
Submitted to the Annals of Statistics

VALID POST-SELECTION INFERENCE
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It is common practice in statistical data analysis to perform data-
driven model selection and derive statistical inference from the se-
lected model. Such inference is generally invalid. We propose to pro-
duce valid “post-selection inference” by reducing the problem to one
of simultaneous inference. Simultaneity is required for all linear func-
tions that arise as coefficient estimates in all submodels. By purchas-
ing “simultaneity insurance” for all possible submodels, the resulting
post-selection inference is rendered universally valid under all possi-
ble model selection procedures. This inference is therefore generally
conservative for particular selection procedures, but it is always less
conservative than full Scheffé protection. Importantly it does not de-
pend on the truth of the selected submodel, and hence it produces
valid inference even in wrong models. We describe the structure of the
simultaneous inference problem and give some asymptotic results.

1. Introduction.

1.1. The Problem. In the classical theory of statistical inference data is
assumed to be generated from a known model, and the properties of the
parameters in the model are of interest. In applications, however, it is often
the case that the model that generates the data is unknown, and as a conse-
quence a model is often chosen based on the data. It is common practice to
apply classical statistical inference, such as F - and t-tests and confidence in-
tervals, to models that have been chosen with model selection methods. The
practice is so pervasive that it appears in classical undergraduate textbooks
on statistics, such as Moore and McCabe (2003).

Despite its prevalence, this practice is problematic because it ignores the
fact that the inference is preceded by a selection process that produces a
model that is itself stochastic. The stochastic nature of the selected model
affects and distorts sampling distributions of the post-selection parameter es-
timates. The distortion of distribution occurs with all data-dependent (more
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precisely: response-dependent) model selection methods, including stepwise
forward or backward search driven by F -to-enter or F -to-drop criteria, or
all-subset searches driven by complexity penalties such as Cp, AIC, BIC,
information-theoretic criteria, risk-inflation, the Lasso, LARS, or prediction
criteria such as cross-validation, or recent proposals such as the Dantzig
selector. For general descriptions of these selection rules, see Hastie, Tibshi-
rani, and Friedman (2009).

The problem of post-selection inference has been recognized long ago by
Buehler and Fedderson (1963), Brown (1967), Olshen (1973), Sen (1979),
Sen and Saleh (1987), Dijkstra and Veldkamp (1988), Pötscher (1991), and
discussed more recently by Leeb and Pötscher (2005; 2006; 2008). In partic-
ular, Leeb and Pötscher (2006; 2008) show from a natural perspective that
it is impossible to find the distribution of post-selection estimates, not even
asymptotically.

1.2. A Basic Example. As an illustration of the problem, consider a sit-
uation where the outcomes Y are generated by the Gaussian Linear Model

(1.1) M1 : Y = β0X0 + β1X1 + ε.

(One of the two predictors might be a constant intercept vector, but this
is immaterial.) For simplicity we assume n � p = 2 and hence consider
sd(ε) = σ as known and without loss of generality σ = 1. Also, β0 and β1
might possibly be 0, but no other covariate is involved in generating Y.
Suppose the covariates Xj are vectors such that

‖X0‖2 = ‖X1‖2 = 1, c = 〈X0,X1〉.

Suppose also that we would like to obtain inference for β0 only. However,
we do not know if we should exclude β1 from the model and retain instead

M0 : Y = β0X0 + ε.

The following is a stylized routine that captures aspects of what might be
taught in an undergraduate course on statistics and what is often practiced
in statistical applications:

1. Fit the full model M1 of (1.1) and test the null hypothesis β1 = 0 in
M1 (at the usual 5% significance level, say). If it is rejected, use the
full model M1, else use the model M0. Denoting the selected model by
M̂, we have M̂ = M1 or M̂ = M0 depending on the outcome of the test.
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2. If M̂ = M1, use the least squares (LS) estimate of β0 in M1: β̂0·M1 =
〈a,Y〉 where a = (X0 − cX1)/(1 − c2). Its nominal standard error is
σ0·M1 = ‖a‖ = (1−c2)−1/2 (recall we assume σ = 1 to be known). The
routine 1− α interval will be for β0 relative to the model M1:[

β̂0·M1 ± Φ−1(1− α/2)σ0·M1

]
.

3. If, however, M̂ = M0, use the LS estimate of β0 in M0: β̂0·M0 = 〈X0,Y〉.
Its nominal standard error is σ0·M0 = ‖X0‖ = 1. The routine 1 − α
interval will be for β0 relative to the model M0:[

β̂0·M0 ± Φ−1(1− α/2)σ0·M0

]
.

The interval used in practice can therefore be summarized as follows:

(1.2)
[
β̂0·M̂ ± Φ−1(1− α/2)σ0·M̂

]
.

It is assumed to have coverage probability 1− α, which would follow if the
associated test statistic

(1.3) z0·M̂ =
β̂0·M̂ − β0
σ0·M̂

had a standard normal distribution. Written in this explicit manner, how-
ever, doubt arises immediately and justifiably so as simple simulations show.
Consider, for example, the scenario where M1 is true with β0 = 0, β1 = 1.5,
c = 〈X0,X1〉 = 1/

√
2, and α = 0.05 both for the two-sided testing of β1 = 0

and for the intended nominal coverage of (1.2). For this case Figure 1 shows
a comparison of the actual distribution of (1.3) with the nominal distri-
bution N (0, 1) based on one million simulations of the response vector Y.
We see that the actual distribution is leaning to the right compared to the
nominal distribution. As a result, the coverage probability falls below the
nominal coverage probability: P[|z0·M̂| ≤ 1.96] = 0.796 < .95. Thus routine
statistical inference after model selection is invalid. Key to this inferential
breakdown is that 81.5% of the time the wrong model M0 is selected due to
substantial collinearity between the “wrong” predictor X0 and the “correct”
predictor X1.

