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RADON-NIKODYM DERIVATIVES OF GAUSSIAN MEASURES 

BY L. A. SHEPP 

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 

I. SUMMARY 
We give simple necessary and sufficient conditions on the mean and covari- 

ance for a Gaussian measure to be equivalent to Wiener measure. This was 
formerly an unsolved problem [26]. 

Another unsolved problem is to obtain the Radon-Nikodym derivative d,/dv 
where u and v are equivalent Gaussian measures [28]. We solve this problem for 
many cases of , and v, by writing du/dv in terms of Fredholm determinants and 
resolvents. The problem is thereby reduced to the calculation of these classical 
quantities, and explicit formulas can often be given. 

Our method uses Wiener measure ,w as a catalyst; that is, we compute deriva- 
tives with respect to ,uw and then use the chain rule: d1./dv = (d,4/dsw)/(dv/dg w). 
Wiener measure is singled out because. it has a simple distinctive property-the 
Wiener process has a random Fourier-type expansion in the integrals of any 
complete orthonormal system. 

We show that any process equivalent to the Wiener process W can be realized 
by a linear transformation of W. This transformation necessarily involves sto- 
chastic integration and generalizes earlier nonstochastic transformations studied 
by Segal [21] and others [4], [27]. 

New variants of the Wiener process are introduced, both conditioned Wiener 
processes and free n-fold integrated Wiener processes. We give necessary and 
sufficient conditions for a Gaussian process to be equivalent to any one of the 
variants and also give the corresponding Radon-Nikodym (R-N) derivative. 

Last, some novel uses of R-N derivatives are given. We calculate explicitly: 
(i) the probability that .W cross a slanted line in a finite time, (ii) the first pas- 
sage probability for the process W(t + 1) - W(t), and (iii) a class of function 
space integrals. Using (iii) we prove a zero-one law for convergence of certain 
integrals on Wiener paths. 
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II. INTRODUCTION 

All measures considered in this paper are Gaussian and are considered to be 
defined on the space of continuous functions X = X(t), 0 < t < T with T < 00. 

Such a measure Au is determined by its mean m and covariance (cov) R 

m(t) = f X(t) d,u(X), 

R(s, t) = f (X(s) - m(s) ) (Xi(t) - m(t) ) d,u(X). 

Wiener measure Auw is the measure with mean zero and cov = min (s, t). Two 
measures are equivalent (denoted -) when they have the same sets of measure 
zero. 

1. A necessary and sufficient condition that g w_ W. We denote by L2 and 
L2 the space of square-integrable functions on [0, T] and [0, T] X [0, T] respec- 
tively; two functions are considered equal if they coincide almost everywhere. 

Suppose Au is a measure with mean m and cov R. 
THEOREM 1. , - AuW if and only if there exists a kernel K E L2 for which 

(1.1) R(s, t) = min (s, t) - J' ' K(u, v) du dv 

and 

(1.2) 1 e -(K) 

and a function k E L2 for which 

(1.3) m(t) = f'k(u) du. 

The kernel K is unique and symmetric and is given by K(s, t) = -(d/ds) (d/dt). 
R(s, t) for almost every (s, t). The function k is unique and is given by 
k(t) = m'(t) for almost every t. 
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As usual, o-(K) = {X: K<p = XAp, o 5 0} is the spectrum, or the set of eigen- 
values, of the Hilbert-Schmidt operator K. Here K<p Xp means sp E L2 and 

0 K(t, u) (u) du = XA(t). 

Since K is symmetric and in L2 the eigenvalues X1 , X2, * are real and E X12 < . 

We shall show in Section 11 that if R is given by (1.1) with K E L2, then R is 
nonnegative-definite if and only if Xj < 1 for all j. The condition (1.2) therefore 
says that Xj < 1 for all j and should thus be interpreted as a statement of strict 
positive-definiteness for R. Note that Xi may assume negative values. 

The condition (1.1) has a simpler restatement in case Ri(s, t) = (a/as)R(s, t) 
is continuous for s # t. In this case (1.1) becomes (see Section 11 for the proof) 

(1.4) R1(s, s+) - R1(s, s-) 1, 0 < s < T. 

This means that R must have a fixed discontinuity of unit size in its derivative 
along s = t, the same discontinuity that min (s, t) has in its derivative. A 
theorem of G. Baxter [2] implies the necessity of (1.4). We note that R (O, *) 0 
because X(O) = 0 under A w . 

2. The R-N derivative d,Id,w. Whenever ,u ,uw the R-N derivative d1z1d1uw 
exists. We will show that d,u/d,uw can be written in terms of the Fredholm de- 
terminant and resolvent of the unique kernel K appearing in (1.1). 

When E lXjl < oc, K is said to be of trace class and the Fredholm determinant 
is 

(2.1) d(X) = fJj (1 - XX,). 

For the general K, E lXjl may not exist. The modified, or Carleman-Fredholm, 
determinant of K is 

(2.2) 6(X) = Ij, (1 -Xj)ei 

which converges for all X because E Xj2 < oo. For each value of X for which X-1 9 
a(K) there is a unique kernel H, e L2 called the Fredholm resolvent of K at X. 
The resolvent equation 

(2.3) Hx - K = XHxK = XKHx 

determines HA uniquely. We denote H1 by H for simplicity and note that H is 
defined because 1 z o(K) by (1.2). The kernel H is symmetric and is continuous 
when K is continuous. There are known expansions of d, a and H in powers of 
X, cf. [7], pp. 1081-1086. 

Let ,u be a measure with mean m and cov R for which ,u ,u'w . Let K be given 
by (1.1): K(s, t) = -(d/ds) (O/t)R(s, t) for almost every s and t. 

THEOREM 2. If K is continuous and of trace class then d,u/d,uw is given by 

(2.4) djA/djAw(X + m) = [d(1)]-2 

*exp [-2 rO rO H(s, t) dX(s) dX(t) + rO k(u) dX(u)+ 2 J' k2(u)du] 

Here k(t) = m'(t). When m = 0, (2.4) simplifies. The integral 
fT 

k(u) dX(u) 
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is the Wiener integral evaluated at the point X. It exists because k e L2. The 
integral I(X) = rO rO H(s, t) dX(s) dX(t) is the double Wiener integral 
evaluated at X and is a (non-Gaussian) random variable with mean value 
JO H(s, s) ds. In our case the integral I can be defined because H is continuous. 
If H is also of bounded variation, we may integrate by parts to obtain an ordinary 
integral. Both H and the constant d( l) may sometimes be obtainable in closed 
form even when o(K) is not so obtainable, as we shall see in Section 15. 

In order to give a formula for d,u/d,uw valid for all K, the notion of a double 
Wiener integral must be extended slightly. We will use the centered double 
Wiener integral denoted 

J(X) = f~'0 cJ H(s, t) dX(s) dX(t). 

J is introduced in Section 9. When the mean of I exists, J is the ordinary double 
Wiener integral I minus its mean. By this simple trick of subtracting off the 
mean, J can be defined for all H e L2. K. Ito [10] was the first to consider the 
centered multiple Wiener integral. He obtained it in an equivalent way, by 
ignoring the values of H on the diagonal. 

THEOREM 3. If A ,u ow then 

(2.5) (dM/dMw)(X + m) = (a(1) exp tr (HK)' 

*exp [-4'J(X) + f ' k(u) dX(u) + TJ' 1c(u) du]. 

The trace of a product always exists and we have 

(2.6) tr (HK) = fT fT H(s, t)K(s, t) ds dt. 

When the hypothesis of Theorem 2 holds, (2.4) and (2.5) agree. Of course (2.4) 
is simpler. (2.5) has the advantage of being valid in general. 

3. A representation for W. Let h, '12, *** be a sequence of independent 
standard normal variables (mean zero and variance one). Let (Pl, 2P2, * ... be an 
arbitrary complete orthonormal sequence in L2[0, T] and set 

(3.1) f';(t) = rosj(u)du, j = 1,2, 

THEOREM 4. For each t, 0 < t < T, the series 

(3.2) J=1 X()=Wt 

converges almost surely. The sum is the Wiener process on [0, T]. 
This result appears to be new except for two special cases due to Wiener and 

L6vy. To prove the theorem we observe 

(3.3) )j (t) = ((Pj , 1t 

where lt is the indicator of the interval [0, t] and (f, g) = fT f(u)g(u) du. The 
completeness implies 

(3.4) Ej ('pj , 18)(vp , 1) = (ls , 1t) = min (s, t) 
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and (3.2) follows immediately from the 3-series theorem since the sum is Gaussian 
and has the required mean and covariance. 

Wiener himself studied the special case of Fourier series: 

(3.5) 4b,(t) = 21(sin (j-1)-rt)l(j-2), 0- t < 1. 

In this case 4> as well as so are orthogonal and this property characterizes the 
Fourier case. In the Fourier case, (3.2) converges uniformly in t with probability 
one. However, for some other choices of the sequence (p the convergence of (3.2) 
is even better. In fact, there does not seem to be any particular advantage to 
(3.5). To prove this, let us take so to be the Haar sequence. Using double indices 
for convenience, set 

sp41 = 1, Son,j(t) = 2nl2, 2nt (j,j + 2 

(3.6) = -2nI2, 2nt e( + 2 j+ 1)2 

= 0, otherwise 

forj = 0, 1, ... , 2n - 1; n = 0, 1, 2, * . . The s's are complete and orthonormal. 
The representation (3.2) in this case is due to L6vy, cf. [11], p. 19, and takes 
the form 

(3.7) W(t) = rt + En=o Z 0 ?n,jAn,j(t) 

where An,j(t) = 1n,j(t) = 0 'Pn,j is an isosceles triangle with base 2- centered 
at (j + :)2-n, and height, 2 - 2-n2. This shows that the Wiener process is a random 
sum of triangles. 

