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Abstract

In this paper we consider the dynamic process of race track betting. We show that

there is a close connection between the dynamic race track betting process and the

pari-mutuel method for constructing consensus of subjective probabilities considered

in Eisenberg and Gale. This enables us to show that there exists a unique equilibrium

point for the betting process. We further show that the dynamic betting process

converges to this equilibrium point almost surely. Therefore the sequential race track

betting gives a natural approach to inducing the consensus probabilities in Eisenberg

and Gale. These consensus probabilities are different from the average of the subjective

probabilities which is used in the conventional way of combining individually held

opinions into a collective group statement. We compare these probabilities and this

leads to a potential explanation of the favorite-longshot bias consistently observed in

the studies of race track betting.

Key words and phrases. Equilibrium probabilities, favorite-longshot bias, pari-mutuel

betting.

1 Introduction

1.1 Some previous literature

Racetrack betting uses a pari-mutuel system. In the win bet market, the sums wagered on

each horse are pooled, and the racetrack takes a percentage of the total pool. The remaining

amount is distributed to those people who bet on the winning horse. Hence the payoff on

each unit amount of wager depends on the proportion of total wager bet on each horse.

Similar but more complicated systems are used for place betting, show betting, and some

other possible types of betting. For simplicity, in this article we only consider win betting.

Numerous authors have analyzed horse racing data, and a negative relationship between

rate of return and track odds has been noted consistently: favorites (horses with high propor-

tion of total wager bet on them, or, in other words, low track odds) have positive expected
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returns (after adjusting for track take), while longshots have negative expected returns.

This is called the favorite-longshot bias. See Griffith (1949), McGlothlin (1956), Fabricand

(1965), Ali (1977), Snyder (1978), Hausch, Ziemba, and Rubinstein (1981), Asch, Malkiel,

and Quandt (1982), Henery (1985), Ziemba and Hausch (1984), and Brown, D’Amato, and

Gertner (1994). Exceptions to this bias are Busche and Hall (1988) and Busche (1994) for

Hong Kong and Japan.

Several explanations of this bias have been proposed in the literature. One obvious pos-

sibility is that the bias may reflect a taste for low probability, high payoff gambles — a form

of risk love. Weitzman (1965) and Ali (1977) estimated the utility function of the represen-

tative bettor and showed it to be convex. See also Brown, D’Amato, and Gertner (1994).

Another explanation is that the bias may represents a general systematic bias in probability

perception, see Thaler and Ziemba (1988). Many of these analyses assume homogeneous be-

liefs on the part of the bettors, whereas in reality the perceptions of the bettors may differ.

Ali (1977) considered races with two horses and assumed that the risk-neutral bettors hold

heterogeneous beliefs about the winning probability of each horse. Ali supposed that each

bettor’s belief of the winning probability of the horses is a draw from a distribution that

has the true underlying probability as its median value, and all bettors wager an identical

amount. He showed that the favorite-longshot bias will be generated in this case. Blough

(1994) extended Ali’s analysis beyond two horses to an arbitrary number. He proposed a

concept of consensus probability, which generalized the concept of median in a certain way,

and showed that, if the consensus probability of the bettors matches the true probability,

then with a restriction on the beliefs of bettors, the favorite-longshot bias results. Both of

the above analyses proceed as if the bettors know (or can predict) the market established

final odds.

1.2 The dynamic process

In this paper, we assume heterogeneous beliefs among the bettors, and consider a sequential

dynamic model of the betting process. Consider a race with J horses. Assume the bettors

are risk neutral. Suppose at the end of the betting process, the fraction of total wager placed

on horse j is Pj, j = 1, ..., J . Denote P = (P1, P2, ..., PJ)T . Let the racetrack take percentage

be r. The net return on a dollar bet on horse j if that horse wins is (1− r)/Pj − 1. This net

return is the payoff odds on horse j. Hence the proportion of total wager bet on each horse

can be inferred from the published payoff odds on each horse. Of course the final proportion

can be calculated only when the betting is over and the final odds are available. In the case

when the bettors have homogeneous beliefs, the commonly perceived winning probabilities of

the horses would be identical to P . This is why P is often called the subjective probability of
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the bettors. In this paper we use the name market probability (used in Blough (1994)) for P ,

since we consider heterogeneous beliefs. The favorite-longshot bias refers to the phenomenon

that the market probability is lower than the objective probability for the favorites, higher

than the objective probability for the longshots.