In this example we assumed that X0 is forced to be in the model. When
the selection method is unconstrained, the predictor X0 may or may not be
included in the model, hence statistical inference for β0 is further compli-
cated by the potential absence of X0 from the selected model. In general,
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Fig 1. Distribution of z0·M̂ when β = (0, 1.5)T .

routine statistical inference for a parameter βj after model selection neglects
the fact that (1) the presence of βj is conditional on Xj being selected into

the model, (2) what β̂j estimates depends on the other predictors in the
model, (3) the presence of these other predictors is also conditional on being
selected into the model, and (4) the selected model cannot be assumed to
be true. — The pernicious effects of selection on inference for coefficients βj
is described in a companion paper by Berk, Brown and Zhao (2010).

1.3. Valid Post-Selection Inference – “PoSI” – and Its Framework. In
this study we propose a method for statistical inference that is valid after
model selection in linear models. The approach is essentially a reduction
of the post-selection inference problem to one of simultaneous inference.
The result is inference that is conservative in that it protects against the
multiplicity of all models that are potential outcomes of model selection. In
what follows we will refer to this approach to valid post-selection inference
as “PoSI”. A critical aspect of the methodology is that selected models are
not assumed to be first-order correct.

We consider a quantitative response vector Y ∈ IRn, assumed random,
and a full predictor matrix X = (X1,X2, . . . ,Xp) ∈ IRn×p, assumed fixed. It
is thought that some predictor columns are unnecessary or undesirable, and
the goal of model selection is to choose a subset of the columns to generate a
more parsimonious predictor matrix. For convenience, we only consider the
case of full-rank X, but the results easily generalize to the rank-deficient X.



VALID POST-SELECTION INFERENCE 5

We will generally assume the full model

Y = Xβ + ε, ε ∼ Nn(0, σ2I),

to be true, but the assumption of first-order correctness, E[Y] = Xβ, is
strictly speaking unnecessary. Its only purpose is to produce a valid inde-
pendent estimate sF of σ in terms of the mean squared error (MSE) of
the full model: s2F = ‖Y − Xβ̂‖2/(n − p). However, other possibilities for
producing an estimate s of σ exist:

1. Exact replications of the response obtained under identical conditions
might be available in sufficient numbers. In this case an estimate s
could be obtained as the MSE of the one-way ANOVA of the groups
of replicates.

2. A larger linear model than the full model might be considered as true,
in which case s could be the MSE from this larger model.

3. Another dataset, similar to the one currently being analyzed, might
be available, and it might lend itself to produce an estimate s.

In any of these cases, even the full model need not be first-order correct. The
technically indispensible assumptions are second-order correctness, that is,
homoscedasticity, and distributional correctness, that is, normality: Y ∼
N (µ, σ2I). This is the framework in which we will be able to carry out
PoSI.

The remainder of this article is organized as follows. In Section 2 we intro-
duce methodology for reducing the PoSI problem to a problem of simultane-
ous inference and then a problem of seeking a constant K that depends on X
only and controls the width of the PoSI simultaneous confidence intervals.
We propose in Section 2.5 a novel selection method that makes the con-
stant sharp on post-selection inference. After some structural results for the
PoSI problem given in Section 3, we show in Section 4 that with increasing
number of predictors p the constant K can range between the asymptotic
rates O(

√
log p) and O(

√
p). We give examples for both rates and, inspired

by problems in sphere packing and covering, we give upper bounds for the
limiting constant in the O(

√
p) case. In Section 5 we discuss computations

that can be used to determine the constant for any X to satisfactory ac-
curacy when p ≤ 20, and we also provide computations for non-asymptotic
upper bounds on these constants that work for larger p. We conclude with
a discussion in Section 6. Some proofs are deferred to the appendix.

Finally, we note that although we describe the methodology for uncon-
strained selection, it is easily adapted to situations such as the one considered
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in Section 1.2 above, where inference is sought for a specific coefficient whose
predictor is forced to be in the model and only the other predictors are sub-
ject to selection (see also Sections 2.5 and 4.2). Similarly, the methodology
can be adapted to cases where interest centers on small models, such as
models of size ≤ 5 in the presence of p = 50 predictors.

2. Methodology.

2.1. Framing the Problem 1: Multiplicity of Regression Coefficients. The
main point of this section is to be serious about the fact that the meaning of
a regression coefficient depends on what the other predictors in the model
are. As a consequence, the p regression coefficients of the full model will be
proliferating into a plethora of as many as p 2p−1 distinct regression coeffi-
cients depending on which submodel they appear in. We start with notation.

To denote submodels we use the index set M = {j1, j2, ..., jm} ⊂ MF =
{1, . . . , p} of the predictors Xji in the submodel; the size of the submodel is
m = |M| and that of the full model is p = |MF |. Let XM = (Xj1 , ...,Xjm)
denote the n×m submatrix of X with columns indexed by M, and let β̂M

denote the corresponding least squares estimate:

β̂M = (XT
MXM)−1XT

MY.

Now that β̂M is an estimate, what is it estimating? One answer is that it
estimates the true slopes if the submodel M is true, but this gets us into
theorizing under assumptions that might not be true – a view that underlies
Leeb and Pötscher’s (2005, 2006, 2008) criticism. A more fruitful view is not
to assume that M is first-order correct but rather to define the target of β̂M

by the requirement that it be an unbiased estimate of its target:

(2.1) βM , E[β̂M] = (XT
MXM)−1XT

M E[Y].

Thus a target for β̂M can be defined by the right hand side for any XM

without the assumption of its or any model’s first-order correctness: µ =
E[Y] can be entirely arbitrary and unconstrained.

If a conventional interpretation of regression coefficients in a first-order
incorrect model is desired, it can no longer be cast in terms of “average
difference in the response for a unit difference in Xj , ceteris paribus.” In-
stead, the phrase “in the response” should be replaced with the unwieldy
but more correct phrase “in the response approximated in the submodel M”.
The reason is that the fit in the submodel M is ŶM = HMY (where HM =
XM(XT

MXM)−1XT
M) whose target is µM = E[ŶM] = HME[Y] = HMµ. Thus
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in the submodel M we estimate µM which is the Least Squares approxima-
tion to the “truth” µ with regard to the design XM. Strictly speaking these
statements are true for all models, including the full model, since according
to G.E.P. Box “all models are wrong, but some are useful.” The premise
of our study is that it is possible to provide valid inference in first-order
incorrect models.