In Wiener's case, the series (3.2) fails to converge absolutely. By contrast 
(3.7) converges absolutely uniformly with probability one, as was pointed out 
by Z. Ciesielski. We follow [11], p. 19. Let 

fn(t) = Zj-o n 

We have 

(3.8) Ifn(t)I < 2-nl2 max, 1jinl j 0 < t < 1 

because j An, j(t) < 2-n12 uniformly in t. Now Mn = maxj |?n,j| is the maximum 
of 2n independent standard normal variables and so 

(3.9) P{Mn < an) = (I(an) -_(_an))2n. 

Choosing an = 2n' it is easy to check that 

(3.10) Zn==PIMn > an} < 00. 

By the Borel-Cantelli lemma we see that Mn < an eventually and so, a.s. 

(3.11) 1 2-'n2Mn < 00. 

It follows that (3.7) converges absolutely uniformly. 
H. P. McKean has informed me that by using a recent theorem of J. Delporte 
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[30], p. 201, Corollary 6.4B, it can be shown that (3.2) converges uniformly a.s. 
We will not use this strong type of convergence and so we omit the proof.' 

4. Simultaneous representation of , and ,uw in terms of independent random 
variables. Let ,u be a measure with mean m and cov R satisfying (1.1)-(1.3). 
Let1, (p2, * * * be the eigenfunctions of K; these are orthonormal and complete. 
The representation (3.2) gives 

(4.1) W(t) = Zj14j(t), 0 < t ? T. 

We shall define a Gaussian process Y on the same space as 1, X72, ... with 
mean m and cov R. Write 

(4.2) k = mr= Ejkjrj, kj= (k, pj), 

and define 

(4.3) Y(t) = ,j (7j(l - Xi) + ki)'Ij(t). 

Y is clearly Gaussian and has mean 

(4.4) EY(t) = Zjkj((pJ, 1t) = (k, 1t) = m(t) 

and covariance 

(4.5) E (1 - Xj)4j(s)>1(t) = min (s, t) - fB fJt K(u, v) du dv = R(s, t). 
In (4.5) we have used the L2 expansion of K 

(4.6) K(s, t) = E Xjcpj(s)soj(t). 

We have proved the following theorem. 
THEOREM 5. The processes (4.1) and (4.3) give a simultaneous representation 

of W and Y in terms of sums of independent variables. 
It is now possible to give a formal expression for dl/dMtw(X). We expand a 

path X as 

(4.7) X(t) = ,jX4(t), Xi = fJo ,j(t) dX(t) 

where Xi = Xj(X) is the Wiener integral evaluated at X. du/d,w(X) is the 
relative likelihood of X under , and ,w . Under ,Mw, Xj = qj , independent random 
variables. Under A, Xj = j(l - Xj) + k1 also independent. Because of inde- 
pendence, the probabilities multiply and we get 

(4.8) (dI/dAw)(X) = IY=1 (1- 

*exp [-l(Xj - kj)2/(1 - Xi)]/exp [-2 X,2]. 
The product (4.8) always converges and represents du/d,w. A rigorous proof 

is given in Section 10. In Section 11 we show how (4.8) reduces to (2.4). The 
reduction to (2.4) is important because (2.4) is in terms of classical quantities 
and, in addition, does not explicitly involve the eigenvalues or eigenvectors, 
which are usually difficult to find. 

IJohn Walsh has found a shorter proof, based on an abstract martingale convergence 
theorem. 
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5. Calculating dM/dv. Suppose that, 1t and v are measures, both equivalent 
to A w . Then ,u - v and by the chain rule 

(5.1) (dtl/dv) (X) = (d/2/dA w) (X)/(dv/dtiw) (X). 

Applying (2.5) or (2.4) to obtain d,l/dMw and dv/dAw we get an explicit formula 
for dM/dv, but only in the special case when A -, iw and v - Aw . To get more 
general results we will study certain variants of W. 

Letforn=0,1,2, 12, 

(5.2) Wn(t) = 
I [(t - u)n/n!] dW(u), 0 ? t < T 

denote the n-fold integrated Wiener process. We have 

(5.3) Wo(t) =W(t), VWn(t) = fo 
Wn-.(u) 

du, n = 1, 2, *** 

The processes Wn satisfy W.(j)(0) =0, 1j = 0, 1, ... , n. 
Suppose ,u is a measure with mean m and cov R whose sample paths Y are 

n-times differentiable a.s. Let y(n) denote the nth derivative of Y. The process 
y(n) is Gaussian with mean m(n) (t) and covariance 

DlnD2nR(s, t) = (an/asn)(an/atn)R(s, t). 

Let i(n) be the measure induced by y(n); A(n) has the same mean and covariance 
as y(n) 

THEOREM 6. Suppose jt -- ,wn . Then ,(n) r w and 

(5.4) (dAIldALw') (X) = (dAU(n)1dAXW) (X(n) ). 

The mapping X - X(n is 1-1 on the set of n-times differentiable functions X 
for which X(j)(0) = 0, j = 0, 1, .. * , n and standard arguments [9], pp. 163-164, 
give (5.4). The righthand side of (5.4) is given by (2.5). 

Using (5.4), we can obtain dl./dv explicitly whenever - v '' Awn for some n. 
This generalizes (5.1) and, further, one may drop the assumption that n in (5.2) 
is an integer. However, the condition , . v - 

'uwn is still too restrictive. Ex- 
cluded are stationary measures ,u and v because their sample paths do not vanish, 
at zero. In order to remedy this lack we must unpin the process Wn at zero. 

Let Wn be the free Wiener process 

(5.5) Wn(t) = 7=o0jt'/j! + Wn(t), 0 < t < T, 

where to, ***, tn are independent, standard normal variables. Suppose Y is a 
process for which Y - Wn . The paths Y(t) are then exactly n-times differentiable, 
and the derivatives of Y at t = 0 are nonzero random variables. The class of 
processes Y ,- W. includes many processes of interest. We will see that stationary 
processes with rational spectral density are included as a special case. In the 
latter case, d,i/dv has already been found by Gelfand and Yaglom in a different 
way [28]. 

We shall give the conditions on m and, R so that Y -Wn . The condition on 
m is that m(n+1) e L2 or 
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(5.6) m(t) = Xs=o [mI1(O)/j!]t' + f I 
[(t - U)n/n1]k(U) dU, 

where k c L2. In order to find the conditions on R, we first obtain a certain 
decomposition of an n-times differentiable covariance. The remainder of Section 
5 will be needed only for Section 13 et seq. 

An n-times differentiable process Y is called nondegenerate at zero when the 
random variables Y(O) , Y'(O) , ... , Y(n (O) are linearly independent. 

THEOREM 7. The covariance R of an n-times differentiable process nondegenerate 
at zero may be written uniquely as 

(5.7) R(s, t) = Z"=oAi(s)Ai(t) + R*(s, t) 

where 

(i) R* is a covariance, 
(5.8) (ii) DliD2iR*(0, 0) = 0, i = 0, 1 n, 

(iii) Aj(t)(0) = 0, i < j; A i $(0) > 0 i = 0 ,n. 

Condition (ii) means that if Z is a process with cov R* then 

(5.9) Z(,'(0) = 0, j = 0,1, ... , n. 

We will have Z -'Wn . The decomposition (5.7) is designed to reduce the prob- 
lem to Theorem 6. 

There are elegant formulas for A,o X , An closely related to the decomposi- 
tion formulas in Gauss's elimination method. To obtain them suppose R is a 
covariance that is n-times differentiable in each argument. Define 

(5.10) Rij(s, t) = DliD23R(s, t), Rij = Rij(O, 0). 

Let a-, = 1 and for i > 0 let 

Roo ... Roi 
(5.11) ai= . . . 

Rio ... Rii 

If R(s, t) = EY(s) Y(t) where Y is n-times differentiable then as is the Gram- 
mian of Y(0), * *, y(i)(o) and ai is strictly positive when Y is nondegenerate 
at zero. Whenever ai > 0, i = 0, * , n the functions Ao, A n, 4 in (5.7) 
are unique and are given by 

Roo ... Roim-i Roo(O) t) 

(5.12) A;(t) = ( at-i)i R1i-1 R0(0,t) , 

Rio * *Ri;m-i Rio(O) t) 

i = 0, 1, ..., n. In particular, Ao(t) = R(O, t)/(R(O, 0))'. Note that Ai is 
independent of n for n > i. 

Define for i = 0, ,n, j = , * , n, 

Roo * Roi-i Roj 
(5.13) Aji = Ai(j) (0) = (ati ai-1)i.. .. 

Rio ... Rii-1 Rij 
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The (n + 1) X (n + 1) matrix A = Aij is lower semidiagonal and has an in- 
verse. The inverse matrix is denoted by C and can be written explicitly (13.6). 

The next theorem gives the conditions for a measure ,u to be equivalent to 

;tw. as well as a formula for d,u/d;twn whenever it exists. It is clear that whenever 
,u -,pw the path functions Y must be n-times differentiable and nondegenerate 
at zero. In this case the covariance R of ,u satisfies the hypothesis of Theorem 7, 
and R* and Ao, * * *, A. are uniquely defined. 