Now assume the bettors all wager an identical amount, say, one dollar, and the bettors

come to the window in sequence. We assume that the bettor arriving at a given instant of

time is randomly chosen from a population of bettors in a fashion made more precise below.

Suppose right before the n-th bettor is to place his (or her) wager, the current proportions of

money bet on each horse are represented by the vector P (n−1) = (P
(n−1)
1 , ..., P

(n−1)
J )T . (This

is an idealization of the actual situation at the track in which the “current” payoff odds are

announced, but with a small time lag.)

Let the subjective estimate by the n-th bettor of the objective winning probability be

represented by the vector Q(n) = (Q
(n)
1 , ..., Q

(n)
J )T . We assume that Q(n) is a realization of

a random vector Q = (Q1, ..., QJ)T , with Q1 + ... + QJ = 1. Since we assume the bettors

are risk neutral, the n-th bettor is going to choose the horse that maximize his (or her)

subjective expected payoff based on the current proportion P (n−1). That is, he (or she) is

going to maximize

Q
(n)
j (1 − r)

P
(n−1)
j

over j. Here r is the racetrack take percentage. This is equivalent to minimizing
P

(n−1)
j

Q
(n)
j

over

j. After the n-th bettor places the wager, the proportions of wager placed on the horses are

updated to P (n), and the (n + 1)st bettor comes along.

We show that this dynamic betting process converges to a unique equilibrium set of odds.

These limiting odds depend on the distribution of Q. They correspond in the usual way to

an equilibrium probability vector, P ∗.

For a given distribution of Q one may also compute the average vector having coordinates

Pi = E(Qi), i = 1, ..., J . The values of Pi are often interpreted as the “true” odds as collec-

tively determined by the betting population corresponding to the distribution of Q. We then

study the relation between P and the equilibrium vector P ∗. In several reasonable situations

it turns out that the betting equilibrium P ∗ corresponds to underbetting of favorites and

overbetting of longshots. This is qualitatively similar to the observed phenomenon, and may

represent part of the explanation for this phenomenon.

1.3 Eisenberg and Gale equilibrium

Before we move on to study this dynamic betting process, we briefly review a pari-mutuel

method of pooling subjective probabilities introduced by Eisenberg and Gale (1959), which
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we shall see is closely related to the race tracking betting process we study in this paper.

Eisenberg and Gale (1959) considered a pari-mutuel model for pooling opinions among I

individuals B1, ..., BI concerned with a race of J horses, with Bi having a budget bi, i =

1, ..., I. It is convenient to assume
∑I

i=1 bi = 1. Let (pij) be the I × J subjective probability

matrix. That is, pij is the probability, in the opinion of Bi, that the j-th horse will win the

race. We assume that each column of the matrix (pij) contains at least one positive entry.

If this were not true then for some horse j, pij = 0 for all i, and none of the Bi’s would bet

on horse j. We could then eliminate horse j from consideration.

Assume each bettor bets in a way that maximizes his subjective expectation. Let βij be

the amount that Bi bets on horse j. Then

J
∑

j=1

βij = bi, i = 1, ..., I; (1)

and the total amount bet on horse j is

πj =
I

∑

i=1

βij. (2)

Notice
∑J

j=1 πj = 1. At an equilibrium state, each Bi is maximizing his expectation. Eisen-

berg and Gale (1959) wrote this condition as

if µi = max
s

pis

πs

and βij > 0, then
pij

πj

= µi, (3)

which states that Bi bets only on those horses for which his expectation is a maximum.