If the full model is not assumed to be first-order correct, one can define the
target of β̂ = (XTX)−1XTY just as a special case of (2.1) with M = MF :

β , E[β̂] = (XTX)−1XTE[Y].

This is the same as the “true” coefficient vector in the full model if the full
model is first-order correct: E[Y] = Xβ. Without this assumption, using
only HM = HMH where H = X(XTX)−1XT , we obtain for any submodel
M the following:

(2.2) βM = (XT
MXM)−1XT

MXβ.

Thus the target βM of β̂M is an estimable linear function of the coefficients
β in the full model even if the latter is not first-order correct.

Compare next the following two definitions:

(2.3) βM , E[β̂M] and βM , (βj∈M)T ,

the latter being the coefficients from the full model MF subsetted to the
submodel M. While β̂M estimates βM, it does not generally estimate βM.
Instead, the definition of βM involves X and all coefficients in β through
(2.2). Actually, a little algebra shows that βM = βM if and only if

(2.4) XT
MXMcβMc

= 0,

where Mc denotes the complement of M in MF . Special cases of (2.4) include:
(1) the column space of XM is orthogonal to that of XMc , and (2) βMc

= 0,
meaning that the submodel M is first-order correct. However, in general (2.4)
does not hold. Ignoring the difference between βM and βM leads to invalid
inference in the conventional post-selection inference routine, as seen in the
basic example in Section 1.2.

In order to distinguish regression coefficients as a function of the model
they appear in, we write βj·M = E[β̂j·M] for the components of βM = E[β̂M].
An important convention we adopt throughout this article is that the index
j of a coefficient refers to the coefficient’s index in the original full model
MF : βj·M refers not to the j’th coordinate of βM, but to the coordinate of
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βM corresponding to the j’th predictor in the full design matrix X. We refer
to this convention as “full model indexing”.

We conclude this section with some observations that may alleviate inves-
tigators apprehensions about their estimates β̂j·M if they are not to assume
the truth of their selected submodel M. The reality is that investigators never
know whether a selected submodel is true. Yet, we just showed that the es-
timates they obtain can be given meaning, and we will show next that they
can be given valid statistical inference — not assuming first-order correct-
ness of the submodel. The following considerations may be helpful in making
sense of estimates without burdening them with untenable assumptions:

• The interpretation of parameters βj·M and their estimates β̂j·M can
be usefully framed in the language of “adjustment”: the j’th coeffi-
cient and its estimate are “adjusted” for the other predictors in the
submodel M. If two investigators have selected different submodels,
they have estimated differently adjusted parameters for the predictors
shared by the two submodels. Statistical common sense dictates that
caution should be used when comparing coefficients for a predictor
obtained in two different submodels. We consider a difference in ad-
justment as defining different parameters: βj·M and βj·M′ are not the
same parameters if M 6= M′.
• A purpose of this study is to provide valid statistical inference in any

submodel. One might, however, object that if any choice of submodel
can be provided with valid statistical inference irrespective of how
“wrong” it might be, then something must be wrong with the ap-
proach because not just any submodel should be used. This objection
fails to allow that correctness of submodels is not always the primary
concern — a greater priority might be well-reasoned adjustment for
factors that subject matter experts consider relevant. Such experts
may want to tread a balance between empirical evidence of model fit
and subject matter knowledge about the relative importance of pre-
dictors. It may therefore be wise for the statistician to be prepared to
provide inferential protections for any outcome of model selection.

2.2. Framing the Problem 2: Simultaneous Inference for PoSI. After
defining βM as the target of the estimate β̂M, we consider inference for
it. To this end we require a normal homoscedastic model for Y, but we can
leave its mean µ = E[Y] unspecified, Y ∼ N (µ, σ2In). We then have:

β̂M ∼ N (βM, σ
2(XT

MXM)−1).
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For inference we need a valid estimate of σ that is independent of all es-
timates β̂j·M. Since most frequently in practice the full model is assumed
to be first-order correct so that its MSE provides a valid estimate of σ, we
write s = sF and assume (n− p)s2F /σ2 ∼ χ2

n−p. However, other sources for
an estimate of σ, discussed in Section 1.3, should be kept in mind as they
allow us to drop the assumption that the full model is first-order correct.

Let tj·M denote a t-ratio for βj·M that uses this MSE value:

(2.5) tj·M ,
β̂j·M − βj·M(

(XT
MXM)−1

) 1
2
jj
sF

.

(Consistent with full model indexing, the notation (...)jj refers not to the
j’th diagonal element but to the diagonal element corresponding to the
predictor Xj .) The quantity tj·M has a central t-distribution with n − p
degrees of freedom.

Important is that the standard error used in (2.5) does not involve the
MSE sM from the submodel M, for two reasons: (1) We do not assume that
the submodel M is first-order correct; therefore each MSE s2M could have a
distribution that is a multiple of a non-central χ2 distribution with unknown
non-centrality parameter. (2) More disconcertingly, the MSE is the result of
selection, s2

M̂
, and hence a blend of MSEs, s2

M̂
=
∑

M s2MI(M̂ = M); nothing
is known about its distribution. These problems are avoided by using a valid
MSE s2F that is independent of submodels.