THEOREM 8. Let ,u be a measure with mean m and cov R. ,u -- ,Awn if and only if: 
m satisfies (5.6), R has a unique decomposition (5.7), and 

(5.14) DinD2nR*(s, t) = min (s, t) - fo rO' K (u, v) du dv 

for a (unique, symmetric) kernel K e L2 with 1 z a (K) and 

(5.15) A.(n )(t) = f ai(u) du + Ai(n'(O) 

for (unique) aO , a. in L2. 
When ,- gw. the R-N derivative is given by (5.16) provided that K satisfies 

the conditions of Theorem 2: 

(dA/dMwj)(X + m) = [d(l)aof?exp [-2jo ft H(s, t) dX0ff(s) dX04)(t) 

+ rO~' k(u) dX )(u) + X(k, k) 

(5.16) - 4E7.=o (e2 - (X(j)(0) + m(j)(0))2) 

- E = Eo =oe eje ((I + H)ai, aj) 

+ i$'=o eiJ oT ((I + H)ai(t)) dX(n) (t)]. 

Here I is the identity on L2, H is the resolvent of K at X = 1, d(*) is the determinant 
of K, and 

(5.17) En oci (x(i)(0) - m(i)(0)), j = 0, 1, ... , n, 

where C = A-', the inverse matrix of A in (5.13). For general K we must replace the 
double stochastic integral in (5.16) by the centered integral and replace d(1) by 
8(1) exp tr (HK). This modification is completely analogous to that of Theorem 3. 

(5.16) is cumbersome. Its importance lies in its generality rather than in its 
simplicity; in many cases dM/d.w. can be obtained more simply by other means. 

6. Conditioned Wiener processes. We next consider sub-Wiener processes, 
obtained from W by linear conditioning. The Wiener integral 

(6.1) X =P (y)=o (t) dW (t) 

is defined for V I L2; v is normal with mean zero and variance (t, #) = 

f T 
f2(U) du. 

Let V be any subspace of L2 = L2[0, T] and let v be the (Gaussian) measure 
obtained by conditioning Auw so that v(+I') = 0 for , e V. Then 7Av has mean zero 
and cov 

(6.2) Rv(s, t) = min (s, t) - *1(s)Ij(t) 
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where 

(6.3) *j'(t) - f ,f,j (u) du 

and #j, 2 * 2 is any orthonormal basis for V, contained in V. 
We may realize a process with measure u V as follows: 

(6.4) WV(t) = W(t) - Zj*j(t)Wj,, Wi = r7(0j) 

It is easy to check that WV has mean zero and cov R . Alternatively, let P1 , (o2, 
... be an orthonormal basis of the orthogonal complement of V in L2. Of course, 
Pl, ) 2 * * are not complete. Let '1l, 'l2, - - - be independent standard normal 
variables and define 1Dj as in (3.1). Then another realization of WV is 

(6.5) WV(t) = ? jl)j(t). 

The interest in (6.4) is that it is a realization on the same space as the original 
process W. 

As an example, take V to be the space generated by + = = 1. Then with 
T = 1, J(t) = t and (6.2) is 

(6.6) Rv(s, t) = min (s, t) - st. 

Now W1 = n(0) = f dW(t) = W(1) and (6.4) gives 

(6.7) WV(t) = W(t) - tW(l), 0 < t < 1. 

The process (6.7) is called the pinned Wiener process [5]. 
The processes (6.4) are mutually singular for different subspaces V, and V2 . 

Indeed, if l ? V1 but VI e V2 then n(#/) = 0 for ,iv1 but is normal with nonzero 
variance for AV2 so that li v' 

IAV2. What is the condition on u. so that A A V? 
The answer is given by the next theorem. 

THEOREM 9. ,u Vu if and only if 

(6.8) R(s, t) = Rv(s, t) - fI f K(u, v) du dv 

where K c L2 and in addition 

(6.9) ea (K) and K*= 0 for IeV. 

The mean must satisfy (1.3) and in addition 

(6.10) (k, A) = 0, ?V. 

In case (6.8)-(6.10) hold the R-N derivative is given by (2.5) where K is the unique 
kernel satisfying (6.8). When-K satisfies the conditions of Theorem 2, (2.4) is 
also valid. 

7. Stochastic linear transformations of W. Interesting classes of processes 
can be obtained by various linear transformations of W. Segal and others con- 
sider some nonstochastic transformations and with them realize some processes 
equivalent to W [21], p. 464. By means of a transformation depending on a 
stochastic integral we will realize any process equivalent to W. 
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Suppose M e L2. The stochastic integral 

(7.1) Z(s) = f M(s, u) dW(u), 0 < s < T 

can be defined for each s in such a way that Z is a.s. measurable [6], p. 430. As- 
suming Z so defined, we set 

(7.2) Y(t) = W(t) Z(s) ds 

and call Y the affine transformation of W with kernel M. Of course when M is of 
bounded variation in the second argument, we may write Y as an ordinary non- 
stochastic transformation by integrating by parts. The process Y is Gaussian 
and has mean zero and covariance 

(7.3) R(s, t) = rmn (s, t) - f'f ' K(u, v) du dv 

where 

(7.4) K = M + M*-MM*. 

As usual, M*(u, v) = M(v, u) and, of course, 

MM*(u, v) = JY M(u, y)M(v, y) dy. 

Let I denote the identity. Then by (7.4), 1 - K = (I - M)(I- M*). Since 
a(M) = a(M*), 

(7.5) 1 r (K) X 1 e (M). 

By Theorem 1 we obtain: Y --. W if and only if 

(7.6) 1 Ka(M). 

Suppose R is any covariance satisfying (1.1) and (1.2). It is simple to show 
that there is an M satisfying (7.4) and (7.6). Indeed, the kernel K of R has the 
Mercer expansion in L2, 

(7.7) K(s, t) = i Xjspj(s)pj(t) 

where Xj < 1 for all j. We may take M to be 

(7.8) M(s, t) = , [1 d= (1 - XjA'Pj(s)Vj(t). 
When all but a finite number of the signs in (7.8) are negative we have M e L2 
and it is easy to see that M = M* and (7.4) and (7.6) hold. 

We have proved the following theorem. Let ui be Gaussian with mean m and 
cov R. 

THEOREM 10. Suppose ,I -,uw. There is an M for which the process Y + m, 
where Y is given by (7.2), is a realization of ,u. In other words, the measure 11Y+m 

induced by Y + m satisfies 

(7.9) ILY+m = j. 

M is not unique. 
There are additional conditions one could put on M in order to make it unique 

in Theorem 8. However, none seems natural. 



332 L. A. SHEPP 

When M is Volterra 

(7.10) M(s, t) = 0 for s _ t 

the process Y is causal: Y(t) depends only on values W(-r) for Xr _ t. But we 
could not solve the problem of the existence and uniqueness of kernels M of 
Volterra type in (7.4). 

8. A discussion of previous work. I. Segal considered a nonstochastic trans- 
formation S of W [20], p. 22; [21], p. 464. He defined 

(8.1) S(t) = W(t) + f ' N(t, u)W(u) du, 0 < t < T. 

N is assumed continuous and Nt e L2. The transformation (8.1) generalizes an 
earlier one of Cameron and Martin [8]. It is easily seen that (8.1) is a special 
case of (7.2). Segal asserts that S - W under the stated conditions on N. How- 
ever, note that a spectral condition analogous to (7.6) is needed. Even if this 
correction is made, (8.1) is not "best possible" as Segal claims. The stochastic 
transformation (7.2) is better because it gives the most general transformation 
equivalent to W (Theorem 10). 

In the case IA = $Aw+m,X a translate of ,uw, the condition (1.3) as well as the 
formula for d,u/d,u w was known and is due to Cameron and Martin [6], and in the 
general case to Segal [21], p. 462. 

D. E. Varberg [26] gave a formula for dA/dAw when R admits a certain factoriza- 
tion. His formula is based on a transformation of Woodward [27], which is 
simriilar to (8.1). Varberg requires many complicated additional assumptions. 
These complications arise because: (a) his approach is based on a transforma- 
tion which is not general enough and (b) d,u/d,uw itself depends on the transforma- 
tion only through the covariance of u-many transformations give the same 
covariance as is shown by the manifold nonuniqueness of M in Theorem 10. 
For this reason it is better to work with the covariance directly. It has been 
brought to my attention by R. H. Cameron that D. E. Varberg in an unpublished 
manuscript has independently obtained an equivalent form of the sufficiency 
half of Theorem 1. 

We should mention that a condition similar to (1.1) and (5.14) appears in 
work of Yu. A. Rozanov [19], p. 455. 

We acknowledge with pleasure an informative private lecture given by J. 
Feldman and L. Gross and many profitable discussions with S. P. Lloyd.2 

9. Double Wiener integrals. We will now define the centered double Wiener 
integral 

(9.1) J~~~(X) -f cf " H (s, t) dX (s) dX (t) 
for H E L2 and for almost every function X. 

A simple function H has the representation 

(9.2) H(s, t) = X >I ajkxjk(s, t) 

3Note added in proof: A. M. Yaglom communicated that I. M. Golosoy recently obtained 
results, announced in Dokl. Akad. Nayk CCCP 166 (1966) 263-266, which should be com- 
pared with ours. He obtains, among other things, an equivalent version of our Theorem 1 
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where 

(9.3) Xjk(82 t) = 1 (82 t) e (t_-1 tj) X (tk-1 X tk) 

= 0 otherwise 

for some partition, 0 = to < ti < ... < t. = T. When H is simple define 

(9.4) I(X) = EZr 1 ajk(X(tj) - X(tj..l))(X(tk) -X(tk-l)) 

and 

(9.5) J(X) = I(X) - fo H(s, s) ds. 

It is important and also easy to check thatJ = JH does not depend on the parti- 
tion used to define it. J is not normally distributed, but has mean zero and 
variance 

(9.6) f J2 d,w = 2f fo H2(s, t) ds dt. 

Now suppose that H is any element of L2 and that Hn is a sequence of simple 
functions for which Hn -+ H in L2. By (9.6),JH. is a Cauchy sequence in L2(,4W). 
We define JH = lim JH . It is easy to check that JH does not depend on the 
sequence Hn used to define it. 