Eisenberg and Gale (1959) referred to nonnegative numbers πj and βij that satisfy the

conditions (1), (2), and (3) as equilibrium probabilities and bets. They proved that equilib-

rium probabilities exist and are unique. Norvig (1967) presented a deterministic algorithm

for reaching this equilibrium as the limit of iterated bids in the case of a finite population of

bettors.

Now let us come back to the dynamic race track betting process described earlier. First

consider the situation where the random subjective probability vector Q = (Q1, ..., QJ)T

is supported on a finite set of points. Assume this finite set consists of I support points

pi = (pi1, ..., piJ), i = 1, ..., I, with probability bi, i = 1, ..., I, respectively. We define an

equilibrium state of the betting process as one in which (1), (2), and (3) are satisfied for

some nonnegative numbers βij’s and πi’s. By the results in Eisenberg and Gale (1959), such

an equilibrium state exists, and the πi’s at the equilibrium are unique. Notice, however, here

bi’s are the probability masses of the support points, not the budget of a bettor. Roughly

speaking, βij is the proportion of people that has subjective probabilities pi and has bet on

horse j, and πj is proportional to the total money betted on horse j. The meaning of (1),
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(2), and (3) are then clear: at the equilibrium state, every bettor bets only on a horse for

which his expectation is a maximum.

1.4 Dynamic equilibrium (continuous case)

We then turn to the continuous case in which the random subjective probability vector

Q = (Q1, ..., QJ)T has a continuous distribution with density function f supported on

Θ = {q = (q1, ..., qJ)T : |
J

∑

j=1

qj = 1; qj ≥ 0, j = 1, 2, ..., J}.

(It is in this sense that the n-th bettor is randomly chosen from an infinite population.) The

concept of equilibrium probabilities can be extended naturally to this situation. We define

an equilibrium state of the betting process as one in which there is a joint density g(j, q)

(with respect to the product measure of the counting measure and the Lebesgue measure on

Θ), and equilibrium probabilities π = (π1, ..., πJ) such that

J
∑

j=1

g(j, q) = f(q), for all q ∈ Θ, (4)

∫

Θ
g(j, q)dq = πj, for all j, (5)

if µq = max
s

qs

πs
and g(j, q) > 0, then

qj

πj
= µq, (6)

These are clearly the continuous counterparts of (1), (2), and (3).

Proposition 1.1 If equilibrium probabilities satisfying (4), (5), and (6) exist, they are

unique.

The proof of Proposition 1.1 is parallel to the proof in Eisenberg and Gale (1959) of the

uniqueness of the equilibrium probabilities satisfying (1), (2), and (3), with βij replaced by

g(j, q), µi replaced by µq, pij replaced by qj, bi replaced by f(q). Therefore the proof is

skipped here.

It is possible to prove the existence of the equilibrium probabilities in the continuous

case with a proof that is similar to the one in Eisenberg and Gale (1959) for discrete case.

However, it turns out in the continuous case it is much easier to proceed with a fixed point

argument, as will be seen in Section 2, where we show that there exists a unique set of

equilibrium probabilities and the betting process converges to the equilibrium probabilities

almost surely. In Section 3 we compare the equilibrium probabilities with the average prob-

abilities. This leads to an alternative explanation of the favorite-longshot bias in racetrack

betting. Conclusions are given in Section 4.
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2 Convergence of the betting process

In this section we concentrate on the continuous case. Define φ : Θ0 −→ Θ0 by φ(q) =

(φ1(q), ..., φJ(q)), where q = (q1, ..., qJ)T ∈ Θ0, Θ0 is the interior of Θ, and

φj(q) = Pr{qj/Qj = min
1≤k≤J

qk/Qk} =
∫

{qj/tj<qk/tk,∀k 6=j}
f(t1, ..., tJ )dt1...dtJ .

