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INEQUALITIES AND POSITIVE-DEFINITE FUNCTIONS ARISING 
FROM A PROBLEM IN MULTIDIMENSIONAL SCALING 

BY ANDREAS BUJA, B.F. LOGAN, J.A. REEDS AND L.A. SHEPP 

Bellcore, AT&T Bell Laboratories, AT&T Bell Laboratories and AT&T Bell 
Laboratories 

We solve the following variational problem: Find the maximum of EiJX- 
Yll subject to EiiXl12 < 1, where X and Y are i.i.d. random n-vectors, 
and 1- is the usual Eucidean norm on Rn. This problem arose from 
an investigation into multidimensional scaling, a data analytic method for 
visualizing proximity data. We show that the optimal X is unique and is 
(1) uniform on the surface of the unit sphere, for dimensions n > 3, (2) 
circularly symmetric with a scaled version of the radial density p/(l - 
p2)1/2, 0 < p ? 1, for n = 2, and (3) uniform on an interval centered at 
the origin, for n = 1 (Plackett's theorem). By proving spherical symmetry 
of the solution, a reduction to a radial problem is achieved. The solution is 
then found using the Wiener-Hopf technique for (real) n < 3. The results 
are reminiscent of classical potential theory, but they cannot be reduced 
to it. 

Along the way, we obtain results of independent interest: for any i.i.d. 
random n-vectors X and Y, EIIX - Yll < EIiX + Yll. Further, the ker- 
nel Kp,o(x,y) = lix +yllo - llx -yll',x,y E Rn and llxllp = (3lxil)1/P, is 
positive-definite, that is, it is the covariance of a random field, Kp, 0 (x,y) = 
E[Z(x)Z(y)] for some real-valued random process Z(x), for 1 < p < 2 and 
O < ,3 < p < 2 (but not for /3 > p or p > 2 in general). Although this is an 
easy consequence of known results, it appears to be new in a strict sense. 

In the radial problem, the average distance D(r,, r2) between two sphe- 
res of radii r1 and r2 is used as a kernel. We derive properties of D(rl, r2), 
including nonnegative definiteness on signed measures of zero integral. 

1. Introduction. 

1.1. Overview. The problem solved in this paper arose from an investi- 
gation into multidimensional scaling (MDS). MDS is a data analytic method 
for visualizing proximity data, that is, data consisting of observed similari- 
ties or dissimilarities between all pairs of objects of interest. (Without loss 
of generality, we assume the proximities are dissimilarities; similarities can 
be converted to dissimilarities.) MDS maps these objects to a Euclidean point 
configuration in such a way that interpoint distances approximate the given 
dissimilarities as well as possible. The point configuration is used in an ex- 
ploratory fashion as a "map" of the objects. 

We are concerned with a certain type of null situation where the observed 
proximities are totally uniformative. The interest in this problem arises from 
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the general observation that many complex data analytic methods do not re- 
sult in what one would intuitively consider "null output" (garbage out) when 
applied to null input (garbage in). Rather, null data can produce highly struc- 
tured results ("garbage in, structure out"), which may be misleading to the 
uninitiated user of the method. MDS is just one technique that exhibits this 
characteristic; other examples are so-called alternating least squares (ALS) 
methods developed by psychometricians and the closely related alternating 
conditional expectation (ACE) method developed by statisticians [see Buja 
(1990) for ALS-ACE null analyses]. 

Null situations for MDS can be formalized in several ways, the simplest be- 
ing the assumption that the dissimilarity data are i.i.d. random variables with 
no dependence on the underlying objects that are compared. It turns out that 
under some idealizations this is mathematically equivalent to the assumption 
that the dissimilarities are equal to a constant (w.l.o.g., +1). The problem of 
MDS under this null assumption is to find Euclidean point distributions such 
that the distance between two points is on the average as close to the constant 
+1 as possible. If we translate point configurations into probability distribu- 
tions or random variables on Rn, we ask for a random variable such that for 
two independent realizations X and Y the expected squared distance from +1 
is minimized: 

(1.1) E[(IIX - Yll - 1)2] = min. 

Up to an irrelevant scale factor, this is equivalent to 

(1.2) EIIX - Yll = max. 
(EI[X - y112)1/2 

Assuming w.l.o.g. E X = 0, the denominator simplifies to 2EIIXI12. On the other 
hand, the assumption EX = 0 is unnecessary in this version since centering 
decreases the denominator and leaves the numerator fixed. The problem of 
finding a null solution can be formulated as finding a probability law which 
puts two independent samples on the average as far from each other as pos- 
sible, under the constraint that the average squared distance from the origin 
is 1, that is, 

(1.3) EIIX - Yll = max, EIIXII2 = 1. 
The derivation of the solution to (1.3) is in two steps, both of which generate 
results of independent mathematical interest: We first show that, for any X 
and Y, i.i.d., 

(1.4) EIX - Yll < EIIX + Yll, 
with strict equality only for X spherically symmetric, which can be used to 
show that X in (1.3) must be spherically symmetric. Tb prove (1.4) we show in 
Section 2 that llx + yll - llx - y 1 is a positive-definite kernel for x,y E Rn and, 
more generally, that the same is true for kernels of the form 

(1.5) IIx+yII1 - lIx -Yl1), 1 p < 2, 0 < 3 <p 
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(but not for ,B > p or p > 2). This is apparently new in a strict sense but 
follows easily from well-known results. 

Spherical symmetry of X in (1.3) reduces the problem to determining the 
one-dimensional radial distribution. The average distance D,(rl, r2) between 
two spheres is 

(1.6) Dn(ri, r2) = ElIrlo, - r202 1 

where 01 and 02 are independent and uniformly distributed on the unit sphere. 
Problem (1.3) reduces to finding a radial law (on the nonnegative reals) such 
that, for two independent realizations R1 and R2, 

(1.7) EDn(Rl,R2) =max, ER2 = 1. 

An important intermediate step is to show that the kernel D (r1, r2) is negative- 
definite on measures of zero integral. In Section 3 we transform the problem 
to a Wiener-Hopf problem and solve it explicitly. For dimension n > 3, the 
optimal radial distribution is a single point mass; for n = 2 it has the radial 
density p/(l _ p2)1/2, 0 < p ? 1, scaled by a factor 3/2; for n = 1 the optimal 
distribution is uniform on an interval [this is known as Plackett's theorem, 
see Plackett (1947) and Moriguti (1951)]. As a side result, we give the solution 
to the radial problem for fractional dimensions n as well. The Wiener-Hopf 
technique is needed for fractional dimension n < 3. 

These results are reminiscent of classical potential theory but they cannot 
be obtained by simple recourse to it. The similarities to potential theory are 
certainly striking: a variational problem with solutions that are qualitatively 
different for dimensions n > 3 and n < 3, and the use of the (generalized) 
potentials f Dn (rl, r2) dp(r2) (see Theorem 3.1). 

Simultaneously and independently, Mattner (1990, 1993) obtained results 
virtually identical to ours. The motivations of his work are purely mathemat- 
ical and his methods are based on convexity and Lagrange multipliers. His 
and our approaches also differ in their generalizations and derivative results. 

1.2. Background on MDS and motivation for the problem. This section is 
devoted to a more detailed discussion of MDS. A reader interested only in the 
mathematical results may skip to Section 2. Classical references to the type 
of MDS considered in this paper are Shepard (1962) and Kruskal (1964a, b). 