With the above notations, a routine 1− α confidence interval for βj·M is
formed by

(2.6) CI(j,M;K) =

[
β̂j·M ±K

(
(XT

MXM)−1
) 1

2

jj
sF

]
,

where K = tn−p,1−α/2 is the 1− α/2 quantile of a t-distribution with n −
p degrees of freedom. This construction of CI(j,M;K) is valid under the
assumption that the submodel M is chosen independently of the response
Y. In practice, data analysts usually proceed in a different fashion (see the
references in Section 1): They may first examine and process the data in
order to produce a selected model; call this model M̂ to emphasize that it
depends in some fashion on Y: M̂ = M̂(Y). They may then use the estimates
β̂j·M̂ (j ∈ M̂)), and for statistical inference they may rely on confidence

intervals CI(j, M̂;K) and tests, but using the MSE s2
M̂

from the selected

model M̂.
It is often asserted or assumed in practice that for fixed j it holds true that

P[βj ∈ CI(j, M̂;K)] ≥ 1− α. This statement, however, poses a conundrum:
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To make sense there must be an understanding that the event inside the
probability means {j ∈ M̂} ∩ {βj ∈ CI(j, M̂;K)}, but the probability of
this event cannot be controlled because P[j ∈ M̂] alone is unpredictable
and may be “small” (for example, 0.7) even for a strong predictor. The
obvious solution would seem to be conditioning on the event [j ∈ M̂], but
the statement P[βj ∈ CI(j, M̂;K) | j ∈ M̂] ≥ 1−α is generally not valid either
(Leeb and Pötscher (2005; 2006; 2008), Berk, Brown and Zhao (2010)).

In this study we propose to construct valid PoSI inference by replacing the
constant K = tn−p,1−α/2 in (2.6) with a larger value such that a family-wise
error rate is controlled:

(2.7) P

[
max
M

max
j∈M

|tj·M| ≤ K
]

= 1− α,

where the maxima are taken over all submodels M and all indexes j ∈ M.
That is, we require K to be sufficiently large that we obtain simultaneously
valid inference for all parameters βj·M. This tends to be a large simultaneous
inference problem as the number of parameters can be as large as p 2p−1

(each predictor j is contained in 2p−1 submodels).
If K satisfies (2.7), then we will show that the confidence intervals (2.6)

satisfy

(2.8) P
[
βj·M̂ ∈ CI(j, M̂;K) ∀j ∈ M̂

]
≥ 1− α

for any model selection procedure M̂ = M̂(Y). Universal validity irrespec-
tive of the model selection procedure is a strong property that raises some
questions but also has benefits, both of which we now discuss:

• Most fundamentally, the inference guarantee (2.8) solves the conun-
drum mentioned above: the event {βj·M̂ ∈ CI(j, M̂;K)} is not co-

herent because it fails to explicitly require {j ∈ M̂}. We solve this
problem by inserting the “for-all” quantifier (∀) in (2.8). The event
{βj·M̂ ∈ CI(j, M̂;K) ∀j ∈ M̂} is fully coherent.
• Since (2.8) states validity of inference for any model selection proce-

dure, it entails that choosing K according to (2.7) produces a rather
conservative inference procedure. A natural question is whether there
exists a model selection procedure that actually requires the family-
wise bound K of (2.7). The answer is affirmative, and the requisite
selection procedure is discussed in Section 2.5. Thus, in a certain re-
spect our approach to PoSI cannot be improved.
• Universal validity of statistical inference with respect to any model

selection procedure seems desirable or even essential for applications
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in which the model selection routine is not specified in advance or for
which the routine involves some ad hoc elements that cannot be ac-
curately pre-specified. Even so, we should think of the actually chosen
model as part of a “procedure” Y 7→ M̂(Y), and though the ad hoc
steps are not specified for Y other than the observed one, this is not a
problem because our protection is irrespective of what a specification
might have been.
• If one insists on inference for only the parameters in the selected model,

one has to face the fact that an estimate β̂j·M is only seen for those

Y for which M̂(Y) = M. We bypass this problem by proposing that
all estimates β̂j·M are always at least potentially seen, even though
few are ever actually looked at. This view allows data analysts to
change their minds, to improvise and consider models other than those
produced by the selection procedure, and to experiment with multiple
selection procedures. The PoSI method proposed here covers all such
eventualities.

We conclude with a caveat: The treatment in this article does not address
prediction of future observations. We are only concerned here with honest
inference for regression coefficients.

2.3. Simultaneous Inference for the PoSI Problem. We state and prove
the theorem that derives the PoSI guarantee (2.8) from the simultaneous
inference condition (2.7):

Theorem 2.1. Suppose M̂ = M̂(Y) is a model selection procedure. Let
K be such that

(2.9) P

[
max
M

max
j∈M
|tj·M| ≤ K

]
≥ 1− α.

Then

(2.10) P

[
max
j∈M̂
|tj·M̂| ≤ K

]
≥ 1− α.

Preparatory note: We have used repeatedly the notion that a selection pro-
cedure M̂ = M̂(Y) is a mapping from the response vectors Y to the sub-
models M. To fix ideas, we note that there are 2p submodels (the empty
model being a zero fit with no parameters). Using set theory notation
2{1,2,...,p} = {M : M ⊂ MF } for the set of all submodels, a model selec-
tion procedure M̂ is a mapping

M̂ : IRN → 2{1,2,...,p}, Y 7→ M̂(Y) = {j1, ..., jq},
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where 1 ≤ j1 < ... < jq ≤ p. Such a mapping partitions the space IRN of
response vectors Y into at most 2p regions within each of which the selected
submodel M̂(Y) is shared. The discussion surrounding the definitions (2.3)
describes that, properly viewed, each submodel M has its own targets of
estimation, the submodel-specific regression coefficients βj·M, whose num-
ber is generally p 2 p−1. Thus the requirement (2.9) asks for considerable
simultaneity protection.
Proof: The link between the PoSI guarantee (2.10) and the simultaneous
inference problem (2.9) is easily established by upper-bounding the expres-
sion

max
j∈M̂(Y)

|tj·M̂(Y)(Y)|

with a universal term that no longer depends on the selected M̂(Y) as fol-
lows:

max
j∈M̂(Y)

|tj·M̂(Y)(Y)| ≤ max
M

max
j∈M
|tj·M(Y)|.