Then φ is a continuous mapping. If the current proportions of the wager bet on the horses

are represented by q, then φj(q) is the probability of the next bettor betting on horse j.

Proposition 2.1 There exists a fixed point of φ in Θ0.

Proof: Define

η = min
1≤j≤J

Pr{Qj = max
1≤k≤J

Qk}

Then 0 < η ≤ 1/J .

Let Θ = {q = (q1, ..., qJ)T : |
∑J

j=1 qj = 1; qj ≥ η, j = 1, 2, ..., J}.

Define φ∗ : Θ −→ Θ as

φ∗(q) = φ(q) if q ∈ Θ

φ∗(q) = φ(q) if q ∈ Θ \ Θ

where q is the point where ∂Θ and the line connecting q and ( 1
J
, ..., 1

J
)T intersects.

Then φ∗ is continuous from Θ to itself, and therefore by Brouwer’s fixed point theorem,

(see, for example, Theorem 4.2.5 of Istratescu (1981)) there exists a fixed point q∗ ∈ Θ of

the mapping φ∗., i.e. φ∗(q∗) = q∗ and q∗ ∈ Θ.

Now we show that q∗ has to be in Θ. For any q ∈ Θ\Θ, we have q ∈ ∂Θ by the definition

of q. Hence q
j0

= η for some j0. Then qj0 < η. Also, since q ∈ Θ, for any k 6= j0, we have

q
k
≥ η = q

j0
. Now we have

φ∗
j0

(q) = φj0(q)

= Pr{q
j0

/Qj0 = min
1≤k≤J

q
k
/Qk}

= Pr{∩k 6=j0{qj0
/Qj0 < q

k
/Qk}}

≥ Pr{∩k 6=j0{Qj0 > Qk}}

= Pr{Qj0 = max
1≤k≤J

Qk}

≥ η

> qj0
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This means φ∗(q) 6= q, and so any point in Θ \Θ can not be a fixed point of φ∗, therefore

q∗ ∈ Θ. So we have

φ(q∗) = φ∗(q∗) = q∗

That is, q∗ is a fixed point of φ. Q.E.D.

Proposition 2.2 Any fixed point of φ in Θ0 is an equilibrium probability vector.

Proof: Let q∗ be a fixed point of φ. Define

g(j, q) = 1(
q∗j
qj

= min
s

q∗s
qs

) · f(q),

and π = q∗ in the equations (4), (5), and (6). It is straightforward to check that (4) and (6)

are satisfied. (5) is satisfied since q∗ is the fixed point of φ. Q.E.D.

The above two propositions establish the existence of the equilibrium probability vector.

Therefore the equilibrium probability vector exists and is unique by Proposition 1.1. This

in turn implies that the fixed point of φ is unique by Proposition 2.2. We summarize these

results in the following lemma.

Lemma 2.1 φ has a unique fixed point in Θ0, and this is the unique equilibrium probability

vector satisfying (4), (5), and (6).

Denote the unique fixed point of φ by P ∗. The following theorem shows that the propor-

tion of wager placed on the horses will converge to P ∗ almost surely.

Theorem 2.1 As n → ∞, P (n) → P ∗ almost surely.

To facilitate the proof of this theorem, we introduce the following lemma:

Lemma 2.2 For any q = (q1, q2, ..., qJ) ∈ Θ, we have

J
∑

j=1

(
qj

P ∗
j

− 1)(φj(q) − P ∗
j ) ≤ 0

Proof: We will make use of the following standard result, whose proof we will omit:

Proposition 2.3 If a1 ≥ a2 ≥ ... ≥ ak ≥ 0 and
∑l

i=1 bi ≤ 0 for all l ≤ k, then
∑k

i=1 aibi ≤ 0.

Now without loss of generality, assume

q1

P ∗
1

≥
q2

P ∗
2

≥ ... ≥
qk

P ∗
k

≥ 1 ≥
qk+1

P ∗
k+1

≥ ... ≥
qJ

P ∗
J

.
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Now we show that
∑k

j=1(
qj

P ∗

j

− 1)(φj(q) − P ∗
j ) ≤ 0.