In the simplest case, the input of MDS is an N x N matrix of dissimilarities 
(dij)i,j=,..,N, where di,i = 0 is generally assumed for convenience, and the 
matrix may or may not be symmetric. MDS constructs from (dij)ij a set of 
N points xi E Rn, i = 1, 2, .. . ,N, in such a way that the (usually Euclidean) 
interpoint distances IIxi - xjiI mimic the dissimilarities di,j as well as possible. 
If the data do not form a symmetric matrix, it is clear that MDS only recovers 
symmetric information. 

Similarity and dissimilarity data are frequently found in social sciences. 
They arise when all pairs of a finite set of stimuli are rated by subjects as 
to closeness or similarity/dissimilarity. Such stimuli may be sensory, such as 
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colors or food tastes, or they may be perceptions of objects such as animals, 
public figures, countries or commercial products. In other contexts, the dissim- 
ilarity date are obtained as confusion rates, such as in the famous Rothkopf 
Morse code data [see, e.g., Gnanadesikan (1977), pages 46-47], where objects 
are considered close if they are often confused. Still another source of prox- 
imity data is the actual distance matrices between finitely many points in 
a metric space. If the space is some high-dimensional RI, MDS serves as 
a dimension-reduction tool that maps multivariate data from m down to n 
dimensions. More recent applications of MDS are in problems of graph lay- 
out where minimum path length between vertices is used as a dissimilarity 
measure. 

Kruskal (1964a, b) proposed an implementation of MDS by way of mini- 
mization of some stress function which measures the overall discrepancy be- 
tween interpoint distances and observed dissimilarities. The very simplest 
case of a stress function is a straightforward mean squared residual, result- 
ing in so-called metric MDS, 

(1.8) Smet(X1,...,XN) S lE (Ixix-xll-di,j)2. 
i,j=l..,N 

[Contrary to a pervasive misunderstanding, this is not equivalent to Torgerson 
-Young "classical scaling," which is based on an eigendecomposition of the 
doubly centered dissimilarities; (1.8) does not reduce to an eigenproblem.] 
Minimization of (1.8) is performed over all N-point configurations xl,.. .,x 
in Rn. The problem has N x n free parameters, where 10 < N < 100 and 
2 < n < 5 are typical. In spite of its size, the problem can be solved numerically 
by a steepest-descent algorithm with suitable step size heuristics [Kruskal 
(1964b)]. 

In what follows, we are concerned with the performance of MDS if the dis- 
similarities are totally uninformative. To this end, we model the dissimilarities 
as i.i.d. random variables with a common expected value, Edij = 1, say. (A 
symmetrized version where dij = dj,i are i.i.d., for i < j, leads to the same 
problem.) Then we minimize the expected value of the stress for a given point 
configuration x1, ...,XN: 

(1.9) E Smet(Xl . *. * XN) = El(I - x111 - 1)2 + const. 
i,j 

We perform a partial minimization of the metric stress function by optimizing 
the overall size or scale of a given configuration, that is, we minimize ZE,J(JJcxi- 
cxIll - 1)2 over the scale c. The solution is trivially obtained by way of a one- 
parameter least squares problem: 

(1.10) min (cx- cxjll - 1)2=i- (= , I - 

i,j zi,j iix, - j2 

Minimization of the expected stress function is thus equivalent to maximiza- 
tion of the ratio (Y,jllx, - xjll)2/i,,jllXI - XjII2. Rewriting the summations in 
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terms of expectations with regard to the empirical measure PN = N.1Ei=1,...,N 
b6;, we are led to maximize 

(EPNIIX - YII)2 
EpNIIX - Y112 

over all PN, where X and Y are two independent replications of a random 
variable with distribution PN. If we now allow the probability measures to be 
arbitrary rather than empirical, we obtain the original problem (1.2). 

This derivation is of course purely heuristic. For a proper asymptotic jus- 
tification one would have to prove that minimizing configurations x1, . .. ,xN 
of an N-point null problem (dij i.i.d.) lead to empirical measures PN that con- 
verge to the solution P of the continuous problem (1.2). For reasons of limited 
space, this will be done elsewhere. Instead, we show in the following that sim- 
ilar null heuristics lead to the same problem (1.2) for another variety of MDS 
as well. This is so-called nonmetric MDS, a method which is more commonly 
used in practice. 

Nonmetric MDS arises from the realization that it is frequently not sen- 
sible to approximate the raw dissimilarity data dij by Euclidean interpoint 
distances. A suitable nonlinear transformation f(di,j), however, can consider- 
ably improve metric behavior and therefore the degree of approximation. For 
nonmetric MDS, one permits arbitrary monotone transformations f, which 
one estimates from the data jointly with the point configurations by way of 
isotonic regression. With a free transform f, a naive mean squared residual 
involving llxi - xj I and f(di,j) no longer works since the trivial solution f 0_ 
and xi = xj, for all i,j, achieves the minimum. The following standardization 
removes this artifact, resulting in the stress function usually associated with 
nonmetric MDS: 

(1.12) Snon (xi,..-,XN;f)= YiXJ=1,...N(xi-JxIll-f(di,j))2 
n*i,j=1,...,NIIXi - Xji2 

This stress function, known as Kruskal's stress formula one, is invariant under 
simultaneous multiplication of the configuration points xi and the transfor- 
mation f with positive constants. To find an n-dimensional MDS solution for 
given data (dij)ij, one minimizes the stress function over the configuration 
(xi)i as well as the monotone transform f. In practice, this is done numerically 
by interleaving steepest descent steps on the configuration with estimation of 
f through isotonic regression of the current interpoint distances llxi - xI on 
the dissimilarities dij. In allowing arbitrary monotone transformations, one 
extracts in effect only the order or rank information from the dissimilarity 
data, rather than their actual values. This is the major reason why nonmetric 
MDS is the method of choice in most social science applications. Much of the 
data found in these fields are ordinal at best. 

We again assume a null situation, that is, di,j i.i.d. This is also known 
as the random ranking hypothesis since nonmetric MDS extracts only rank 
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information from the dij values [see de Leeuw and Stoop (1984) and Daws, 
Arabie and Hubert (1990) and the literature cited therein; Daws, Arabie and 
Hubert have some criticisms for this null hypothesis]. We minimize the ex- 
pected stress function under the null assumption: 

Ei,(11I)I(xi - xjII - E f (di,j))2 + Var(f (di,j)) (1. 13) ESnon (xi) . .XN; f) = Ei,j ||xi - xjl| 

The minimizing transformation is a constant f _ N-2E,,jllX_ -Xjll: 

E- j(llxi - xll - N2 EkI|X111 |)2 
minfE Snon(X1, .. . ,XN;f) ik, IIXk 

- xiII) 

(1.14) Z (1Ei j lIXi - Xjll I 

I I,j IX,,j - 

which gets us back to (1.10) and ultimately to (1.2). 

1.3. Relevance of the results for MDS. This work originated with an un- 
intentional "computer simulation" by the first author, whereby perfectly good 
data got scrambled before they were submitted to MDS with n = 3. The re- 
sulting three dimensional configuration looked like a discrete approximation 
to a uniform distribution on a sphere. Later, we heard about the same expe- 
rience from several other sources. After formalizing the "simulation" in the 
variational problem (1.2), we were led to the hypothesis that the degenerate 
uniform distribution on the (n - 1)-dimentional sphere solves (1.2). While this 
turned out to be correct for n > 3, the most surprising part of our results 
is the solution for n = 2: a circularly symmetric distribution that has mass 
everywhere in the interior of a disc with increasing density toward the periph- 
ery. This qualitative behavior was anticipated by de Leeuw and Stoop [(1984), 
page 397] as "distributing n points equally spaced over two or more concen- 
tric circles." They obtained their configurations by running metric MDS (1.8) 
with all dissimilarities set to the same value, that is, empirically minimizing 
(1.9). The solution for n = 1, a uniform distribution on an interval, is known 
as Plackett's theorem, so this should not have come as a surprise. For MDS 
with n = 1, this implies that a null configuration essentially puts the objects 
in a random order with approximately equal spacings. Again, this was an- 
ticipated by de Leeuw and Stoop [(1984), page 396], who write: "minimizing 
stress formula one will tend to produce equal-space-prone solutions in one 
dimension." 