We call J the centered integral because 

(9.7) EwJ = fJdw = O. 

The c between the integral signs in (9.1) calls attention to (9.7). For later use 
we point out that for H(s, t) = -p(s)'p(t), a degenerate kernel, we get 

(9.8) ef cfo p(s)vp(t) dX(s) dX(t) = q'(4p) - ((p, (p) 

where q(qp) is the single Wiener integral 

(9.9) j((p) f Jo p(t) dX(t). 

The (uncentered) double Wiener integral 

(9.10) I(X) = J'oT fJ H(s, t) dX(s) dX(t) 
is now easy to define. We define I = IH for continuous H by 

(9.11) I(X) = J(X) + f ' H(s, s) ds. 

There is an important formula for I obtained by two integrations by parts 
when H is of bounded variation. We say H is of bounded variation when 

(9.12) Var (H) = sup Z H Z jH(tj, tk) - H(tj_i X tk) - H(tj X tk-l) 

+ H(tj_l X tk-1) 

is finite, the sup being taken over all partitions. In this case we have 

(9.13) I(X) = H(T, T)X2(T) - X(T)fJ X(s) d8H(s, T) 

-X(T)f o X(t) djI(T, t) + rO rO X(s)X(t) d, dtH(s, t). 

by a rather different method. He then applies the theorem to obtain conditions for equi- 
valence and singularity for an arbitrary Gaussian measure and a Gauss-Markov measure. 
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One proves (9.13) first for simple functions and then for general H of bounded 
variation by passage to the limit. The advantage of (9.13) is that it does not 
involve stochastic integration and so is defined for every continuous function X. 

III. PROOFS OF THE MAAIN RESULTS 

We first obtained Theorems 1-3 and 9 heuristically, using a direct evaluation 
of d,u/d,uw as a limit of finite-dimensional densities, 

(d,u/dAuw) (X) = lim [p((xi, , xn)/Ppw(Xi, w . , x,)], xi = X(ti), 

where 
=() (27r)-f'2jRj- exp (R-'(X - in), (x - )) 

The limit is taken as the partition 0 = to < t1 < ... < t. = T becomes dense. 
While a rigorous proof along these lines is difficult and involves many details, 
it can be given when the kernel K of R is smooth. We proceed by the easier but 
indirect method, via (3.2) and the simultaneous representation. 

The advantage of using .uw and the related measures as the catalysts stems 
from the properties of white noise, formally W'(t). Many have tried to calculate 
d,u/dv directly by getting a simultaneous representation of ,u and v in terms of 
independent variables. What would be needed is a set of simultaneous eigen- 
functions. However, these do not exist in general (note that the claim in [28], 
p. 334, about the existence of generalized eigenfunctions is not correct). In 
case v = .Mw such eigenfunctions do exist and are in L2 as we have seen. Basic 
is the fact that the covariance of white noise is formally the 6-function and 6 can 
be expanded in any complete set 

6(s, t) = Ej oj(s)(t). 

Of course, this expansion is only formal, but upon integration it becomes precise. 

10. Proof of Theorem 1: Sufficiency. Suppose , is a measure with mean m 
and cov R that satisfy (1.1)-(1.3). We will prove that ,u --. uw by actually 
giving d,u/duw. Let (pi, (P2, ... denote the eigenfunctions of the kernel K and 
define the Wiener integral 

(10.1) = X(X) = rO (t) dX(t), j = 1, 2, .. 

Define 

(10.2) Fj(X) = (1 - X,)-exp [-'(Xj - k )2/(l - Xj)]/exp [-1XV2]} 

where kj = (k, spj), k = m'. 
LEMMA 1. The product 

(10.3) F(X) = f==1 Fj(X) 

converges a.e. (,uw) and is integrable iw . 
PROOF. First, HI (1- X,)eX3 converges because E X,2 < oo . Using EI k;< X 

(by (1.3)) and the 3-series theorem, it is an easy exercise to prove that 

0=i (Xi - ki)2/(1 - Xi) - X -X 
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converges for a.e. X. Thus (10.3) converges and F is a random variable. 
To prove that F e L'(,uw) we'use an idea due to Kakutani [14]. Let 

GN = iN=j (F.)'. 

We already know that GN(X) -+ (F(X))' for a.e. X. We will show that GN 
is a Cauchy sequence in L2(Mw). The limit of the Cauchy sequence must also 
be (F)'. But L2 is complete and so (F)1 e L2(,Mw), or F e LV(Mw). 

To prove that GN is a Cauchy sequence observe that 

EwF, = 1, E~2(F,)' =3 2 = exp [--kI,2/(2 - Xj)](1 - Xj) /(1 - j/ 

Now X, , X2, are independent (MAw) and hence so are F1 , F2, * . For M < N 
we have by direct calculation 

(10.4) EW(GN - GM)2 = 2 - 2 
N 

Ew-(Fj) = 2(1 - +i d>) 

Again using ? X,2 < oo and ? kj2 < oo it follows that f Pi converges. The 
tail of the product tends to unity and so GN is a Cauchy sequence. The lemma is 
proved. 

LEMMA 2. F is the R-N derivative; F = dl/dsw . 
PROOF. What we must show is that 

(10.5) A(A) = fAF(X) dAw(X), 

where A is any measurable set of functions X. We prove (10,5) first for sets A 
of the form 

(10.6) A =fXj < a,, X2 < a2, **,X. < an.. 

Once again, X1, X2, *** are independent (MAw) and hence so are F1(X), *** 
Fn(X). The expectation of a product of independent variables is the product 
of the expectations and by direct calculation 

(10.7) fAF(X) dsw(X) = Hjj7=i-'((aj - kj)/(ll - ) 

where b is the standard normal df. I 
Relative to ,u the random variable Xi is Gaussian and has mean 

(10.8) E,fo pj(t) dX(t) = ((pj, k) = kI. 

The covariance of Xl, X2, ... is 

(10.9) E,(Xi - k;)(Xj - kj) = f ' C'o p(s)spj(t) d8 dtR(s, t). 

Applying (1.1), we obtain 

(10.10) Jfo' f ,i(s)spj(t) d8 dtR(s, t) = (';, (pi) - (K'pi, Xp) = (1 -As)ai. 

Thus X1, X2, * * * are also independent with respect to ,u. It is now easy to check 
that ,u(A) agrees with (10.7) and hence (10.5) follows, at least for sets of the 
form (10.6). 

In order to prove (10.5) for any measurable set A we find by direct calculation 
that 

(10.11) E4( 1X)j(t) - X(t))2 = 0 
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for each fixed t. It follows that almost surely (i.w) we have 

(1Q.12) X(t)= = jX),(t) 

and so the or-field generated by {Xi} and sets of probability zero (,uw) includes 
the measurable sets (the a-field generated by X(t), for 0 ;9 t ? T). We have 
already proved (10.5) for the c-field generated by {XJ} and Lemma 2 follows. 

We have shown that when (1.1)-(1.3) hold, the R-N derivative dM/d,1w exists. 
This derivative is a.s. positive because the infinite product converges and it 
follows that ,u I-. w. Without using the positivity, the, equivalence would also 
follow from the dichotomy theorem of Feldman and HAjek. We turn to the 
other half of Theorem 1. 

11. Proof of Theorem 1: Necessity. At this point we use an important theorem 
of Segal [21], p. 463. The following proof of the necessity was suggested by J. 
Feldman. 

Let ,u be a measure with mean m and cov R and suppose that u '-, u w . Con- 
sider the Hilbert space H = L2[0, T] and define the bilinear form B: For so e H 
and V/ e H define the random variables tq(qp) and I (4L ) by the Wiener integral 
(9.9) and set 

(11.1) B(so, f) = f,4 nw(4&) d,- (fn p() dM) (f n(y6) dy). 

The form B is positive, B(sp, sp) > 0, and is bounded, 

B((o, so) < (so, so) X constant 

(see Lemma 1 of [15]). Consequently, there is a linear transformation B [18], 
p. 202, with 

(11.2) (Bep, A) = B(qo, Aj). 

Since B is a positive linear transformation it has a squareroot T [181, p. 265. 
Segal's theorem says that if ,u -. ,uw (in his terminology nfT ..' n) we must have 

(11.3) T*T = B = I-K 

where I is the identity and K is Hilbert.Schmidt, K e V2. For all so e H, L e H 
we get by (11.3), 

(11.4) (Bqo, A) = (p, *)-(Kyp, itp) = BQp, A)* 

Now choose s = 18, I = it . We have (1t) = rO dX(u) = X(t), since X(0) = 

0 a.s. ,uw. We get by (11.1) 

(11.5) B(18,f l t) =R(s, t). 
By (11.4) 

(11.6) R(s, t) = min (,s, t) -f f0 K(u, v) du dv. 

This proves (1.1) necessary. 
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Next we prove the spectral condition on K, Xi < 1 for all j. By (11.4) we get 

(11.7) (p, so) _ (K4p, <) 

since (Bvp, p) _ 0. The largest eigenvalue of K is given by Xm. = sup,, (K<, p)/ 
(so, so) and so Xi < 1. To show that 1 z o(K) we may argue as follows. Suppose 
K(p = p, (p, v) = 1. We see that a(f) is an a.s. constant with respect to IA since 
it has variance (Bp, p) = 0 by (11.4). On the other hand, with respect to lAw, 

t,(v) has variance one. This means I, I ,uw and we get a contradiction. This 
proves (1.2) necessary. 

(11.7) shows that if R has the form (1.1) and R is a covariance then a(K) C 
(- oc, 1]. Next we show that if R has the form (1.1) and sp(K) C (- oo, 1] 
then R is a covariance. This will prove the remark made below Theorem 1, R is 
nonnegative definite if and only if Xj < 1 for all j. 