This inequality holds for all Y ∈ IRn. We have then for any selection proce-
dure M̂ the universal inequality

P

[
max

j∈M̂(Y)
|tj·M̂(Y)(Y)| ≤ K

]
≥ P

[
max
M

max
j∈M
|tj·M(Y)| ≤ K

]
,

where the right hand probability no longer depends on the selection proce-
dure M̂. This inequality implies the assertion of the theorem. �

As the constant K depends on X only and not on the selection procedure
M̂, we write K = K(X). Depending on the context we may list more argu-
ments, as in K = K(X, α, p, n). The constant satisfies the PoSI guarantee
(2.8), which is a reformulation of (2.10). We call the interval[

β̂j·M̂ ±K(X)
(

(XT
M̂

XM̂)−1
)1/2
jj

sF

]
the “PoSI simultaneous confidence interval”, and we call K(X) the “PoSI
constant.”

2.4. Scheffé Protection. By being serious about the fact that the LS
estimators in different submodels in general estimate different parameters,
we generated a simultaneous inference problem involving up to p 2 p−1 linear
combinations βj·M of the p regression coefficients β1, ..., βp from the full
model. In view of the enormous number of linear combinations or “contrasts”
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for which simultaneous inference is sought, one should wonder whether the
problem is not best solved by Scheffé’s method (1953; 1959) which provides
simultaneous inference for all linear combinations or contrasts:

(2.11) P

[
sup

a

(aT (β̂ − β))2

aT (XTX)−1a s2F
≤ K2

Sch

]
= 1− α,

where the Scheffé constant KSch is found to be KSch =
√
pFp,n−p,1−α (as-

suming the full model is true). It has the pleasing property that it provides
an upper bound for all PoSI constants:

K(X) ≤ KSch ∀X.

Thus we find that parameter estimates β̂j·M whose t-ratio exceeds KSch in
magnitude are universally safe from invalidation due to model selection in
any regression context.

The universality of the Scheffé constant is, however, a tip-off that it may
be too loose for some predictor matrices X, and obtaining the sharper con-
stant K(X) may be a worthwhile endeavor. An indication toward this end
is provided by the following comparison as n− p→∞ and p→∞:

• For the Scheffé constant it holds KSch ∼
√
p.

• For the special case of an orthogonal design X, however, it holds Korth ∼√
2 log p (see Section 3.5 below).

Thus the PoSI constant Korth ∼
√

2 log p for orthogonal designs is much
smaller than the Scheffé constant KSch ∼

√
p. The big gap between the two

suggests that the Scheffé constant may be too conservative at least in some
cases. We will study the case of certain non-orthogonal designs for which the
PoSI constant is O(

√
log(p)) in Section 4.1. On the other hand, the PoSI

constant can approach the order O(
√
p) of the Scheffé constant KSch as well,

and we will study one such case in Section 4.2.
Even though in this article we will give asymptotic results for n− p→∞

and p → ∞, we mention another kind of asymptotics whereby n − p is
held constant while p → ∞: It is easy to see in this case that KSch =√
pFp,n−p,1−α, which is in the order of the product of

√
p and the 1 − α

quantile of the inverse-chi-square distribution with n−p degrees of freedom.
In a similar way, the constant Korth for orthogonal designs is in the order
of the product of

√
2 log p and the 1 − α quantile of the inverse-chi-square

distribution with n− p degrees of freedom.
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2.5. PoSI-Sharp Model Selection — “SPAR” and “SPAR1”. We describe
the model selection procedure that requires the full protection of the simul-
taneous inference procedure (2.7). It is found by using the criterion of the
simultaneous inference procedure itself for selection:

M̂(Y) , argmaxM max
j∈M
|tj·M(Y)|.

In words: the selected submodel is found by looking for the most significant
adjusted predictor across all submodels. In this submodel, the less significant
predictors matter only in so far as they boost the significance of the winning
predictor by adjusting it accordingly. For this reason we call this selection
procedure “Single Predictor Adjusted Regression or “SPAR”. This procedure
has nothing to do with the quality of the fit to Y provided by the model.
While our present interest is only in pointing out the existence of a selection
procedure that requires full PoSI protection, SPAR could be of practical
interest when the analysis is centered on strength of effects, not quality of
model fit.

Practically of greater interest might be a restricted version of SPAR
whereby a predictor of interest is determined a priori and the search is
for adjustment that optimizes this predictor’s effect. We name the result-
ing procedure “SPAR1”. If the predictor of interest is Xp, say, the model
selection is

M̂(Y) , argmaxM: p∈M|tp·M(Y)|.

The associated “PoSI1” guarantee that we seek is

P

[
max
M:p∈M

|tp·M| ≤ K(p)

]
= 1− α.

Clearly, the unrestricted PoSI constant K dominates the PoSI1 constant:
K ≥ K(p). Even so, we will construct in Section 4.2 an example where the
PoSI1 constant increases at the Scheffé rate, and indeed is asymptotically
more than 63% of the Scheffé constant. This is our main reason for intro-
ducing SPAR1 and PoSI1 at this point.

3. The Structure of the PoSI Problem.

3.1. Canonical Coordinates. We introduce canonical coordinates to re-
duce the dimensionality of the design matrix from n × p to p × p. This
reduction is important both geometrically and computationally because the
coverage problem really takes place in the column space of X.
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DEFINITION: For any orthonormal basis Q = (q1, ...,qp) of the column
space of X, we call X̃ = QTX and Ỹ = QTY canonical coordinates of X
and Ŷ, where Ŷ = X(XTX)−1XTY = QQTY. Completing the basis to all
of IRn by adding Q⊥ = (qp+1, ..., qn), canonical coordinates of the residuals
r are given by r̃ = QT

⊥r.