These results are relevant for MDS in more than one way. While it is gen- 
erally worthwhile knowing about artifacts of complex data analytic methods 
in null situations, the implications of the results may reach beyond strict null 
data. Actual data are almost always a combination of structure and noise. If 
pure noise generates uniform configurations on spheres in three and higher 
dimensions, one should expect that the noise present in real data leads to some 
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evidence of overall curvature in MDS solutions. The expectation is that the 
noise component tries to force the configuration into the approximate shape 
of a sphere. This may be interpreted as a contributing factor to the so-called 
horseshoe effect. This colorful term describes the common experience of prac- 
titioners that point configurations produced by MDS exhibit global curvature 
which apparently has nothing to do with the underlying domain. The horse- 
shoe effect is an ill-understood yet frequent artifact of MDS. Clearly, it would 
be useful to develop diagnostic tools for measuring the degree to which noise 
contributes to horseshoe-shaped MDS configurations in given data. The de- 
velopment of such tools, however, is not the aim of the present work, which is 
solely concerned with the analytic solution of problems (1.2) and (1.3). 

To the reader with a background in psychometric methods we should add 
that the horseshoe effect in the versions of MDS considered here, that is, 
Kruskal's metric and nonmetric scaling, is mathematically distinct from the 
horseshoe effect of alternating least squares (ALS) and ACE methods for addi- 
tive regression and principal components. In these instances, horseshoes are 
a consequence of eigendecompositions, while in Kruskal's MDS horseshoes are 
of a mathematically more involved nature, as we show with the analysis of a 
crude null situation. 

2. Derivation of inequalities and positive-definiteness preliminar- 
ies. We first show that the common distribution of independent X and Y for 
which E X = 0 and E IIXI12 < 1 and E IIX - YlI is a maximum is spherically 
symmetric, that is, 

X=R 0, 

where 0 is uniformly distributed on the unit sphere in RI and R > 0 is inde- 
pendent of 0. Then we prove that, for 0 < 3 < p < 2, 1 < p < 2, 

(2.1) EIIX - YIIp < EIIX + YIIO 

for any independent random vectors X and Y in Rn with the same distribution 
(Ilxllp denotes the lp norm of x E Rn). To prove (2.1) we will show that, under 
the same restrictions on / and p, 

(2.2) Kp,,a(x,y) = llx+yJ1,6 - lIx -yIIff 

is a positive definite kernel, that is, for all choices of vectors xi E Rn and 
scalars ti E R, 

(2.3) ZKp,fl(xi,xj)titj > 0. 
ij 

This yields (2.1) by approximating the law of X by laws concentrated on finitely 
many point masses. 

Finally, we give examples showing that (2.1) fails is general if / > p or if 
p > 2. 
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REMARKS. The results (2.1) and (2.3) seem new and worthy of note but 
have been at least partially anticipated by Kakosian, Klebanov and Zinger 
(1989), and we obtain them easily from similar results of Levy (1937). Al- 
temate proofs have also been given by Zinn and his colleagues. Khmaladze 
pointed out that, if W(x) is the integral of white noise over the rectangular 
prism with endpoints at 0 and at x, Z(x) = W(x) - W(-x) gives a realization of 
a Gaussian process with covariance K2, 1. Other cases Kp, , remain unrealized 
by direct construction. 

THEOREM 2.1. Any common distribution for independent vectors X and Y 
in Rn which maximizes E IIX - Yll subject to E X = 0 and to E IIXI12 < 1 is 
spherically symmetric. 

PROOF. The condition E IIXI12 < 1 and standard tightness theory yield the 
existence of a probability law for X which actually attains the maximum of 
E IIX - Yll subject to the constraints. Call that law p. If ts is not spherically 
symmetric, then the characteristic function q(t) = E ei(t,X) is not spherically 
symmetric, and so there exist vectors u and t in Rn for which lthl = Ilull but 
+(t) # +(u). Consider the orthogonal reflection M which maps u to t; it is given 
by the formula M(x) = x - 2(m, x)m, where (m, x) is the canonical inner product 
in Rn and m = (u - t)/llu - tjI. Note M' = M. The characteristic function of MX 
is 4(Mt), so X(t) # X(u) = k(Mt), so the probability law of X is not symmetric 
with respect to the reflection M. 

We generate a contradiction by showing that the M-symmetrization of 0 
yields a strictly larger value of EIIX - Yll than ,u. In particular, define two 
independent random vectors X and Y by applying M with probability 1/2 to 
X and, independently, to Y, so that P(X = MX) = P(X = X) = 1/2 and so on. 

Since M is an involutive isometry of Rn, we have 

(2.4) EIIX-Yll - EIIX- =l 2 E(IIMK-I Y ll X-Yl). 

Now let zJ be the signed M-antisymmetric part of /s, namely, Iv = -s - 1y, 
SO fRng(x) dv = Rn (g(x) -g(Mx)) d4. Then 

I=JJI(lIxll + IIYII - llx -yll) dv(x) dv(y) 

=2 |(IlMx- y - llx-yll) dti(x) dv(y) 

J J(lMx -yIl - lix -yll) d1i(x) di(y) 

EIIX - Yll - EIIX - Yll, 
by (2.4). Since 1s is assumed nonsymmetric, v is nontrivial. Further, v({0}) = 

2W({}) - 2p(M-1{O}) = 0, SO V has no atom at 0. By Lemma 2.2, therefore, 
I > 0, so EIIX- Ylk > EIiX - Yll, contradicting the supposed optimality of p. 
Hence bi is spherically symmetric. O 
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This proof depends on a simple strengthening of a special case of a well- 
known result of Levy (1937): 

LEMMA 2.2. Suppose v is a finite signed measure on iRn, such that 
fRn(1 + llxil)ldv(x)l < 00. Then 

J j (IixII + Illil - lIx -yll) dv(x) dv(y) > 0, 

and strict equality holds unless all of v's mass is concentrated at the origin. 

REMARK. Nonnegativity follows directly from Levy (1937); only the condi- 
tion for strict inequality is novel. 

PROOF OF LEMMA 2.2. First check that the result holds for n = 1. The 
quantity IxI + HI - IX-yI for x,y c JR vanishes if xy < 0, and equals 2 min(lxi, LYI) 
if xy > 0, so it suffices to check that 

P00 P00 
I = j j min(x,y) dv(x) dv(y) > 0, 

with equality only if v's mass is concentrated at 0. However, min(x,y) = 
fo x(t < x)x(t < y) dt, so 

oo 00 \ 2 

s= L t dv(X)) dt= 
v 
Q(t,oo))2 dt > O. 

Further, if I = 0, then v([t, oo)) = 0 for almost all t > 0, which implies v([t, oo)) = 
O for all t> 0. 