What we must show is that 

(11.8) (R , ()p 0 

for all so e L2. Let 

f(t) = - fp(u) du. 

Integration by parts applied twice gives 

(11.9) (R(p, p) = ib(s)>(t) d8dtR(s, t) = (1,)- (K- b,) 

But v(K) C (- oo, 1] and so (, b) - (Kc, b) > 0. We get (11.8) immediately. 
We remark that (1.3) cannot be replaced by the condition: (Ry, so) > 0 for 
nonzero qo e L2. 

Next we prove (1.3). Let v(R, m) denote the Gaussian measure with mean m 
and cov R sol, = v(R, m). We have 

(11.10) , u = v(R, m) v (Rw, 0) = lw 

where Rw(s, t) = min (s, t). Ry a theorem of C. R. Rao and V. S. Varadarajan 
[17], p. 308, the measures must also be equivalent when the means are ignored: 

(11.11) v(R, 0) r-' v(Rw, 0). 

By considering the 1-1 path transformation X(t) -+ X(t) + m(t) we see that 
(11.11) gives 

(11.12) v(R, m) v (Rw, m) = w+n 

Comparing (11.10) and (11.12) and using the fact that,--, is an equivalence rela- 
tion we get 

(11.13) IAw JW+M. 

The condition on m in order that ,uw --' lAw+m was found by Segal [21], p. 462. 
It is precisely (1.3). This completes the proof of Theorem 1. 

In order to prove (1.4) we observe that whenever (1.1) holds K is given by 
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(11.14) K(s, t) = -(a9/s) (a9/t)R(s, t), s $ t. 

Putting (11.14) back into (1.1) we get for s < t, 

(11.15) R(s, t) = s + Is (Ju R12(u, v) dv) du + fJ (f R12(u, v) dv) du. 

Integrating on v and using R(0, t) -0 we get 

(11.16) R(s, t) = s + f" Ri(u, u-) du + fo (Ri(u, t) - R1(u, u+)) du. 

This gives immediately 

(11.17) s = f' (Ri(u, u+) Ri(u, u-)) du 

which is the integrated version of (1.4). 

12. Proof of Theorems 2 and 3. We will now show that the product formula 
(10.3) for F = dM/dMw can be expressed in terms of the Fredholm quantities. 

Let K denote, as usual, the kernel in (1.1) of the covariance of t -,u tw . The 
eigenfunctions of the resolvent H of K are (pi, .02, * * , the same as those of K, 
and the eigenvalues y of H satisfy yj = X1/(1 - Xj), j = 1, 2, * . . We note 
that E 'Ye < oo and so H has the L2 expansion 

(12.1) H(s, t) = EjyjVj(s)Vj(t). 

With Xj = JoT (pj(t) dX(t) as in (10.1) we get formally from (12.1), 

(12.2) = X J f'T H(s, t) dX(s) dX(t). 

Since k _ j kjp1 and Hk = E kjYjyPj we get formally 

(12.3) EjT=l X,k,/(l - Xj) = BT k(t) dX(t) + f T f T H(s, t)k(s) ds dX(t) 

and 

(12.4) Z= I kj2/(1 - Xj) = (k,k) + (Hk,k). 

Substituting (12.2)-(12.4) into (10.3) we get 

(12.5) F(X) = H=1 Fj (X) = (d(1)- exp [ f- 
- 

T H(s,t) dX(s) dX(t) 

+ B'T k(u) dX(u) + f T Hk(t) dX(t) - -(k, k) - -(Hk, k)]. 

Replacing X by X + m gives (2.4). 
To prove (12.2) rigorously we observe that by (9.8) the partial sum 

(12.6) J= X,2'y,- Y=1 yj + 
O 

c 
rO HN(S, t) dX(s) dX(t), 

where 

HN(S,Nt) = = N = 1, 2, 

Since HN -* H in L2 we have in L2(M1W) 

(12.7) fBT c fBT HN(S, t) dX(s) dX(t) -- f T c fT H(s, t) dX(s) dX(t). 

Now suppose that K satisfies the assumptions of Theorem 2 so that K is con- 
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tinuous and of trace class. It follows that the resolvent H is continuous and of 
trace class. H is also symmetric, of course, and it is known that these assumptions 
on H imply that 

(12.8) tr (H) = 7= Jo H(s, s) ds. 

Although this fact is well known in the theory of integral equations, apparently 
no published reference exists. Passing to the limit in (12.6) we have 

(12.9) = y + J c f 
' H(s, t) dX(s) dX(t). 

Using (12.8) and 

7c J' H(s, t) dX(s) dX(t) = f' fJ' H(s, t) dX(s) dX(t) - f 
' H(s, s) ds, 

we obtain (12.2). 
To prove (12.3) rigorously we observe that 

(12.10) Z7L Xkjl/(1 - Xj) = Jf' (kN(t) + HkN(t) ) dX(t), 

where kN = =iL kjvj . As N -> 00, kN -* k in L2. By the convergence properties 
of Wiener integrals we get (12.3). 

Since the rigorous justification of (12.4) is straightforward we have proved 
Theorem 2. Theorem 3 can be proved similarly. Instead of (12.2) we must use 

(12.11) _= (Xj2 - 1)yj = f c f ' H(s, t) dX(s) dX(t), 

which follows from (12.6), letting N -> oo. Of course, now Ejyj does not neces- 
sarily converge. 

The trace of HK is 

(12.12) tr (HK) = EjyjXj 
and the proof of (2.5) is completed by a short calculation. 

We omit the proof of Theorem 9 because it proceeds along the same lines as 
those of Theorems 1-3. 

13. Proof of Theorem 7. Let R be the covariance of an n-times differentiable 
process Y nondegenerate at zero. Let Ao X * * * , An be defined by (5.12) and R* 
be defined by (5.7). We will prove that R* is a covariance by showing that it is 
the covariance of the process Z, 

(13.1) Z(t) = Y(t) - Z7-no Yt'f(O)Bj(t), 

where 

(13.2) Bj(t) Z,?=oBBijRo(O, t), j = 0, * n. , 

and Bi, = R7j' is the inverse matrix of R in (5.10). The matrix R = Rij is positive- 
definite and so has a lower semidiagonal (lsd) square root which is unique and is 
given by Gauss's formula [8], p. 37. Comparing Gauss's formula with (5.13) we 
see that A is the lsd square root, that is 

(13.3) Rij= o AikAjk, A Ai = 
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i = 0, * * * , n andj = 0, * * * , n; in symbolic notation R = AAT. 
The covariance of Z is by direct calculation 

(13.4) Rz(s, t) = R(s, t) - Z7o D=o BJkRJo(0, s)Rko(O, t). 

We will now show that the second term on the right, 

(13.5) ,=o k-oB,kRjo(Oy s)Rko(O, t) = k==o Ak(s)Ak(t), 

which will prove that R*(s, t) = Rz(s, t), the covariance of Z. Define the matrix 
C= C%j,i= O, *= ,nandj= 0, nby 

Roo *b Ro,-1 0 

(13.6) Ci, = (ai ai-l) . Rji_- 1 

Rio ... Ri-1 0O 

where the last column is zero except for the element in the jth row, j < i, which 
is unity. We have C(, = 0 if i < j and so C is lsd. Multiplying (13.3) on the right 
by R-t and adding, j = 0, n, we get 

(13.7) 8s = 
~k=uo Aik I=o AjkR-1. 

But using the formula (5.13) for Ajk we get 
n 

Roo *... Rok_l Roj R7 t 
n o 

(13.8) E AjkR 1 = (ak ak-1) . =Ckl. 

ioRko Rkk-l E Rkj Rzt' 
j-o 

Putting (13.8) into (13.7) we get 5,t = Ek=oAikCk, and so C =.A-1. 
We see that R-1 = (AAT)-1 = CTC and so 

n n n Roo ... Ro0-1 uo 
(13.9) ,ZRiu;Vk = E (a? za-1) 

j=O k=O t=0 Rio ... R1-1 Ut 

Roo ... Roz-i vo 

Rio ... Rttl- Vt 

where uo Un , VO Vnare variables. Settingu; = Rio(Oy s), j = O * , n 
and Vk = Rko(0, t), k = 0, * * , n we obtain (13.5). 

We have proved that R* is a covariance. In fact it is the covariance of Z. (5.8) 
(i) is proved. To prove (5.8) (ii) we observe that DiD2SR* is the covariance of 
Z(') and by (13.1) 

(13.10) ZU)(0) = y(i)(0) - Z7=o Y(D (O)Bj(t)(0). 
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But B P((0) = E O BkejRI = 5.j by (13.2) since B = R-1. Hence (5.9) holds 
and so (5.8) (ii) is proved. Now (5.8) (iii) follows immediately from the defi- 
nition (5.12) of Ao, * * , An . Note that 

Roo .. Roi-1 Roi 
(13.11) Ai() (0) = (ai ai-i). * (as/as-l)'i 

Rio.. * Rii-1 Rii 

It remains only to prove the uniqueness of (5.7). Suppose that (5.7) holds 
where Ao, * * *, A,, and R* satisfy (5.8). Differentiating i times on s and j times 
ontand settings = t = Owegetfori = 0, * * ,nandj = 0, ... n, 

(13.12) Rij = k=o Ak Ak (O) 

We have used the fact that DiD2JR*(0, 0) = 0 which follows from (i) and (ii) of 
(5.8). Using (5.8) (iii) we see that A = Ak i)(0) is an lsd square root of R which 
we know to be unique. Now we differentiate (5.7) j times on s only and then 
set s = 0. Again, DlIR*(0, t) = 0 and we get 

(13.13) Rjo(O0 t) = Zs"'=o A ) (O)Ai(t)X j = 0, *. , n. 