The sizes in canonical coordinates are X̃p×p, Ỹp×1, and r̃(n−p)×1. In what
follows we extend the notation XM for extraction of subsets of columns
to canonical coordinates X̃M . Accordingly slopes obtained from canonical
coordinates will be denoted by β̂M (X̃, Ỹ) = (X̃T

MX̃M )−1X̃T
MỸ to distin-

guish them from the slopes obtained from the original data β̂M (X,Y) =
(XT

MXM )−1XT
MY, if only to state in the following proposition that they

are identical. The same holds for the MSEs s2F (r̃) = ‖r̃‖2/(n − p) and
s2F (r) = ‖r‖2/(n− p), and the ensuing t-statistics.

Proposition 3.1. Properties of canonical coordinates:
1. Ỹ = QTY and r̃ = QT

⊥Y,
2. X̃T

MX̃M = XT
MXM and X̃T

MỸ = XT
MY,

3. β̂M (X̃, Ỹ) = β̂M (X,Y) for all submodels M ,
4. sF (r̃) = sF (r),
5. Ỹ ∼ N (X̃β, σ2Ip), r̃ ∼ N (0(n−p)×1, σ

2In−p).

6. tj·M =
β̂j·M (X̃,Ỹ)−βj·M

((X̃T
M X̃M )−1)

1/2

jj
sF (r̃)

7. The canonical coordinates X̃ of the design matrix can be chosen to
form an upper triangular matrix or a symmetric matrix.

The proofs of 1.-6. are elementary. As for 7., an upper triangular version X̃
can be obtained from a QR-decomposition based on, for example, a (modi-
fied) Gram-Schmidt procedure: X = QR, X̃ = R; a symmetric version of X̃
is obtained from a singular value decomposition: X = UDVT , Q = UVT ,
X̃ = VDVT .

Canonical coordinates allow us to analyze the PoSI coverage problem in
IRp. In what follows we will freely assume when convenient that all objects
are rendered in canonical coordinates, implying that the design matrix is of
size p× p and the response (or its component that matters for estimation of
slopes) is of size p× 1.

3.2. PoSI as a Gaussian Coverage Problem. We show that after some
simplifications the PoSI coverage problem (2.7) can be reduced to a Gaussian
coverage problem for a specific polytope in IRp whose shape is determined
by the design matrix X. We start with the simplifications: Due to pivotality
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of t-statistics, the PoSI problem is invariant under translation of β and
rescaling of σ. Hence it suffices to verify coverage statements for β = 0 and
σ = 1. Furthermore, since we consider the classical case n � p, the limit
n → ∞ is equivalent to assuming σ2 known and hence s2F = σ2 = 1. The
t-statistics become z-statistics, which we write as

(3.1) zj·M =
β̂j·M(

(XT
MXM)−1

)1/2
jj

.

We will concentrate on this special case because it simplifies the analytics
without loss of structurally important features.

Simultaneous inference for linear functions in linear models has a simple
well-known geometry which we now specialize to the case of the PoSI prob-
lem. The linear functions for which we seek simultaneous inference are the
slope estimates in all submodels. As linear functions of the response they
and their associated z-statistics have the form

(3.2) β̂j·M = lTj·MY, zj·M = l̄
T
j·MY

where the “PoSI coefficient vectors” lj·M and l̄j·M are (up to a scale factor)
the predictor vector Xj adjusted for (orthogonalized w.r.t.) the other pre-
dictors in the submodel M. Notation to mathematically express this fact is
unavoidably cumbersome:

(3.3) lj·M =
(I−PM\j)Xj

‖(I−PM\j)Xj‖2
, l̄j·M =

lj·M
‖lj·M‖

,

where PM\j = XM\j(X
T
M\jXM\j)

−1XT
M\j is the projection matrix in the

submodel M but leaving out the predictor j (we write M \ j instead of the
more correct M \ {j}). The connection between (3.1) and (3.2) follows from(

(XT
MXM)−1

)
jj

= (XT
j (I−PM\j)Xj)

−1 = ‖lj·M‖2.

To complete the structural description of the PoSI problem we let

(3.4) L(X) = {l̄j·M : j,M, j ∈ M }

and note that in canonical coordinates l̄j·M ∈ IRp. Using the simplifications
β = 0p and σ = 1, we further have Ỹ ∼ N (0p, Ip), and therefore:

Proposition 3.2. In the limit (n − p) → ∞ the PoSI problem (2.7) is
equivalent to a p-dimensional Gaussian coverage problem: Find K(X) such
that

P

[
max
M

max
j∈M

|zj·M| ≤ K
]

= P

[
max

l̄∈L(X)
|l̄TZ| ≤ K(X)

]
= 1− α,
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where Z = (Z1, ..., Zp)
T ∼ N (0p, Ip).

An alternative way of looking at the PoSI problem is in terms of a Gaus-
sian process. We mention this view because it is the basis of some software
implementations used to solve Gaussian simultaneous inference and cover-
age problems, even though in this case it does not result in a practicable
approach. In the PoSI problem the obvious Gaussian process is W = (zj·M).
The covariance structure of W is Σ = (Σj·M; j′·M′) where

(3.5) Σj·M; j′·M′ = l̄
T
j·Ml̄j′·M′ .

The coverage problem can be written as P[‖W‖∞ ≤ K] = 1 − α. Software
that computes such coverage allows users to specify a covariance structure Σ
and intervals such as [−K,+K] for the components. In our experiments this
approach worked up to p = 7, the obvious limiting factor being the space
requirement p 2p−1 × p 2p−1 for the matrix Σ. By comparison the approach
described in Section 5 worked for up to p = 20.

3.3. Geometry of the PoSI Coefficient Vectors. The set L(X) of coeffi-
cient unit vectors l̄j·M has intrinsically interesting geometric structure, which
is the subject of this and the following subsections. The next proposition
(proof in Appendix A.1) elaborates in so many ways the fact that l̄j·M is
essentially the predictor vector Xj orthogonalized with regard to the other
predictors in the model M. In what follows vectors are always assumed in
canonical coordinates and hence p-dimensional.

Proposition 3.3. Orthogonalities in L(X):
1. Successive orthogonalization:

l̄j·{j} = Xj/‖Xj‖,
l̄j·M ∈ span{Xj : j ∈ M} and l̄j·M ⊥ Xj′ for j 6= j′ both ∈ M.