To handle the multidimensional case n > 1, note that llxll = EI(x,Z)l for 
some spherically symmetrically distributed random vector Z, for instance, an 
appropriately scaled spherical Gaussian. Then 

1=j jE(Ilxll + Ilyll - lix -yll) dv(x) dv(y) 

=E ! (ixl + LIY - ix -yl) dvz(x) dvz(y) > 0, 

where vz is the one-dimensional signed measure induced by the map x F (x, Z). 
Further, I = 0 implies that for almost all Z the one-dimensional measures vz 
are concentrated at the origin. This then implies that v is concentrated at the 
origin. 0 

A similar method establishes the positive-definiteness of the functions Kp, A 
defined in (2.2). 

THEOREM 2.3. Let 1 < p < 2 and let 0 < d < p. Then the function 
Kp, (x,y) = lix +yll - lix -yll is positive-definite on iRI x Rn. 
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PROOF. We need to show that, for all finite k, 

k k 
A = ZZKp,3(xi,xj)titj > 0, 

i=l j=l 

for any choice of the k vectors xi E Rn and of the k scalars ti E R. According 
to Levy (1937) or Lindenstrauss and Tzafriri [(1973), page 138], the function 
IxIlIp is negative-definite in the sense that 

B = Z ILi -yi:iaj < 0, 
ij 

whenever Eai = 0. So define ai = sgn(i)tlil and yi = sgn(i)xlil, for -k < i < k, 
i 0 0. Then Eaci =0, and 

k k 

B= Z Z ILYi -yjll|aiaj 
i=-kjj=-k 

k k -1 -1 

= E+ E )lixiil - xvilltiitvi 
i=l j=-l i=-k j=-k 

k -1 -1 k + 

E J + EE )llXlil +XgI ltliltvl 
i=l j=-k i=-k j=-l 

=-2A. 

By Levy (1937), B < O, so A > O. 

We next give an example to show that (2.1) fails for p > 2 in general. 
Let el, .. ., en be the n unit coordinate vectors in Rn, define e = 1/nEjej and 

set X =ei - e with probability 1/n, i = 1, ..., n. Then, if X and Y are i.i.d., 

EIIX- Yllp = le, -e2llp( 1)= 21' 1 n- ) 

EIIX + Yllp = lle, + e2 - 2ei1p (1 -!) + 21lei - IlIp- 

2 ( n (n-2) ] ( n)- 

+2[(1--) +(n-1) 1/p 



416 BUJA, LOGAN, REEDS AND SHEPP 

For p > 2 fixed, as n -- ox, we get, up to terms of order o(1/n), 

21/P l - 3 +o(1)] + 2 1 

21/P I 3 - > 2-1/P ] 1[ 1 - 

so EJIX - Yllp > EIIX + Yllp for p > 2, for n large enough. 
We next give an example where (2.1) fails with 1 < p < 2 and d > p. 
Let n = 2 and X = (1, 0), (0, 1), (-1, - 1), each with probability 3. Then, if Y 

and X are i.i.d., set 

f(,B) = EX - Y3- EIIX + YII3 = 4 
(1+ 2P)'3/P - 22- 120+0/P- 

4 
p ~P 9 9 99 

Then 9f(p) =4(1 + 2P) - 21+P - 21+P -4 = 0 and 

9f'(p) =4 log(1 + 2P) (1 + 2P) - -21og22P"-log2 (1+1 21+P >O, 
p 

for 1 < p < 2, so that (2.1) fails for d = p + c, with E > 0 and sufficiently small. 

3. Derivation of the optimal form of the radial distribution. Con- 
sider two points that are uniformly and independently distributed on the sur- 
faces of spheres of radii r, and r2, respectively, in n dimensions. The average 
distance (Euclidean) between the two points is given by 

DfO (sinO)fl2 r) + 2r-r2c sO+r2dO n 

(3.1) fn(r,r2)=- fo(sin0)n-2 dO 

D1 (ri, r2) =max(ri, r2) 

The problem is to determine 
0o roO 

(3.2) Mn = sup j i D(ri) Dn(ri,r2) dy(r2), n > 1 

subject to 

dci(r) >0, J dbt(r) = 1, j r2d/i(r) ? 1. 

In the integral in the numerator of the first of equations (3.1), factor out the 
larger of r, and r2. Then, in terms of the hypergeometric function, we have 
[Erdelyi, Magnus, Oberhettinger and Tricomi (1953), page 81] 
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where 

(3.3)(i) A = min r-, - 
Vr2 r,y 

and 

(3.3)(ii) F(a,b;c;z)=kO (C)k W! I < 1* 

In the hypergeometric series, Pochammer's symbol is used for the ascending 
factorial; that is, 

(3.4) (x)k = x(x + 1) ...(x + k - 1), k =1,2,.. ., (x)O = 1, 

or, equivalently, 

(3.4)(i) (X)k = r(x + k) 
17(x) 

Problem (3.2) makes sense, (mathematically) when the positive integer n is 
replaced by any positive number v, although the physical meaning is obscure. 

Since 

r(x +k) , kx-Y k- oo, 
r(y +k) 

we have 

(3.5) ((a)k(b) k r(c) 1 
k --+ oo. 

(C)kk! F(a)r(b) kc-a-b+1' kI~ 

If c > 0 and c - a - b > 0, then the hypergeometric series converges for z = 1, 
the sum being 

(3.6) FF(a, b;)c;) r(c)J7(c - a - b) 
r(c -a)r7(c -b)' 

Let us define 

(3.7) D,(r, p) = max(r,p) q5(A2), r,p > 0, I > 0, 

where 

(3.7)(i) A = min(r/p, p/r) 
(3.7)(ii) &,(z) =F(-1/2, (1 - v)/2;v/2;z). 
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For this hypergeometric function we have c - a - b = v. So for v > 0 it is seen 
from (3.3) that the function D,(r, p) is a continuous function of r and p. Also, 

(3.8)(i) D. (r, p) =D, (p, r), 
(3.8)(ii) D. (ar, ap) =aDv (r, p), a > 0, 
(3.8)(iii) D. (r, 0) = r 

(3.8)(iv) Dv (1i 1)= r(vl2)F(v) vu>O0 
r(v/2 +1/2)r(v -1/2)' 

The original integral representation holds for v > 1, that is, 

(3.9) Dv(r) p) = v r+2rp cos9+p2 d1 
D~(r,p) = foj (sin9)v-2 dO 

Hence, 

0 < Dv(r,p) < r+p, v >1. 

In general, 

(3.10) ID,(r, p)I < {max(r, p)} x {max(1, Iq$v (1)1)}, v > 0. 

It is clear from the series that ov(x) is a decreasing function of x, 0 < x < 1, 
for 0 < v < 1. We see qv(1) < 0 for 0 < v < 1/2 and 

(3.11) 1/22(X) = 1-X 0 < x <1. 

Hence 

(3.12) D 12(r, p) = jr2 _ p211/2. 

For some positive v, (less than 1/2) we will have 

(3.13) q5,o(1) = -1. 

Then we have from (3.10): 

(3.14)(i) ID, (r, p)I< r +p, v>- vo 9 
(3.14)(ii) ID,(r,p)I < Ibv (1)1 (r+p), 0 < v < vO. 

Thus the quantity Mv, defined by replacing the positive integer n in (3.2) by 
V, has a definite value for each positive v. In fact, since 

(3.15) D, (r,p) <D,(r,p) max(l, ,(1)), v >0, 

we have 
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For v > 1 we have, from (3.1), 

fo f(sin 0) v-2 (cos(0/2) + sin(0/2)) dO 

fj (sin 0)v-2 dO 

from which it is seen that X>(1) increases to the limit X as v --J oo. 
In this problem the basic fact is that the kernel Dv(x,y) is negative-definite 

on measures of zero integral. 

