim W \), i.e., the condition (4) must be invariant under the change from \(h \) to \(h^{-1} \). A direct proof of this fact is given in [3].

Other corrections in [2].

1. Israel Bar–David pointed out that (16.2), page 347, should include the additional term:
\[-\frac{1}{2} X^2(0)[R(0, 0)]^{-1}\]
on the right-hand side.

2. In footnote 3, page 332, the name referred to should be I. M. Golosov.

3. (18.19), page 352: change \(X_j \) to \(x_j \).

4. First line of display below (18.19), page 352: change \(T \) to \(T^2 \).

5. Change (18.21), page 352 to read
\[
(18.21) \quad \Delta^2 g_k = \frac{T^3}{n^2} \int_k g_{k+1}.
\]

REFERENCES