2. The following forms an o.n. basis of IRp:

{l̄1·{1}, l̄2·{1,2}, l̄3·{1,2,3}, ..., l̄p·{1,2,...,p}}.

Other o.n. bases are obtained by permuting the order of {1, 2, ..., p}
(not all of which may result in distinct bases).

3. Two vectors l̄j·M and l̄j′·M′ are orthogonal if M ⊂ M′, j ∈ M and
j′ ∈ M′ \M.

4. Each vector l̄j·M is orthogonal to (p− 1) 2p−2 vectors l̄j′·M′ (not all of
which may be distinct).
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l 1.1

l 2.2

l 2.12

l 1.12

φ0

O
●

Fig 2. The PoSI polytope ΠK=1 for p = 2: The normalized raw predictor vectors are
l̄1·{1} ∼ X1 and l̄2·{2} ∼ X2, and the normalized adjusted versions are l̄1·{1,2} and
l̄2·{1,2}. Shown in gray outline are the two squares (2-D cubes) generated by the o.n. bases
(l̄1·{1}, l̄2·{1,2}) and (l̄2·{2}, l̄1·{1,2}), respectively. The PoSI polytope is the intersection of
the two squares. Also shown is the Scheffé disk (2-D ball) BK=1 to which each face of the
polytope is tangent.

A note on cardinalities: If the predictor vectors Xj have no orthogonal pairs
among them, then |L(X)| = p 2p−1. If, however, there exist orthogonal pairs,
then |L(X)| is less. For example, if there exists exactly one orthogonal pair,
then |L(X)| = (p − 1) 2p−1. In the extreme, when X is a fully orthogonal
design, then |L(X)| = p.

The proposition implies that there exist certain necessary orthogonalities
in L(X). In terms of the covariance structure Σ (3.5), orthogonalities in
L(X) correspond to zero correlations in Σ. Part 4. of the proposition states
that each “row” of Σ has (p− 1) 2p−2 zeros out of p 2p−1 entries, amounting
to a fraction (p−1)/(2p)→ 0.5, implying that the overall fraction of zeros in
Σ approaches half for increasing p. Thus Σ, though not sparse, is certainly
rich in zeros. (It can be much sparser in the presence of orthogonalities
among the predictors.)
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3.4. The PoSI Polytope. Coverage problems can be framed geometrically
in terms of probability coverage of polytopes in IRp. For the PoSI problem
the polytope is defined by

ΠK = {u ∈ Rp : |l̄Tu| ≤ K, ∀ l̄ ∈ L(X) },

henceforth called the “PoSI polytope”. The PoSI coverage problem is to
calibrate K such that

P[Z ∈ ΠK ] = 1− α.

In this notation the Scheffé ellipsoid (2.11) turns into the “Scheffé ball” that
has a root-χ2

p coverage probability in the limit (n− p)→∞:

BK = {u ∈ Rp : ‖u‖ ≤ K }, P[Z ∈ BK ] = Fχ2,p(K
2).

Many properties of the polytopes ΠK are not specific to PoSI because
they hold for polytopes derived from simultaneous inference problems for
linear functions of Y with coefficient vectors forming arbitrary sets L of
unit vectors:

1. The polytopes form a scale family of geometrically similar bodies:
ΠK = KΠ1.

2. They are point symmetric about the origin: ΠK = −ΠK .
3. They contain the Scheffé ball: BK ⊂ ΠK .
4. They are intersections of “slabs” of width 2K: ΠK =

⋂
l̄∈L{u ∈ Rp :

|uT l̄ | ≤ K }.
5. They have 2 |L| faces (assuming L∩−L = ∅), and each face is tangent

to the Scheffé ball BK with tangency points ±K l̄ (l̄ ∈ L).

Specific to PoSI are the many orthogonalities in L(X) described in Proposi-
tion 3.3. Of particular interest are the potentially many o.n. bases in L(X)
because each o.n. basis generates a hypercube as its polytope. Therefore:

Proposition 3.4. The PoSI polytope is the intersection of up to p! con-
gruent hypercubes.

The simplest case of PoSI polytopes, those for p = 2, is illustrated in Fig-
ure 2.

3.5. An Optimality Property of Orthogonal Designs. In orthogonal de-
signs, adjustment has no effect: l̄j·M = l̄j·{j} = Xj/‖Xj‖. This fact together
with the properties of ΠK from the previous subsection imply L(X) =
{X1,X2, ...,Xp}, and hence ΠK is a hypercube. This latter fact implies an
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obvious optimality property of orthogonal designs: In general, ΠK is an in-
tersection of hypercubes of width 2K, hence if ΠK is a hypercube of width
2K, it is of maximal extent (keeping in mind point symmetry at the origin
of the polytopes and radial symmetry about the origin of the distribution
of Z). Therefore:

Proposition 3.5. Among p-dimensional (non-singular) designs, orthog-
onal designs X yield

• the maximal coverage probability P[Z ∈ ΠK ] for fixed K, and
• the minimal PoSI constant K = K(X, α, p) satisfying P[Z ∈ ΠK ] =

1− α for fixed α.

Optimality of orthogonal designs translates to optimal asymptotic behav-
ior of their constant K(X) for large p:

Proposition 3.6. The asymptotic lower bound for K(X, p, α), attained
for orthogonal designs X, is

inf
X
K(X, p, α) =

√
2 log p+ o(p),

where p→∞ and n− p→∞.

The above facts show that the PoSI problem is bounded on one side by
orthogonal designs: infXK(X, α, p, n) = Korth(α, p, n), for all α, n and p. On
the other side, the Scheffé ball yields a loose upper bound: supXK(X, α, p, n) <
KSch(α, p, n). The question of how close to the Scheffé bound supXK(X, α, p)
can get will occupy us in Section 4.2. Unlike the infimum problem, the
supremum problem does not appear to have a unique optimizing design X
uniformly in α, p and n.