RADIAL INEQUALITY. Consider signed measures d1i satisfying 

(3.17)(i) j Id,(x)I = a < ox, j xldt(x) =I < oo. 

For dyu1 and dP2 satisfying (3.17)(i), define 

(3.17)(ii) (/11,/12) v = j jdiii(x) D. (x,y) dP2(y), v > 0, 

where the double integral is absolutely convergent. Define further 

(3.17)(iii) j dJl(x) = mO, j x dl(x) = m. 

Then 

(3.17)(iv) (p, ,), < 2m0ml, v > 0, 

and the inequality is strict if both a and / in (3.17)(i) are positive, that is, 
equality holds nontrivially in (3.17)(iv) only for a point mass at the origin. 

So, in fact, the kernel is negative-definite on measures of zero integral or 
of zero first moment. The proof is given in Section 7. With this result, we may 
establish the following theorem. 

THEOREM 3.1. Consider positive measures dlL on [0, x) satisfying 

(3.18)(i) J d/1(x) = 1, j x2 dlt(x) = 1. 

Suppose dl,, satisfies (13.18)(i) and in addition, for some constants A, and B, 

(3.18)(ii) j Dv(x,y) d/1v (y) Av +B vx2, x > 0, 

where equality holds whenever x is in the support of do,,(x). Then, for any d/1 
satisfying (3.18)(i), 
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where equality holds iff 

(3.18)(iv) dH, = dyu. 

PROOF. Suppose (3.18)(iv) does not hold. Then according to the radical 
inequality (3.17)(iv) we have 

(3.19) (# v - IL, v - A) , < 0. 

Now 

(3.20) (uv - y, pv- ) = (v,v)-v, )-(p, Hv) + (H, A)v 

It follows from (3.18)(i) and (ii) that 

(3.21) (W, pv)v < Av + Bv 
(3.22) (v), kLv)v =A,v + B. 

Then, if (3.18)(iv) does not hold, we have, in view of (3.19)-(3.22), 

(3.23) (p, t), < Av + Bv = (I#V 'AV) v 

Thus the theorem is established. OJ 

It is a curious fact, in view of the symmetry of the kernel and inequality 
(3.21), that if dbt and dA2 satisfy the moment constraints and are allowed to 
have different supports, then it may be possible to have 

(ILI, J2)v > Mv, 

the reason being that with one measure fixed, the maximum with respect to 
the other is always attainable with no more than two point masses. This pos- 
sibility arises when the support of dp, consists of more than two points. In the 
problem here, it turns out that dp,(t)/dt is a density with support [0, V3/] in 
case 0 < v < 3. Therefore if the support of d1ll belongs to [0, 3/37], 0 < v < 3, 
then 

(Al,AV) = (LvIhv)v =Mv, 0 < v < 3. 

In particular, dbl(r) may be a single point mass at r = 1. Then the double 
integral can be increased by changing AV. Thus, if p1 and YU2 satisfy the con- 
straints, then 

00 

MV-max('1, Y2)v > max D,(r, 1) dI'2(r) > M, 0 < < 3. 
Al, A2 /2 0 

Taking dA2(r) to consist of a point mass at the origin and another of mass a-2 
at r = a, we have 

Mv > max{ 1 - a-2 + a-lo, (a-2) 
a>1 
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In case v = 1, the maximum over a occurs for a = 2, giving 

M*>5 > l=2 1 - 4 >M1 - 

According to Theorem 3.1, the problem under consideration is solved when 
d1i, > 0 is found such that 

(3.24) J Dv(r, p) dwv,(p) < A? + Br2, 0 < r < x, 

where equality holds for all r in the support of d/,(r), with 

fdiv(r) = 1, Jr2 d/v,(r) = 1, 

giving 

(3.25) Mv =4A + Bv. 

We observe from the linear bounds on IDv(r, p)l [cf. (3.14)(i) and (ii)] that equal- 
ity cannot hold in (3.24) for arbitrarily large r when v is fixed. It is convenient 
to introduce an unknown scale factor in the problem by requiring the support 
of dp,(r) to belong to the interval [0, 1], and later dilate the solution to obtain 
unity second moment. A single point mass at r = 1 gives for the lower bound 

(3.26) Mv > Di(1, 1), v > 0. 

4. The case I > 3. This is the simplest case, the solution being a single 
point mass at r= 1, giving 

(4.1) M~ =Dv(1 1) = F(/)()v?>3. 
IF (v1/2+ 1/2)Pr(v -1/2)' > 

In order to establish this result it is sufficient to show that D,(Vx-, 1) is a 
concave function of x, for 0 < x < oo, provided v > 3. Then, in view of the 
relations 

(4.2) D. (r,p) = pD,(r/p, 1), p> 0, r> 0 
(4.2)(i) D. (r, 0) = r, r > O0 

the function 

aDV (a vx,P) d/2i(p) 

will be a concave function of x, for x > 0 and all d,u under consideration, 
provided v > 3. Then, by establishing concavity, we obtain the following more 
general result. 
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THEOREM 4.1. For i = 1, 2, suppose dpi > 0 and 
/.00 p00 

(4.3)(i) 1 dpi(t) = 1, 1 t2 dpi(t) < 1. 

Then 
roO r0 

(4.3)(ii) di 1 d>(r) D. (r, p) dl2 (P) < D, (1, 1), Lo > 3. 

PROOF. We have from (3.7), 

(4.4)(i) Dv(Vx, 1) = V (x), 0 < x < 1 

(4.4)(ii) Dv (VX- 1) = X1120 (1 X > 1. 

We use the integral representation for the derivative of Ov(x): 

XvX=2vF 2 '2 12; 
(4.5) 

1 F(v/2) f - 

-t-1/2 (_t)(v-1 /2(1xt)( 3)/2 dt, 2 r(v/2 - 1/2)r(1/2)J 

which holds for v > 0. Hence 

(4.6) q$"(x) <o, O<x<1, u>3. 

Recall that 

ot,(x) = F 2 ' ;; ) 

Hence X,(x) is a polynomial of degree (v - 1)/2 in x when v is an odd positive 
integer. In particular, 

(4.7) 033(X)=1+X3 3 

Therefore D{(-Fx; 1) is concave for 0 < x < 1, provided v > 3. 
As noted previously, the representation (3.1) shows that the derivative with 

respect to r of D,(r, 1) is a continuous function of r (r = 1 is the only point in 
question), provided v > 1. Thus we are left only to establish that D,('fx, 1) 
is concave for x > 1, provided v > 3. In view of (4.4)(ii), this is equivalent to 
showing the following: 

(4.8) ZV(t) = t2q $'(t) + tq'V(t) - < 0, 0 <t < 1, v> 3. 
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Here we use the fact that w(t) = M(t) satisfies the hypergeometric differential 
equation 

(4.9) t(i _ t)W,, + lv + (> _ 1) t WI 1 (v _ 1)W = 0. 

Then we find that 

(4.10) [v+ (- 2)t]Z,(t) - 2tDE = (- 2 + vt)k'.j(t) - (- t)$,,(t). 

Since 0,(t) is positive in (0, 1) for v > 1/2, inequality (4.8) follows from (4.6), 
(4.7) and (4.10). Thus Theorem 4.1 is established. 0 

5. The case 1 < v < 3. This case is just as easily handled as the special 
case v = 2. 

We propose to find a solution pv(p) of the integral equation 
1 

(5.1) Dv (r, p)pv (p) dp = q, 
p=0 

where 

(5.1)(i) ~ ~ q q(r) =A, + B,r2 0 < r < 1, 
and, for appropriate Av and B>, pv(p) is a probability density on (0, 1), and 

(5.1)(ii) qv(r) <A +B,,r2, r> 1. 