For any l ≤ k, we have

l
∑

j=1

φj(q) = Pr{min(q1/Q1, q2/Q2, ..., ql/Ql) ≤ min(ql+1/Ql+1, ..., qJ/QJ)}

= Pr{min(
q1/P

∗
1

Q1/P ∗
1

, ...,
ql/P

∗
l

Ql/P ∗
l

) ≤ min(
ql+1/P

∗
l+1

Ql+1/P ∗
l+1

, ...,
qJ/P ∗

J

QJ/P ∗
J

)}

≤ Pr{min(
ql/P

∗
l

Q1/P ∗
1

, ...,
ql/P

∗
l

Ql/P ∗
l

) ≤ min(
ql/P

∗
l

Ql+1/P ∗
l+1

, ...,
ql/P

∗
l

QJ/P ∗
J

)}

= Pr{min(P ∗
1 /Q1, ..., P

∗
l /Ql) ≤ min(P ∗

l+1/Ql+1, ..., P
∗
J /QJ)}

=
l

∑

j=1

φj(P
∗) =

l
∑

j=1

P ∗
j .

So we have, for any l ≤ k,
l

∑

j=1

(φj(q) − P ∗
j ) ≤ 0.

By Proposition 2.3, we have

k
∑

j=1

(
qj

P ∗
j

− 1)(φj(q) − P ∗
j ) ≤ 0

That
∑J

j=k+1(
qj

P ∗

j

− 1)(φj(q) − P ∗
j ) ≤ 0 can be shown in a similar fashion. So we have

∑J
j=1(

qj

P ∗

j

− 1)(φj(q) − P ∗
j ) ≤ 0. Q.E.D.

Proof of Theorem 2.1: Define

X(n) =
C

n
+

J
∑

j=1

(P
(n)
j − P ∗

j )2

P ∗
j

Where C =
∑J

j=1
1

P ∗

j

is a nonrandom number. We intend to show that X (n) is a super-

martingale with respect to the sequence of σ-fields F (n) generated by {P (i) : i = 1, ..., n}.

Let e(n) be the J dimensional random column vector indicating which horse the n-th

bet is on. That is, if the n-th bet is on horse i, then e(n) is the i-th unit vector. Then

E(e(n+1)|F (n)) = φ(P (n)), and

P (n+1) = (nP (n) + e(n+1))/(n + 1) = P (n) + (e(n+1) − P (n))/(n + 1)

and it is easy to see that E(e(n+1)|F (n)) = φ(P (n)).

Hence we have

X(n+1) =
C

n + 1
+

J
∑

j=1

(P
(n+1)
j − P ∗

j )2

P ∗
j
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=
C

n + 1
+

J
∑

j=1

(P
(n)
j − P ∗

j + (e
(n+1)
j − P

(n)
j )/(n + 1))2

P ∗
j

= X(n) −
C

n(n + 1)
+

J
∑

j=1

1

P ∗
j

[

2

n + 1
(P

(n)
j − P ∗

j )(e
(n+1)
j − P

(n)
j ) +

1

(n + 1)2
(e

(n+1)
j − P

(n)
j )2

]

< X(n) −
C

n(n + 1)
+

J
∑

j=1

1

P ∗
j

[

2

n + 1
(P

(n)
j − P ∗

j )(e
(n+1)
j − P

(n)
j )

]

+
1

(n + 1)2

J
∑

j=1

1

P ∗
j

= X(n) −
C

n(n + 1)
+

J
∑

j=1

1

P ∗
j

[

2

n + 1
(P

(n)
j − P ∗

j )(e
(n+1)
j − P

(n)
j )

]

+
C

(n + 1)2

< X(n) +
J

∑

j=1

1

P ∗
j

[

2

n + 1
(P

(n)
j − P ∗

j )(e
(n+1)
j − P

(n)
j )