The matrix A = Ai(" (O) is nonsingular because of the nondegeneracy at zero 
and so the linear equations (13.13) have a unique solution Ao(t), * , An(t) for 
each fixed t. We have proved Theorem 7. 

14. Proof of Theorem 8. Let ,u be a measure with mean m and cov R. The 
proof of Theorem 8 will be based on the decomposition (5.7). Given a process 
Z with covariance R* we may realize a process Y with covariance R by setting 

(14.1) Y(t) = E7.o nt,Aj(t) + Z(t) 

where to, * * *, in are standard normal variates independent of Z. Using (14.1) 
we will obtain the simultaneous representation of ,u and ,Aw. . 

Suppose that m and R satisfy the hypothesis of Theorem 8. Let , , ..2 be 
the complete o.n. system of eigenfunctions of K in (5.14) and set 

(14.2) 4fn-(t) = Jf' [(t - u)'/n!]Vpj(u) du. 

The process W. has the representation 

(14.3) Wn(t) = 7=ot'/j! + n (t) 
where to, * * *, ), XX1 are independent standard normal variates on some 
space. The process Y defined on the same space as the i's and q's by 

(14.4) Y(t) = ot=oj,Aj(t) 

+ I=. [kI + (1 - Xj)'17jI'ij,n(t) + f=Om(0)t'/j! 

has mean 

EY(t) = =1 k=4,n (t) + E7= m(j)(O)tl/j! = m(t) 
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by (5.6) and covariance R in (5.7) as a short calculation shows. Now it is easy to 
obtain a formal expression for dMI/dMw, . We compute the formal likelihood ratio 
under the two measures as follows: 

We expand (formally) 

(14.5) X(t) = X =oX()(O)titi! + ? X, = fTpj(u) dX1Xt(u) 
and denote Xi = X(i)(0). Under ,'wn we have Xi = (i, 2 = t7j . Under ,u we 
get with mt = mt(0) from (14.4), 

(14.6) Xi = mi + Z7=o t A ()(O), 

(14.7) Xj = kj + ,j(l - Xj)' + ELo {iaijX 

where aij = (ai, (pj). Inverting (14.6) with C = A-1 given by (13.7), we get 

(14.8) tj = ej= =o Ci(X' - mi). 

Therefore, 

(14.9) i= (Xj - kj - uj)/(l- , Uj = =E=oeiaij. 

The likelihood ratio becomes 

(14.10) dM(X)/dAwn(X) 

= exp [-2 Z=o (ej2- (Xj)2) - o (,2 - X 2)]IJI 

where IJI is the Jacobian of the transformation (14.6), (14.7) of X', Xj tj, ,j* 
Now jatja/XIj = lCjil = Coo ... Cnn because C is lsd. Now Cii = 1/Aii and 
Aii = (ai/ai-i)' by (5.13). We get Coo ... Cnn = (an) . We have laii/aXjI = 

[][Ij (1 - Xj))]- = [d(l)]-' and so IJI = (d(l)an)-. Now, 

I (nq2 _ X 2) = ?=1 [(X,-kj)2/(1 -Xj) - X] 

-2 , (Xj - kj)ujl(1- X) + E UI2/(1 Xj). 

For the first term on the right see (12.2)-(12.4). For the others we obtain 

(14.11) E=i1 (Xj - kj)uj = oei fo' a1(t) dX0f(t), 

,ji=i (Xj - kj)ujXj/(1 - Xi) = E n=o e0 fbo fbo H(s, t)ai(s) ds diZ8) (t), 

where X(t) = X(t) -m(t) and also 

(14.12) =E k=Oeiek(ai, ak), 

1 U j2Xj/(1-X1) = Z=o EkZ==O eiek(Hai , ak). 

Now (14.11) and (14.12) give (5.16). The formal calculations can be made 
precise when the hypothesis-(5.6), (5.14) and (5.15)-of Theorem 8 holds. 
This procedure is an imitation of the sufficiency proof for Theorems 2 and 3 and is 
omitted. 

The necessity of (5.14) is easy because if X is a process with X(t) Wn(t), 
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it follows from Theorem 6 that X f)(t) - X( () W(t), and so (5.14) follows 
from (1.1). 

To prove the necessity of (5.6), suppose X is a process with mean m and 
X -Wn . It follows, see Section 12, that W. -' Wn + m. Using the transforma- 
tion Y(t) y(n) (t) - y(n) (0) on both sides of the latter equivalence we obtain 

(14-13) Wn(n (t) _ Wn() )(O) , W,(n) (t) _ W,(nf) () + m(r)() - m(nf) () 

But W(t) = Wn (n)(t) - W.(n)(O) and so W ^-' W + m(n1 (t) - m(n)(O). Now 
(1.1) gives (5.6) immediately. 

The necessity of (5.15) is formally obvious but apparently is difficult to prove. 
We proceed as follows: Suppose X is a process and X Wn . Using the simul- 
taneous representation of X and Wn, (14.3) and (14.4), we see that the sequences 
of random variables S31 = t, j = 1, 2, ***, and Sj2 = (1 - 'X)'ni + kj 
+ = aijq, j = 1, 2, * , are equivalent. Here to, * n * *, i, ... are inde- 
pendent, standard normal variates. In order to prove (5.15) we must show that 

(14.14) i , i =O, 1, * ,n. 

Let I,u and 4t2 be the measures induced by S' and s2 respectively on the space of 
infinite sequences. Then I,u ,U2 and so the Hellinger integral [14] 

(14.15) f (dAj d,2)1> 0. 

The integral can be evaluated explicitly. Given to, * * n, i both S' and S2 are 
sequences of independent random variables and so 

(14.16) f (d,l dM2)' = 
r- 

- 
(-2(o2 + + tn 

1j=1 rj(6x *** an)dto ... d. n 

where 

(14.17) r1 (27r) f-'o exp (-4x2) exp (-4(x - b )2/(1- Xi)) dX/(j 

and bj = Ik + $~'=o aijti, j = 1, 2, *-- . Evaluating the integral (14.17), (14.16) 
becomes 

(14.18) A*r- 2 X 
exp (-(& + 

** 
+ tn )) 

fl7=, exp (-b12/4(2 - X)) do ... dtnX 
where 

(14.19) A = = (1 - Xi)/(1 - Xj/2)'. 

The product (14.19) converges because Z X j < oo. Now (14.18) is positive by 
(14.15) and it follows that 

(14.20) 0=0IV < X 

for a set of so%, * *, in of positive measure in Euclidean n + 1 space. We have 
already proved the necessity of (5.6) and so E k j2 < oo. Thus 

(14.21) = 2 
< 00 



344 L. A. SHEPP 

for a set of o, *... , in of positive measure. It follows readily that (14.14) must 
hold and so (5.15) is proved. This completes the proof of Theorem 8. 

IV. EXAMPLES OF R-N DERIVATIVES 

The examples given here will be applied in the next section in order to obtain 
new information about W and other processes. They will also serve to illustrate 
how Theorems 2 and 8 are applied. 

15. Scale changes of W. Let h be an absolutely continuous and increasing 
function on [0, T] with h(O) = 0. Define the process 

(15.1) Z(t) = [h'(t)]-'W(h(t)), 0 < t < T. 

As can be seen, the differential increments of Z have the same variance as those 
of W. Under very general conditions on h, which are given precisely by the follow- 
ing theorem, Z W. 

THEOREM 11. Z W if and only if h' = 92 where g is absolutely continuous and 
9 =^yeL. 

For smooth h, say h e C3 the R-N derivative.is 

(15.2) (dyz1/dyw)(X) = (h'(T)lh'(0))' 
*exp {-[X2(T)/4]h"(T)/h'(T) f I f(t)X2(t) dt} 

wheref = -2((h"/h')' - 1(h"/h')2), the Schwarzian derivative of h. 
Doob [5] considered the more general scale change Z(t) = v(t)W(u(t)/v(t)) 

with covariance 
(15.3) R(s, t) = u(min (s, t))v(max (s, t)). 

Such covariances were called triangular by Varberg [25], who calculated the R-N 
derivative for equivalent triangular processes by evaluating directly the limit of 
the finite dimensional densities. The densities can be written explicitly because Z 
is a Markov process. 

In order to prove the theorem we find from (15.3) that 

(15.4) K(s, t) =-u'(s)v'(t), s < t, 

= -u (t)v'(s), t < s, 

where u = h/(h')', v - (h')-i. Now if y e L then v' = y, u' = hy + jgj-1, are 
both in L2 and so K e L2. Conversely if K e L2 then v' and hence y e L2. We will 
see later that 1 t a (K) is automatically true and so by Theorem 1 we have proved 
that y e L2 is necessary and sufficient. 

Now assume that h is smooth, say h e C3. We make this assumption in order 
to use integration by parts at one step to express d,AzId,Aw in as simple a form as 
possible. 

We will calculate the Fredholm determinant and resolvent of K at A = 1. The 
eigenvalue problem K(p = Xp can be written 

(15.5) -v ' (u'qs) - u' t (V ) = X<p 
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where the arguments have been suppressed. Now it is easy to check that 

(15.6) u" = fu, v" = fv, 

(15.7) u(0) = 0, v'(T) = -1v(T)h"(T)/h'(T) 
where 

(15.8) f 2 -2[(h"/h')'- 

and so R is in fact a Green function. Letting y(t) = so, a direct calculation 
shows that the eigenvalues X of (15.5) are those X for which 

(15.9) y" = (1 - X71)fy, y(0) = 0, y'(T)/y(T) = (1 - ?J')v'(T)/v(T) 

has a nontrivial solution y. Now it is clear that X = 1 e sp (K) because if K4o = s 
then by (15.9) y = 0 and so s = 0. To handle nonsmooth h, we would replace 
(15.6) and (15.9) by integrated versions, integral equations. The details are 
straightforward. 