We have 

Dv(r, p) = max(r,p) . qv (A2), A = min (, p). 
Hence, 

D,(r,pP) 1 (A2). 

Then, by replacing the variables by exponentials, an integral equation on (0, 1) 
having the kernel Dv(r, p) may be converted to an integral equation on (0, oo) 
involving a difference kernel. Thus (5.1) becomes 

(5.2) j Iiv (x - t)ft (t) dt = gv (x), 

where 

(5.2)(i) 4v (t) = elt/F( 2' 2 ;2 ;e-2t 

(5.2)(ii) fv (t) = e-3t/2pv (e-t), 

(5.2)(iii) gv (x) = eX/2qv (e-x) = Avex!2 + Bve-3x/2, x > 0. 
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Equation (5.2) is brought into a tractable form by applying the differential 
operator {(d/dx)2 - 1/4}. Thus we obtain the Wiener-Hopf equation, 

00 

(5.3) J kv(x - t)f,(t) dt = 2Bve-x/2 x > 0, 

where 

(5.3)(i) kv(x)= (dx - (Dv(x), v > 1 

Since D>(x) has a continuous derivative which vanishes for x = 0, the operator 
does not introduce a delta function at the origin. In fact, k,(x) is an even 
integrable function, being completely monotone for x > 0 when 1 < v < 3. 

We have 
00 

k,(x) = E {(2n + 1/2)2 - (1/2)2 }an exp[(2n - 1/2)ixI], 
n=O 

where 

a= (-1/2) (1/2 - v/2)n = v - 1 (1/2)n-1(3/2 - v2)n-1 n > 1. 
a0 ~~(v/2)0nn! 2v (1+uv/2)n0ln! , n1 

Then for b = 1/2 - v/2 and c = v/2, we have 

2n(2n- )a = 4 (-1/2)/n+l(b)n =b (3/2)n-l(b + 1)n-1 > 1. 
2n(2n1)a0n (C)n (n -1)!- c ( )-1( 

Hence 

(5.4) k(x) =v- (/)( (3)n(3/2 - v/2)n exp[-(2n + 3/2) lxl], V> 1. 
n=O (+/)n 

This kernel has a bilateral Laplace transform K&(s), analytic in the strip 
-3/2 < Re s < 3/2, which has a very neat factorization. First let us note 
that (5.3)(i) implies 

(5.5) 4D v(x) = j k,(t)elx-t1/2 dt, v > 1. 

In the case of a suitable even kernel k(x - t), the Wiener-Hopf factorization 
leads to a representation 

k(x) = j h (t)h (t - x) dt, 

where h(t) vanishes for negative arguments and its Laplace transform is zero- 
free in the right half-plane, including the imaginary axis. Here we are able to 
guess the representation for k,(x). 
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Consider 

(5.6) h(t) = {eb(l -e t)e , t > 0, 
10, t < 0, 

where b > 0 and a < 1 so that h(t) is integrable. Then 

(5.7) h(t) = E (a)ne 2nb)t t > 0, 
n=O 

and 
00 O' (a)~ (5.8) H(s) = f S esth(t) dt Z n! s+2n+b' Re s > -b. 

n=O 

From the beta-function representation, 

1 r~~~(x+ry) (5.9) 
V ~tl-1(1 -t)Y-1 dt -_r(x +()) 

we see by expanding (1 - t)-1 in powers of t that 

(5.10) H((s) = 2 r(s/2+ b/2)F(1 -a) Re s > -b. H()2 F(s/2 +b/2 + 1-a) 

Now define the even function 

(5.11) k(x) = j h(t)h(t - x) dt = f h(t + x)h(t) dt. 
-0 -00 

Then 

(5.12) k(x)=j h(t)h(t+x) dt-Z (anH(2n + b)e(2n+bW, x> O, 
n=O 

where 

H(2 b) 1 r(n + b)r(1 - a) 
H(2nb)=2 r(n+b-a+l) 

1r(b)r(i - a) (b)n 
2 F(b+ 1-a) (b+1-a)n 

Hence 

(5.13) k(x) = 2I(b (1 a) E (a)n(b) n 
x exp[-(2n+b)lxl], b >0, a < 1, 
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and 

(5.14) j e-sxk(x) dx = H(s)H(-s), - b <Re s < b. 
-00 

If we replace b by 2b, s by 2s and x by t/2, the last result is more neatly 
written out as 

Leste-bjtjF(a, 

2b; 2b + 1 - a; e 
II 

) dt 

(5.15) '-r(b + s)r(b - s) 
r(b + 1 - a +s)r(b + 1 - a - s)' 

where 

(2b+1 a)r(-a) b > a < 1, - b < Re s < b. 

Now in (5.13) if we take 

a = (3 - v)/2, b = 3/2, 

and set 

(5.16) h~(t) = fc,e3t/2(1 e-2t)(v-3)/2 t > 0, 
10, t ?0,l 

where 

(5.16)(i) CL, = F(v/2 - 1/2) 

then we will have 

(5.17) kv(x) = j h (t)h, (t - x) dt, v > 1, 
-00 

and 

HV (s) = 2(1-V)/2 (v) 
(5.18) r(s/2 + 3/4) 3 

(5.19) K.(s) H.(s)H (-s), -32 < Res<, 
3 

>>1. 

Now for 1 < v < 3 we may define h (t) by requiring it to vanish for negative 
argument and satisfy 

(x 
(5.20) h/ h(t)h,,(x - t) dt = e-3x/2, x > O. 
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That is, H*(s), the Laplace transform of h*(t), is defined by 

(5.21) H.(s)H*(s) 1 < v< 3. H~(s)H(s) s+3/2' 

Then 

H* (s) = 2(vl)/2 r(s/2 + 1/4 + v/2) 
( V 1F(v) 2(s/2 + 3/4)r(s/2 + 3/4)' 

or 

(5.22) Hz(s) = 2(v3)/2 r(s/2 + 1/4 + v/2) 1 < v < 3. 

Comparing (5.22) with (5.10) we see from (5.7) that 

(5.23) h* (t) = {ev +l/2)t(l - e2)( , t > 0, 
0, t ? 0, 

where 

(5.23)(i) c* = 2 sin[(o - 1)X/2] 
irc, 

It may be shown that if the Wiener-Hopf equation with kernel kv(x - t), 
1 < v < 3, has a solution, then that solution is unique. This fact need not be 
established here, since Theorem 3.1 will serve the purpose for the restricted 
class of solutions. The particular equation under consideration, 

(5.24) j kLv(x - t)fv(t) dt = 2Bve3x/2, x> O, 1 <I < 3, 

has a simple solution. 
Consider the function e>(x) defined by 

(5.25) j kv(x - t)h*(t) dt = e,(x), -oo <x<ox, o <v<3. 

The function ev(x) has a bilateral Laplace transform given by 

(5.26) EV(s) = K.(s)H*(s) = H(-s) 2 <Re s 3. 

It follows that e,(x) is also given by 

fx.27 erhv (-t)e-3x/ dt, -00 <x < 00, 
(5.27) e. (x) = {f-()3(xt/2 d, x 
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Therefore, in (5.24) we have 

(5.28) fV(t) vh*(t). 