]

Therefore,

E
[

X(n+1) − X(n)|F (n)
]

<
J

∑

j=1

1

P ∗
j

[

2

n + 1
(P

(n)
j − P ∗

j )(φj(P
(n)) − P

(n)
j )

]

=
J

∑

j=1

2

(n + 1)P ∗
j

[

(P
(n)
j − P ∗

j )(φj(P
(n)) − P ∗

j ) − (P
(n)
j − P ∗

j )2
]

By Lemma 2.2, we have

E
[

X(n+1) − X(n)|F (n)
]

< −
2

n + 1

J
∑

j=1

(P
(n)
j − P ∗

j )2

P ∗
j

≤ 0 (7)

Hence X (n) is a non-negative super-martingale, so it has to converge to some non-negative

random variable almost surely. Denote the limit random variable by X. Also, since X (n) is

a non-negative super-martingale, E(X (n)) has a non-negative limit.

By (7) we have

E
[

X(n+1) − X(n)|F (n)
]

< −
2

n + 1

[

X(n) −
C

n

]

Therefore

E
[

X(n+1) − X(n)
]

< −
2

n + 1

[

E(X(n)) −
C

n

]

This shows that the limit of E(X (n)) has to be 0. (Suppose E(X (n)) → ε > 0. Then

E(X(n+k)) − E(X (n)) <
k

∑

j=1

[

2

n + j
E(X(n+j−1)) +

2C

(n + j)(n + j − 1)

]

→ −∞

as k → ∞, a contradiction.)
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By Fatou’s lemma, E(X) ≤ limn→∞ E(X(n)) = 0. Since X is non-negative, we have

X = 0 almost surely. That is, X (n) goes to 0 almost surely. Hence,

J
∑

j=1

(P
(n)
j − P ∗

j )2

P ∗
j

−→ 0, a.s.

This implies
J

∑

j=1

(P
(n)
j − P ∗

j )2 −→ 0, a.s.

That is, P (n) −→ P ∗, a.s. Q.E.D.

Theorem 2.1 shows that the race track betting process induces the equilibrium probabil-

ities (of an infinite population).

3 The Equilibrium Probabilities vs. the Average Prob-

abilities

Theorem 2.1 establishes that in the betting process the market probability will converge to

the equilibrium probability P ∗, and this equilibrium probability is the unique fixed point of

the mapping φ. Now let us investigate the properties of this equilibrium probability. To do

this, we need some further assumption on the random vector Q. Recall that Q is a random

vector supported on the set

Θ = {q = (q1, ..., qJ)T : |
J

∑

j=1

qj = 1; qj ≥ 0, j = 1, 2, ..., J}.

We shall model the distribution of Q by a Dirichlet distribution. This is the most natural

distribution on a set like Θ. In the present situation, the use of Dirichlet distribution can also

be motivated by making the following two assumptions for the formation of the subjective

estimate of the winning probabilities:

1. Each individual bettor assigns an “ability score” vector (A1, A2, ..., AJ ) for the horses,

and calculates his (or her) subjective estimate of the winning probabilities as

(
A1

SJ

, ...,
AJ

SJ

)

where SJ =
∑J

j=1 Aj. We assume Aj, j = 1, 2, ..., J , are realizations of independent

random variables.

2. The total score SJ is independent of the relative score vector (A1

SJ
, ..., AJ

SJ
).
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From these two assumptions, it follows that there is a constant c such that cA1, ..., cAJ

are Gamma random variables. (See Johnson, Kotz, and Balakrishnan (1994), page 350.) Let

the means of these Gamma random variables be denoted by a1, ..., aJ , then we have that

(A1

SJ
, ..., AJ

SJ
) follows a Dirichlet distribution with parameters (a1, ..., aJ ). Notice that by defini-

tion, (a1, ..., aJ ) is proportional to the mean assigned “ability score” (E(A1), E(A2), ..., E(AJ )).