We want d(1) = II (1 - X) where X, satisfy (15.9). Define for any complex 
,B the unique solution yp to 

(15.10) Y"= ffY#, y(0) = 0, yO.'(0) = 1. 

Set 

(15.11) D(A3) = yp'(T) - flyp(T)v'(T)/v(T). 

It is known from the general theory of differential equations that yp(T) and 
yp'(T) depend analytically on 13. Furthermore it is not difficult to show that 
yp(T) is entire and of order 1. Also yp'(T) is entire and of order 1. It follows that 
D(Al) is entire and of order 2-hence D(13) is its own canonical product: 

(15.12) D(13) = II (1 - 0/13>), 

where f,1 ?32, * ... are the zeros of D. Now, we have 

(15.13) 13 =1 _ -1 

because D(13) = 0 if and only 13 = 1 - X71 where X satisfies (15.9) for some non- 
zero y = yp (note that y,B is nonzero because yp'(0) = 1). Therefore 

d(l) = II(1-X,) = (II (1- -7))1 = (D(1)V'. 

What is D(1)? By (15.11), 

(15.14) D(1) = [y1'(T)v(T) - y1(T)v'(T)]/v(T). 

For 13 = 1 (and only for this value), 

(15.15) yA'(t)v(t) -yp(t)v'(t) = constant 

being the Wronskian. Putting t = 0 to evaluate the constant we get 

(15.16) D(1) = v(0)/v(T) = (h'(T)/h'(0)j). 
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Finally, 

(15.17) d(l) = (h'(O)/h'(T))'. 

Next we calculate the resolvent kernel H. It will turn out that 

(15.18) H(s, t) = 0(max (s, t)) 

where 

(15.19) @'(t) = -f(t), @(T) = lh"(T)/h'(T) 

H is the unique continuous solution to 

(15.20) H-K= HK =KH. 

It is straightforward to check that (15.18) satisfies (15.20) and so (15.18) is 
proved since H is unique in (15.20). 

By (2.4) we have since m = 0, 

(15.21) (d,uz/d,uw)(X) = [d(1)] iexp [-1 fJT fJT H(s, t) dX(s) dX(t). 

Applying (9.13) or proceeding formally (note that X(0) = 0) we have 

Co Co H(s, t) dX (s) dX (t) 

(15.22) = 2 fT 
(f'H(s, t) dX(s)) dX(t) 

= 2 fT (ft0 (t) dX(s)) dX(t) = fT 0(t) dX2(t) 

= X2(T)O(T) + fjX2(u)f(u) du. 

We obtain (15.2) immediately and Theorem 11 is proved. 
Let W* be the pinned Wiener process, 

(15.23) W*(t) = W(t) - tW(l), 0 < t < 1. 

The scale change 

(15.24) Z(t) = [h'(t)]-IW*(h(t)) 

will have Z W* when h satisfies the hypotheses of Theorem 11 and in addition 

(15.25) h(l) = 1. 

By identical techniques, this time using Theorem 9, one shows that the R-N 
derivative is 

(15.26) (d,.z1/dyw*) (X) = (h'(O)h'(1))*i exp [-- f f(t)X2(t) dt] 

where f is again the Schwarzian derivative of h. (15.26) will be applied in Section 
18 in order to evaluate certain integrals. 

16. The linear covariance. Consider the measure , with m = 0 and covariance 

(16.1) R(s, t) = '(1 - It - sl) 
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with T < 2. Now ,u ',-'w and we will use the decomposition method of Theorems 
7 and 8 in order to obtain dMu/dMuw0 . Recall that Wo(t) = to + W(t). 

For n = 0 and m = 0, (5.16) becomes 

(dM/dMwo) (X) = [d (1) R(O, 0)f-? exp [- fT JoJoT H(s, t) dX (s) dX (t) 

(16.2) + 2X2(O) ( -[R(O, O)]-1((I + H)ao, ao)) 

+ X(O)[R(O, 0)]f f fo (I + H)ao(t) dX(t)]. 

In the case (16.1) we have Ao(t) = (1 - t)/2", ao(t) =-1/21. We get in turn 

R*(s,t) =s- st/2; s< t, 

(16.3) K(s, t) =2, 

H(s, t) = 1/(2 -T), 

so that K and H are constants. The spectrum of K is the single element X = T/2. 
We must exclude T 2 by (1.2) and indeed for T = 2 it is clear that A I Awo 
since Z(2) = -Z(O) a.s. for A = Az . We obtain d (1) = 1- T/2. 

We obtain further 

(I + H)ao(t) = ao(t) + foT H(t, s)ao(s) ds 

(16.4) = -22/(2 -T) 

((I + H)ao, ao) = T/(2- T), 
g 'fg H(s, t) dX(s) dX(t) = (X(t)-X(O))2/(2 - T). 

We put all the above ingredients into (16.2) and we get 

(16.5) (dA/dAwo) (X) 
= [2/(2 - T)'] exp [X2(0)/2 - (X(O) + X(T) )2/2(2 - T)]. 

(16.5) can also be obtained by a direct passage to the limit from the finite 
dimensional densities of ,u which have been found explicitly by Slepian [23]. 
The results agree. 

We draw attention to the normalization inherent in considering the Wiener 
process with unit diffusion constant. A process Z may be equivalent to oW, 
for some a- # 1, rather than to W itself. This is only a scale factor and gives no 
trouble. We get Z/l- W and 

(16.6) (dAz/dAaw) (X) = (dAz,o/dAw) (Qh-'X). 

Sometimes o- = 1 is not the most convenient normalization. Instead of (16.1) 
it is more usual to consider 

(16.7) k(s, t) = 1 -It - SI. 

Let us denote by ,u the measure with cov R and mean 0. Let juo denote the measure 
,u conditioned so that X(0) = xo given. The mean of guo is 

(16.8) fho(t) = xoR(0 t)/R(0, 0) 



348 L. A. SHEPP 

and the coy of -po is 

(16.9) Ro(s, t) = f(s, t) - R(0, s)R(0, t)/R(0, 0). 

go is a Gaussian measure and is equivalent to the Wiener-type measure cor- 
responding to the process 

(16.10) w(t) = x0 + 21W(t), 0 < t < T. 

The R-N derivative is easy to obtain and is another form of (16.5); it can be 
computed also from (2.4). We have 

(16.11) (djo/dAto) (X) 

=[2/(2 - T)]' exp (2x02) exp [-2(Xo + X(T) )2/2(2 - T)]. 

We will apply (16.11) in Section 17 to solve a certain first passage problem. 
The example of this section was chosen for its simplicity. We can obtain with 

our methods all known examples of R-N derivatives in the Gaussian case as 
well as many new examples. The calculations, although straightforward, are 
sometimes quite tedious. - 

We have given illustrations by example of all the main theorems. The reader 
may find it instructive to obtain the R-N derivative in the Ornstein-Uhlenbeck 
case (Example 3 of [251) by our methods. 

V. SOME APPLICATIONS OF R-N DERIVATIVES 

The R-N derivative has found its main application in statistics as the likeli- 
hood ratio. However, it can also be used as a theoretical tool, as Skorokhod 
[22], p. 408, pointed out. We will use it both to calculate probabilities and to 
evaluate function space integrals. 

17. Calculating probabilities. We shall prove that if b > 0, 

(17.1) Pr {W(t) < at + b,0 < t < T} 

= 1((aT + b)/T') - eC2((aT - b)/T'). 

We see that (17.1) is the probability that a gambler with income does not go 
broke in time T < oo if b represents his initial capital, a his fixed rate of income 
(or outgo), and W his losses due to chance fluctuations. (17.1) was found by 
Doob [5] for T = oo and was given in general by Malmquist in a different form 
and by a different method [16]. 

To prove (17.1) we observe that by definition of dM/cd4w, 

(17.2) #i'(A) = fA (dt/d/w)(X)dAw 

for any event A. Let ,u = Mw+m where m(t) = -at and take A = {X: X(t) < b, 
0 < t < T}. By (2.4) we obtain since k(t) = -a, 

(17.3) F(X) = (d,ud,uw) (X) = eaX(T)e-Aa2T 



RADON-NIKODYM DERIVATIVES OF GAUSSIAN MEASURES 349 

Now by (17.2), 

(17.4) A (A) = eaf A eaX(T) dgw(X) 
= ea2Tf ebZa Pr {M(T) < b; W(T) = x} dx 

where M(T) = maxo?e?T W(t). But the reflection principle gives for x < b, 

(17.5) Pr {M(T) < b; W(T) = x} 

= Pr {W(T) = x} - Pr {W(T) = 2b - x}. 

Using 

Pr {W(T) = x} = (27rT)-IeIZ21T 

and ,u(A) = Pr {W(t) < at + b, 0 < t < T} we obtain (17.1) after a simple 
calculation. The point of using (17.2) is that the reflection principle fails for 
slanted lines at + b, while (17.2) enables us to reduce the problem to the hori- 
zontal line. 

As a second example of the same technique, we solve a first passage problem 
originally given by Slepian [23] in a different form. Let S = S(t), 0 < t < T 
be the process with mean zero and covariance 

(17.6) R(s, t) = 1-ft-sf, It-sI < 1, 

= 0, It- sI > 1. 