Then using (5.5) we obtain 

(5.29) H(3/2)g(x)=f| v (x - t)hv (t) dt 
(5.29) 0 o 

=|e,(t)elx-t/2 dt, -oo<x<oo, 1<v<3. 
-00 

Then from (5.27) we have 

e,(t)elx-tI/2 dt=-2 j h (-t) (elx-tI/2 +e-3(x-t)/2) dt 
-00~ ~~ -00 

(5.30) +j h,(-t)elx-/112 dt 

2H k2/2k',21e-3/ =2H ( 2)e 2 HV2 )>0 

where 

Ii ~~~irf (v) 3 
(5.31) H =H (i), v2>1 . = r~~ (v/2) 2 

Therefore, 

(5.32) gv(x) = vBvex/2 +B,e-3x/2, x > 0, 

where B, is determined by the condition 

(5.33)(i) PV(p) dp = 1. 

or, equivalently, by (5.33)(i) and 
r1 r1 

(5.33)(ii) jDv(0,p) dr= j pp(p) dp A1 = A 'BV. 

Thus the result is 

(5.34) Dv (r, p)pv (p) dp = q. (r), 

where 
r(1/2) p- (5.34)(i) Pv(p) = r(v/2)r(3/2 - v/2) (1 - p2)(v-1)/2' 

(5.34)(ii) qv(r) = ((3/2)r(v/2 + 12<r< 1 r < 
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It remains to show that q,(r) satisfies 

(5.35) qv (r) <A,+ B,r2 r> 1. 

We have 

(5.36) q,(r) =r Pi (p ' 2; 2;2) dp r>i. 

Here we make a simple change of variables to obtain Bateman's integral 
[Erdelyi, Magnus, Oberhettinger and Tricomi (1953), page 78], 

F(a, b;c;x) = -(A)F(c - A) 

(5.37) 
rArc-A 

x j tA-(l - t)c-A-lF(a,b;A;xt) dt, Re c > Re A > 0, 

which gives 

(5.38) q,(r) =F(- 1 1 -v -3 -2) r> 1, 1 < J< 3, 2' 2 2 

(5.38)(i) q2 (r) = 2 (+ - sin- (r 4 , r > 1. 

We would like to show that q,,(v) is a concave function of t, for t > 1. 
Since 

(-1/2)n -1 

(3/2)n 4n2- 1' 

we have, for t > 1, 

d2122- (1/2 - v/2)n t-n3/2 

(5.39) dt2n-4 
- t-3/2(1 _ t-1)(v-1)12 4 

Thus, for 1 < v < 3, not only is the first derivative of q,(r) continuous, the 
second derivative is also continuous. 

As to the second moment condition, we have 

(540) X tnp^(t)dt r(3/2)r(n/2 + v/2) 
Jand(v/2)r(n/2 + 3/2)' 

and 
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Thus we take a = /?1; to obtain unity second moment, and hence 

MV= V+B 344 
(5.42) vM3/ v 3 

(r(v/2 + 1/2) < v < 3 
A3 F(v/2 +1) 1v3 

6. The case 0 < v < 1. Recall that this case yields Plackett's theorem for 
M= 1. 

The solution of the integral equation for 1 < v < 3 is actually valid for 
0 < v < 3. Then (5.38) and (5.39), which follow from Bateman's integral, also 
hold for 0 < v < 3. Hence (5.42) holds for 0 < I < 3. 

In the case 1 < v < 3, the solution of the integral equation having the kernel 
1y,(x - t) was solved by first applying the operator {(d/dx)2 - 1/4} to obtain 
an integral equation having the integrable kernel k,(x - t). That method is 
not applicable here because k,(x) has a nonintegrable singularity at the origin 
when 0 < v < 1. So the validity of the previous solution must be established 
by another method. It turns out in the case here that the integral equation on 
(0, 1) does not have a unique solution, but the solution becomes unique under 
the additional requirement that the resulting function qv(r) must satisfy 

(6.1) q.(r) <A, +B,r2, r > 0, 

where equality holds only for 0 < r < 1. It turns out that this is equivalent to 
equality holding for 0 < r < 1 with the additional requirement that q,(r) have 
a derivative at r = 1. The case v = 1 gives a simple illustration of this fact. 

In case v = 1 we have 

D1 (r, p) = max(r, p). 

Hence a uniform distribution (0, 1) gives 

1~ ~~~Or 
ql(r)={fDl(rip) dp=(1+r2)/2, 0 < r<1 

r > 1. 

In this case the derivative of the right-hand side is continuous at r = 1, and 
(6.1) is satisfied for A1 = B1 = 1/2. 

On the other hand, a unit point mass at r = 1 gives 

q* (r) = D, (r, 1) = 11 ? < r,< 1, 

Thus a mixture of a point mass at r = 1 with a uniform distribution on 
(0, 1) is the general solution of the integral equation, but since the right- 
hand derivative of q*(r) at r = 1 exceeds the left-hand derivative at the point, 
a (probability) mixture of ql(r) and q*(r), which assigns positive weight to the 
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latter, will not satisfy the required inequality for r slightly larger than 1. Thus 
the uniform distribution is the solution and, when scaled to have unity second 
moment, is uniform on (0, v'3). 

The general integral equation, obtained after an exponential change of vari- 
ables, having the kernel 4i(x - t), is solved by first applying either an integral 
or differential operator which gives a kernel having an index I in the funda- 
mental interval (1, 3). The operator is found as follows: 

The factorization results, (5.17)-(5.19), hold for v > 1, showing that 

(6.2) HV+2(S) = Hg(s), v> 1, 
s + + 1/2 

(6.3) KV+2 (S) = V(V + /)2 _ SK,(s) v > l. 
(v+ 1/2)2 _S2Kvs 

Although k,(x - t) makes no sense as an integral kernel for v < 1, relation 
(5.5), namely, 

I40(x) = j kv(t)elx-t1/2 dt, M > 1, 

together with (6.3) suggests that 

(6.4) (+ i)+ (x) = { (v + -(d> 0.+2(x) >? 

Indeed, (6.4) may be verified by differentiation of the power series, the second 
derivative of the series being absolutely convergent for v > 2. Hence, if 

(6.5)(i) j f(t)i,+2(X - t) dt =g(x), v> 0, 

and the integral is absolutely convergent, then 

(6.5)(ii) v(v + 1) f(t)4,(x - t) dt = (v+ 1/2)2g(x) -g" (x), v > 0. 

The corresponding result is as follows: if 

(6.6)(i) D,+2(r,p)p(p) dp = q(r), r > O, v > O, 

and the integral is absolutely convergent, then 

(6.6)(ii) jDv(r, p)p(P) dp = q(r) - , i) v>, r>O. 
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Thus we have, from the previous solution, 

1 
D. (r, P)Pv+2 (p) dp 

(6.7) = 2+(V- 1)( +2)Bv22 ,0<v<1 
=4A+2 + V + Bi,+2r2 O<r?l, 0<z'<1, v(zo + 1) 

but since the coefficient of r2 is negative, the required inequality obviously 
cannot be satisfied for sufficiently large r. In fact, it fails for r slightly larger 
than 1. 

In order to verify that (5.4) holds for 0 < v < 1, we first evaluate the integral 

(6.8) j fv(t)kv+2(x - t) dt = wv(x), 0 < v < 1, 

where 

(6.8)(i) f (t) = 2r(3/2) e-2t 
t > 0 

r'(v/2)r(3/2 
- 
v/2) (1 - e-2t)(v-1)/2' t>0 

and vanishes for negative arguments. The (bilateral) Laplace transform of 
fv(t) is given by 

(6.9) F (s) r(3/2) r(s/2 + v72 + 1/4) 
r(v/2) P(s/2 + 7/4) 

Then wv(x) has a bilateral Laplace transform given by 

(6.10) Wv (s) = Fv (s)Kv+2 (s) = Fv (s)Hv+2 (s)Hv+2 (-S) 

Thus [cf. (5.18)] 

(6.11) Wy(s) (s + u + 1/2)(s + 3/2)' 

where 

(6. 1)(i) av=2(3-v)v2r r(32) 
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Hence 

WV(x) = l'v Lhv+2(-t)(exP [ (v2)(t)] 

exp-3(x - t) ])dt 

(6.12) 

= HV+2(v+ )exp[ (v+ )x] 

aV,-Hv2 3exp x?O , 
1 v (2) 2) 

where the exponential exp[-(v + 1/2)x] will be annihilated by the operator in 
(6.4). 