Hence, under the two assumptions made, the random vector Q follows a Dirichlet distri-

bution with parameters (a1, ..., aJ). We will not use these two assumptions in later exposition,

and will work directly with the Dirichlet distribution.

In a race of two horses, we have the following result:

Theorem 3.1 Let J = 2, and suppose Q has a Dirichlet distribution with parameters a1

and a2. If a1 > a2, then P ∗
1 < E(Q1), and P ∗

2 > E(Q2).

Remark 3.1 Since in this case E(Q1) = a1

a1+a2
> a2

a1+a2
= E(Q2), if we assume that E(Q1)

and E(Q2) are identical to the objective winning probabilities, that is, the bettors get the

objective winning probabilities right on average, the theorem then says the favorite is underbet

and the longshot is overbet. Also, since Q1 follows a Beta distribution with parameters

a1 > a2, the distribution of Q1 is skewed to the left, and the mean of Q1 is smaller than the

median of Q1. Hence from the theorem we see that P ∗
1 is also smaller than the median of

Q1.

Proof of Theorem 3.1: Note we just have to prove P ∗
1 < a1

a1+a2
.

Since Q follows Dirichlet distribution with parameters (a1, a2), we have Q1 follows a Beta

distribution with parameters (a1, a2), and Q2 follows a Beta distribution with parameters

(a2, a1). Now since P ∗
1 = φ1(P

∗) = Pr{P ∗
1 /Q1 < P ∗

2 /Q2} = Pr{Q1 > P ∗
1 }, we have (here

⇐⇒ means “is equivalent to”)

P ∗
1 <

a1

a1 + a2

⇐⇒ Pr{Q1 >
a1

a1 + a2

} <
a1

a1 + a2

⇐⇒
Pr{Q1 > a1

a1+a2
}

Pr{Q1 < a1

a1+a2
}

<
a1

a2

⇐⇒
Pr{Q2 < a2

a1+a2
}

Pr{Q1 < a1

a1+a2
}

<
a1

a2

⇐⇒
∫

a2
a1+a2

0
xa2−1(1 − x)a1−1dx <

a1

a2

∫

a1
a1+a2

0
xa1−1(1 − x)a2−1dx

⇐⇒
∫

a2
a1+a2

0
xa2−1(1 − x)a1−1dx <

∫

a2
a1+a2

0
ca1ya2−1(1 − cy

a2
a1 )a2−1dy
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where the last step follows from a change of variable on the right hand side: x = cy
a2
a1 with

c =
a1

a1+a2

(
a2

a1+a2
)

a2
a1

.

Therefore, to prove the theorem, we only need to prove

(1 − x)a1−1 < ca1(1 − cx
a2
a1 )a2−1, ∀0 < x <

a2

a1 + a2

. (8)

It is easy to check that 1 > cx
a2
a1 > x, ∀0 < x < a2

a1+a2
. Therefore, to prove (8), it is

sufficient to prove

(1 − x)a1 < ca1(1 − cx
a2
a1 )a2 , ∀0 < x <

a2

a1 + a2

or, equivalently,

a1 log(1 − x) ≤ a1 log c + a2 log(1 − cx
a2
a1 ), ∀0 < x <

a2

a1 + a2

(9)

Let s = a2

a1
, then s < 1. Let t = x

a2
a1+a2

= x(1 + s−1). After some simplification, (9)

becomes

B(t) ≤ 0, ∀0 < t < 1 (10)

where

B(t) = log(1 + s − st) − s log(1 + s−1 − s−1ts)

Since B(1) = 0, to prove (10), it is sufficient to show that B ′(t) ≥ 0, ∀0 < t < 1. After

some simplification, we can see this is equivalent to

C(t) ≥ 0, ∀0 < t < 1 (11)

where

C(t) = (s + 1 − st)ts−1 − (1 + s−1 − s−1ts)

Now it is easy to check that C ′(t) ≤ 0, ∀0 < t < 1, and that C(1) = 0. Therefore (11)

holds, and the theorem is proved. Q.E.D.