Suppose T < 1. Let 

(17.7) Pa+(T I xo) = Pr {S(t) < a, 0 < t < T S(O)= xo}, xo < a, 

Paj(T I xo) = Pr {S(t) > a, 0 < t < T I S(O) = xo}, xo > a, 

be the first passage probabilities. 
We shall prove 

(17.8) PaG-(T I xO) = 4( 4 [a- xo( - T)]/[T(2- T)]- ) 

-e-(a2X02)(_(_ i[xo - a(1 - T)]/[T(2 -T)] ) 

The formulas break down for T > 1 and in this case the problem remains tun- 
solved. 

Let So denote the process S conditioned to pass through xO at t = 0. We have 
seen that So ,-- w = xo + 21W and the R-N derivative is given by (16.11). Let 

A = {X: X(t) < a,0 9 t < T}. 

Applying (17.2) with ,u = ,tso and Mw replaced by ,u. we get 

(17.9) PaJ(T I xo) 

[2/(2 - T)]yeX02Jf Aexp [-l(xo + X(T))'/2(2 - T)]dgw(X). 

Using the reflection principle to evaluate the integral, we obtain (17.8). P- is 
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obtained in a similar way. In comparing our form of the answer with Slepian's 
note that his Qa(T I xo) is the derivative on T of our Pa(T I xo). 

In principle one could use the method of this section to solve other first passage 
problems. However, these are the only cases in which we could evaluate the 
integrals explicitly. 

18. Evaluating some special integrals. The integral of the R-N derivative 
over all space is unity. This fact will permit us to evaluate the Wiener integral 
of any functional that is the exponential of a quadratic form. Some special 
cases of this result are due to Kac and Siegert [12] who obtained them by other 
methods. Their results were later simplified by Anderson and Darling [1]. We 
will then apply the evaluations to prove a dichotomy theorem about Wiener 
paths. 

We begin with a general identity. Let L be any symmetric continuous kernel of 
trace class. Then 

(18.1) Ew exp ['Xfr rf L(s, t) dX(s) dX(t)] = (DL(X))-2f 

where Ew is the Wiener integral, dL is the Fredholm determinant of L, and X satisfies 

(18.2) 1-XXj>O, j=1,2, 2 . 

where X1, 2, * ** are the eigenvalues of L. When (18.2) fails the intearal is + oo. 

To prove (18.1) note that by (2.4) we have 

(18.3) 1 = Ew[d(1)]-2 exp [-fr f' H(s, t) dX(s) dX(t)] 

where d(1) = dK(1). Now if y denotes eigenvalues of H theny - X = YX and so 

(18.4) dK(1) = llA (1 - X) = II (1 + y)-1 = d (_1) = d-H(1). 

Let now L = -XH and we obtain (18.1). Wlhen (18.2) fails the quadratic form 

(18.5) ( s-X(Lso,P ) 

is not positive-definite and it is at least formally clear that (18.1) should diverge. 
The proof is omitted. It is amusing to expand both sides of (18.1) in powers of 
X and check coefficients of XA. The general equality seems to be difficult to prove 
directly. 

Next we evaluate 

(18.6) A (f) = Ew exp [- Ifr f(t)X2(t) dt] 

for any, say continuous, f. Solve the one-point problem 

(18.7) 9"-fg, g'(T) = 0, g > 0 on [0, T). 

Then 

(18.8) A(f) = (g(T)/g(O))2. 

When (18.7) fails to have a solution positive on the half-open interval [0, T) then 
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A (F) = + co. The result is also valid for T = co provided lim g(x) = g( (o ) > 0 
and lim g'(x) = g'( co) = 0. 

Suppose now that the basic process is W*, the pinned Wiener process, instead 
of W. We have 

(18.9) Ew exp [-2 ff(t)X2(t) dt] = (l(1))Y 

where 1 is the unique solution to 

(18.10) 1" = fi, 1(0) = 0, l'(0) = 1, 

provided 1 > 0 in (0, 1]. When the solution 1 of (18.10) has a zero in (0, 1] then 
(18.9) is +oo. 

For positive f, (18.9) is finite and was obtained by Anderson and Darling [1] 
who simplified a previous formula due to Kac and Siegert [13]. 

To prove (18.9) we proceed as follows. By (15.26) we have for any h with 
h(0) = 0, h(l) = 1 and h' > 0, 

(18.11) Ew exp [-2J0 J(t)X2(t) dt] = (h'(0)h'(1))* 

wheref= - ((h"/h')' - 2(h"/h')2). Now choose h to satisfy 

(18.12) h(0) = 0, h'= = o - 

where g is any positive solution of 

(18.13) 9 = fg. 

We have h > 0, h(1) = 1 and the Schwarzian of h is f, 

(18.14) f = - ((h"/h')' - (h"/h')2) = 9 /= f. 

By (18.11) we have 

(18.15) Ew exp [-_Jf f(t)X2(t) dt] = (g(0)g(j)f1 g-2)-1. 

Let 

(18.16) 1(t) = g(0)g(t)fo g-2 

It is easy to check that 1 satisfies (18.10) and this gives (18.9). Now it is known 
from Sturm-Liouville theory that a positive solution g exists to (18.13) if and 
only if the solution 1 of (18.10) is positive in (0, 1]. It is easy to see that when 1 
has a zero then (18.9) is actually + oo. A similar proof can be given for (18.8). 
The formula (18.9) for W* is more symmetric than (18.8) for W as is evident by 
(18.15). This is because W* is time-reversible. 

We have assumed f to be continuous but this is not necessary. In general, one 
expresses the differential equation g" = fg, g'(T) = 0 in the form of an integral 
equation 

(18.17) g(t) = g(T) + fT (u - t)g(u)f(u) du. 

One can now allow f to be simply measurable. Further, f can be replaced by a 
measure: fdu = dm. 
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As mentioned above A (f) has been calculated for continuous f > 0 by Kac 
and others by using various techniques. However, the most direct way to obtain 
A (f) in this case was found by Gel'fand and Yaglom [29]: 

By Riemann integration and bounded convergence we have 

(18.18) A(f) = limn-oEw exp [-4Znf(jT/n)X2(jT/n)T/n]. 

Now the expected value on the right is an n-dimensional integral that can be 
evaluated explicitly. Letfj = f(jT/n), x; = X(jT/n). The integral in (18.18) is 

(18.19) r .f . . exp [-2 >fiX T/n - (Xj-x11)2n/T] dxl ... dxn/ 

(27rT/n) = (Ib.7 |1 ) 

where 

b, r=) 2 + fjT/n2, i = j =1, , n-1, 

ji - jl=1, 

=1 + fnT2/n2, i = j =n, 

= ), 1i- Al > l 
Define 

(18.20) gk =gk 
n) 

jbwt in, k =1, 2, ... n. 

We see that gn = 1 + fnT2/n2, gn n-1 = O(T2/n2) and 

(18.21) A29k = fk+lgk, k = 1, * * , n - 1. 

We compare (18.21) with the differential equation 

(18.22) 9" = fg, g(T) = 1, g'(T) = 0, 

with g(kT/n) gk . Standard techniques of comparison of difference and dif- 
ferential equations give 

(18.23) A(f) = lim (g,(fn) = (g() 

which agrees with (18.8) since g(T) = 1. 
If?, and v are Gaussian then dil/dv(X) is always the exponential of a quadratic. 

form in X. With v = ,uw, the quadratic form is diagonal, 

(18.24) fJ X2(u)f(u) du, 

if and only if ,- = uz where Z- is a scale change as in (15.1). Indeed, as we have 
seen, (18.24) holds for j, = ,Iz . Conversely, we can obtain (18.24) for any f by 
means of a properly chosen scale change. Thus (18.24) characterizes scale change 
processes. 

19. A dichotomy theorem for Wiener paths. Suppose f > 0 on [0, T]. The 
integral 

(19.1) f f(u) W2(u) du 
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either converges a.s. or diverges a.s. according as 

(19.2) f 'uf(u) du 

converges or diverges. The convergence is trivial because if (19.2) is finite then 

(19.3) Ew(f 
' f(u) W2(u) du) = fo uf(u) du < 0o 

and so (19.1) must be finite a.s. 
Now suppose fr uf(u) du = oo. We will prove that 

(19.4) Ew exp [-f Tf(u)X2(u ) du] - 0 

and so fo f(u) W2(u) = oo a.s. will follow. In order to avoid details we assume 
that f is continuous away from zero. By (18.8) it is enough to prove the follow- 
ing simple lemma. 

LEMMA. Suppose f is continuous on (0, T] and fr" uf(u) du = oo. Then 

(19.5) 9" = fg, g'(T) = 0, g(T) = 1, 

has g(0) = oo . 

PROOF. Since g is convex and g'(T) = 0, g is monotonically decreasing. Sup- 
pose g(0) = M < oo. Then 0 < -Eg (e) g9(0) - g(e) < M by convexity. 
We have, since g > 1, for any e > 0 

(19.6) fe uf(u) du < f "uf(u)g(u) du 

= Je ug (u) du = Tg (T) - Eg (e) - g(T) + g(E) < 2M. 

This contradicts fr uf(u) du = oo and proves the lemma. 
AN EXAMPL.E. Let f(u) = 2/(e + u)2, 0 < c, T < oo. The solution to (18.7) 

is 

(19.7) g(u) = A(e + u)-1 + B(e + U)2, A = 2B(e + T)3. 

We obtain 

(19.8) Ewexp [-f' (E + u)-2W2(U) du] = (3e/2(e + T)(1 + (e/e + T)3/2))'. 

For other examples where (18.7) has an explicit solution see [1]. Letting e -* 0 
we have by monotone convergence 

(19.9) Ew exp [-f 0u-2Wf2(Wu) du] = 0 

and so 

(19.10) fO u-2W2(U) du = 00 

for almost every path W. (19.10) also follows from a form of the iterated 
logarithm theorem recently found by V. Strassen [24]. However, it does not 
seem possible to obtain the general case of (19.2) in this way. 
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