We have from (6.8) and (5.5), 

(6.13) f (t) v+2(x - t) dt - j wV(t)eIx-tI/2 dt. 

Then from (6.4) and (6.13) we obtain 

(6.14) (t) (t) (x - t) dt = g9v(x) = j uv(t)eIx-tj/2 dt, 

where 

(6.14)(i) v(v + 1)u,(t) = (v + 1/2)2w (t) - w,, (t). 
The bilateral Laplace transform of u,(t) is given by 

(6.15) UV (s) = a, (v + 1/2 - s)H,+2 (-S) 
v(v +1) (s +3/2) 

Therefore 

(6.16) uV (x) =-Ovh,+2(-X) 

+ + 
2)V, 
J h3+2(-t) exp ( x3( t)) dt, 

where 

(6.16)(i) fl,,= 

Hence [cf. (5.30)], 

(6.17) gv(x) = ?v{vHv+2 ( )ex/ ( + 2)HV+2 ( e) /} 

x>O , 0 < i<1. 
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Since [cf. (5.31)] 

H,,(-1/2) = vH1,(3/2), v > 1, 

we have 

(6.18) gv(x) =A_eX/2 +B,e-3x/2, x > 0,0 < v < 1, 

where 

(6.18)(i) AvB = rB_ - (3/2)r(F/2 + 1/2), <V < 

Therefore relations (5.34)-(5.42) hold for 0 < v < 3. 

7. Proof of the radial inequality. We prove the radial inequality (3.17)(iv). 
By subtracting r + p from D,(r, p) we obtain 

(7.1) (/l, !2)v = (A1l, I2), + m(1)m(2) + m(2)m(1) 

where we define 

(7.1)(i) (/11, i)v = j j d,l(r){D,(r, p) - r - p} dP2(p), 

(7. 1)(ii) m(i = er dlii(r), i = 1, 2, n = 02,1. n 

Since 

D,, (r, 0) = D, (O, r) = r, 

we have for i = 1, 2, in case A0 is a point mass at the origin, 

(7.2)(i) (Hio, Hi)= (pi, Ao ),, = ? 

Hence 

(7.2)(ii) (A1 + io, /2 + A4)v = ( A2, V2). 

Thus, in anticipating an exponential change of variables where the origin 
maps to +oo, we may ignore any mass at the origin for the purpose of estab- 
lishing (3.17). In fact, in view of the smoothness of the kernel and the relation 
(7.1), it is sufficient to establish that 

(7.3) (p, A) v < O, vJ > O, 

for the case that 

(7.3)(i) dy(r) =p(r) dr, 



INEQUALITIES IN MULTIDIMENTIONAL SCALING 435 

where p(r) is a real-valued function of Ll, vanishing for negative arguments 
and satisfying 

(7.3)(ii) J rlp(r)l dr < oo, j [p(r)l dr > 0. 

Since 

(7.4) D.(r,p) = max(r,p) .(A 2), 

where 

(7.4)(i) =in (r p 

(7.)(i) X(x)Ft '2 ;2 

we have 

(7.5) D,(r,p) - r - p A-1/2v (A2) - (A'/2 + A-1/2). 

Then, on setting 

r e-t p= ex 

we obtain 

(7.6) (/t,LL), = J f(t) 4{v(x - t) - 2 cosh [ 2 ] }f(x) dx dt, 

where 

(7.6)(i) f (t) = e-3t12p(e-t), 

and (%(t) is defined in (5.2(i)). 
We have 

00(-1/2)n(1/2 - v/2)n N 
(7.7) (D (t) = (=O (1/2))n L (2n - ) tIJ 

The first term, eltl/2, is largely cancelled by 2 cosh(t/2). Thus, 

(7.8) eIti/2 - 2 cosh(t/2) = -e-HtI/2 

and therefore, in view of the asymptotic behavior of the coefficients in the 
series [cf. (3.5)], the convolution kernel in (7.6), denoted by 

(7.) (t)= (t) - 2 cosh (2) 
=exp 2- + an (v) 

n=1 Lk 1 
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has a bilateral Laplace transform _>(s) analytic in the strip -1/2 < Re s < 
1/2, where it belongs to L1 n Loo on vertical lines and is real-valued on the 
imaginary axis. 

Now since p(r) and rp(r) belong to L1 and 

(7.10) j rnp(r)I dr= L exp - n- 2)t] If (t) I dt 

the function f(t) has a bilateral Laplace transform F(s) bounded and analytic 
in the strip - 1/2 < Re s < 1/2. Hence, since f(t) = f(t), we have 

(7.11) (LI,j)v = 2- j E(iw) IF(iw)I2 dw. 

We wish to show that the Fourier transform of (,(t) is negative. The case 
0 < v < 1 is simple. In (7.9) we have 

(7.12) an(v) < 0, n > 1, 0 < v < 1. 

Since the Fourier transform of e-AItl, A > 0, is positive we have 

(7.13) -.^(iw) < o, _ oo < w < 0o, 0 < Is < 1 

In case v > 1, inequality (7.12) no longer holds; in fact, for 1 < v < 3, those 
coefficients are positive. Nevertheless (7.13) holds for v' > 0. 

Recall that [cf. (5.3)(i)] 

(7.14) kv(x)= -- (x), v>1, 

where k,(x) is an even integrable function, completely monotone for x > 0. 
Therefore its Fourier transform is positive. Its bilateral Laplace transform is 
given by [cf. (5.18) and (5.19)] 

Kv(s) = 21-vr(v) 1r(3/4 + s/2)r(3/4 - s/2) 
(7.15) r()11/4+ v/2+ s/2)r71/4+ v/2 - s/2)' 

32< Res<3,v>1. 

Since the operator in (7.14) annihilates e?'2 we have, from (7.9) and (7.14), 

(7.16) kv(x) 
d 1 

- (x) v > 1. 

In view of the common strip of analyticity of their Laplace transforms, we 
have 

K.(s) 1 1 
(7.17) E(s) = 2 < Res-, i> 1. 

s - 1/4' 2 2 
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Therefore (7.13) holds for v > 0. Hence under assumptions (7.3)(i) and (7.3)(ii) 
we have 

(7.18) (tL,/)v = 2X v(iw)IF(iw)2 dw < 0, v > 0. 

Thus (3.17) is established. 
We note further that from the relation [cf. (6.4)] 

(7.19) V(1/ + 1)b(X) = { v + 1) - (d) v+2(X) v > 0, 

it follows that 

(7.20) V(V+ 1)_>(s) = [+2 -s -v+2(s) v > 0. 

Then, since 

41e(t) -jtj/2 

we have, from (7.15), (7.17) and (7.20), 

j v(t)e-`t dt 

21v-v(l,) r(3/4 + s/2)F(3/4 - s/2) (7.21) = s2 - 1/4 r(1/4 + v/2 + s/2)r(1/4 + v/2 - s/2)' 

-2< Res< 2' > 0. 1 1' 
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