Corollary 3.1 In a horse race with J horses, suppose Q follows a Dirichlet distribution

with parameters a1, a2, ..., aJ . If E(Q1) > 1/2, then P ∗
1 < E(Q1).

Proof: Consider a horse race with two horses. Suppose the distribution of the subjective

estimate of the winning probabilities is the same as that of random vector (Q1, Q2+...+QJ)T .

Denote the limit vector in this race by P ∗∗ = (P ∗∗
1 , P ∗∗

2 )T . Since Q = (Q1, Q2, ..., QJ)T follows

Dirichlet distribution with parameters a1, a2, ..., aJ , we know (Q1, Q2 + ... + QJ)T follows

Dirichlet distribution with parameters a1, a2 + ... + aJ . Since E(Q1) > 1/2, by Theorem 3.1,

P ∗∗
1 < E(Q1).
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Now P ∗∗
1 = Pr{P ∗∗

1 /Q1 < P ∗∗
2 /(Q2 + ... + QJ)} = Pr{Q1 > P ∗∗

1 }, and

P ∗
1 = Pr{P ∗

1 /Q1 = min
1≤k≤J

P ∗
k /Qk}

≤ Pr{P ∗
1 /Q1 < (P ∗

2 + ... + P ∗
J )/(Q∗

2 + ... + Q∗
J)}

= Pr{P ∗
1 /Q1 < 1}

= Pr{Q1 > P ∗
1 }

So P ∗
1 ≤ P ∗∗

1 , and we have P ∗
1 < E(Q1). Q.E.D.

Corollary 3.1 says that if the bettors get the objective probability on average, and there

is a heavy favorite in a J horse race. Then the heavy favorite will be underbet.

We have also used the computer to calculate the equilibrium probability in J > 2 horse

races without a heavy favorite. In the case of Dirichlet distributions with various parameters,

the equilibrium probabilities all show the usual “underbet favorite, overbet longshot” bias.

We list a few examples in the following table. (All numbers are rounded to the second digit

after the decimal point.)

Equilibrium Probabilities: Dirichlet Distribution Case

Parameters (3,4,5,6) (3,3,10,10) (3,3,3,4)

Average Prob. (.17, .22, .28, .33) (.12, .12, .38, .38) (.23, .23, .23, .31)

Equilibrium Prob. (.19, .23, .27, .31) (.15, .15, .35, .35) (.24, .24, .24, .29)
When we investigate the non-Dirichlet distribution case, the tendency shows in most

cases, but is reversed in some of the cases. For example, in the J = 2 case, let Q = (Q1, Q2)

have the distribution of ( 10G1

10G1+G2
, G2

10G1+G2
), where G1 ∼ Gamma(1), G2 ∼ Gamma(b). We

have the following table:

Equilibrium Probabilities: Non-Dirichlet Distribution Case

b 3 4 5 6 7 8

Aver. Prob. (.66, .34) (.60, 0.40) (.55, .45) (.52, .48) (.49, .51) (.46, .54)

Equi. Prob. (.63, .37) (.59, .41) (.55, .45) (.53, .47) (.50, .50) (.49, .51)
Note: the reverse happens when b = 6.

4 Conclusion

There is a close connection between the race track betting process and the pari-mutuel

pooling of subjective probabilities. We showed that the race track betting process provides a

natural tool to induce the unique set of equilibrium probabilities in the pari-mutuel method.

The set of equilibrium probabilities is not identical to the average of the subjective estimate

by the bettors. This means, even if the bettors get the true probability right on average,

and even if the bettors are risk neutral, the proportion of money bet on the horses would

13



not match the objective winning probabilities. This gives a possible explanation for the

favorite-longshot bias, in addition to the risk-seeking bettor argument and various behavioral

explanations. However, these explanations do not contradict each other, and we believe they

each play a part in generating the favorite-longshot bias.
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