3.6. A Duality Property of PoSI Vectors. There exists a duality in terms
of PoSI vectors L(X) which we will use in Section 4.1 below but which is
also of independent interest. We require some preliminaries: Letting F =
{1, 2, ..., p} be the full model, we observe that the transposes of the (unnor-
malized) PoSI vectors lj·MF

form the rows of the matrix (XTX)−1XT , for
the simple reason that β̂F = (XTX)−1XTY. In a change of perspective, we
interpret the transpose matrix

X∗ = X(XTX)−1

as a design matrix as well, to be called the “dual design” of X. It is also
of size n× p (p× p in canonical coordinates), and its columns are the PoSI
vectors lj·MF

. It turns out that X∗ and X pose identical PoSI problems:
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Theorem 3.1. L(X∗) = L(X), ΠK(X∗) = ΠK(X), K(X∗) = K(X).

Recall that L(X) and L(X∗) contain the normalized versions of the re-
spective adjusted predictor vectors. The theorem follows from the following
lemma which establishes the identities of vectors between L(X∗) and L(X).
We extend obvious notations from X to X∗ as follows:

X∗j = l∗j·{j} = lj·MF
,

where as always MF = {1, 2, ..., p} denotes the full model. Submodels for
X∗ will be denoted M∗, but they, too, will be given as subsets of {1, 2, ..., p}
which, however, refer to columns of X∗. Finally, the normalized version of
l∗j·M∗ will be written as l̄

∗
j·M∗ .

Lemma 3.1. For two submodels M and M∗ that satisfy M ∩M∗ = {j}
and M ∪M∗ = MF , we have

l̄
∗
j·M∗ = l̄j·M , ‖l∗j·M∗‖ ‖lj·M‖ = 1

The proof is in Appendix A.2. The assertion about norms is really only
needed to exclude collapse of l∗j·M∗ to zero.

A special case arises when the design matrix (in canonical coordinates) is
chosen to be symmetric according to Proposition 3.1 (7.): if XT = X, then
X∗ = X(XTX)−1 = X−1, and hence:

Corollary 3.1. If X is symmetric in canonical coordinates, then

L(X−1) = L(X), ΠK(X−1) = ΠK(X), and K(X−1) = K(X)

4. Illustrative Examples and Asymptotic Results.

4.1. An Example: Exchangeable Designs. In this section we illustrate the
PoSI problem with the example of exchangeable designs X in which all
pairs of predictor vectors enclose the same angle. In canonical coordinates a
convenient parametrization of a family of symmetric exchangeable design is

(4.1) X = Ip + aEp×p,

where −1/p < a < ∞, and E is a matrix with all entries equal to 1. The
range restriction on a assures that X is positive definite. Writing X = X(a)
when the parameter a matters, we will make use of the fact that

X(a)−1 = X(−a/(1 + pa))
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is also an exchangeable design. The function cp(a) = −a/(1 + pa) maps
the interval (−1/p,∞) onto itself, and it holds cp(0) = 0, cp(a) ↓ −1/p as
a ↑ +∞, and vice versa. Exchangeable designs have the nice feature that
they are analytically tractable, and at the same time they are sufficiently
rich to include orthogonal designs (a = 0) as well as to extend to two types
of collinearities: the collapse of the predictor vectors to a single dimension
span(e)for a ↑ ∞ on the one hand, and to a subspace span(e)⊥ of dimension
(p− 1) for a ↓ −1/p on the other hand (e = (1, 1, ..., 1)T ).

We expect that if non-orthogonality/collinearity drives the fracturing of
the regression coefficients into model-dependent quantities βj·M with the en-
suing problem of inferential multiplicity, it should be insightful to analyze
the PoSI constant K(X) as the design matrix X = X(a) moves from or-
thogonality toward either of the two types of collinearity. Here is what we
find:

• Unguided intuition might suggest that the collapse to rank 1 calls
for larger K(X) than the collapse to rank (p − 1). This turns out
to be entirely wrong: collapse to rank 1 or rank p − 1 has identical
effects on K(X). The reason is duality (Section 3.6): for exchangeable
designs, X(a) collapses to rank 1 iff X(a)∗ = X(a)−1 = X(−a/(1+pa))
collapses to rank p − 1, and vice versa, while K(X(a)−1) = K(X(a))
according to Corollary 3.1.
• A more basic intuition would suggest that K(X) increases as X moves

away from orthogonality and approaches collinearity. Even this intu-
ition is not fully born out: In Figure 3 we depict numerical approx-
imations to K(X(a), α = 0.05) for a ∈ [0,∞) (a ∈ (−1/p, 0] being
redundant due to duality). As the traces show, K(X(a)) increases as
X(a) moves away from orthogonality, up to a point, whereafter it de-
scends as it approaches collinarity, at least for dimensions p ≤ 10.

In summary, the dependence of K(X) on the design X is not a simple
matter. While duality provides some insights, there are no simple intuitions
for inferring from X the geometry of the sets of unit vectors L(X), their
polytopes ΠK , their coverage probabilities and PoSI constants K(X).

We next address the asymptotic behavior of K = K(X, α, p) for increas-
ing p. As noted in Section 2.4, there is a wide gap between orthogonal designs
with Korth ∼

√
2 log p and the full Scheffé protection with KSch ∼

√
p. The

following theorem shows how exchangeable designs fall into this gap:

Theorem 4.1. PoSI constants of exchangeable design matrices X(a)
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Fig 3. The PoSI constant K(X, α = 0.05) for exchangeable designs X = I + aE for
a ∈ [0,∞). The horizontal axis shows a/(1+a), hence the locations 0, 0.5 and 1.0 represent
a = 0, 1, ∞, respectively. Surprisingly, the largest K(X) is not attained at a = ∞, the
point of perfect collinearity, at least not for dimensions up to p = 10. The graph is based
on 10,000 random samples in p dimensions for p = 2, ..., 15.
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have the following limiting behavior:

lim
p→∞

sup
a∈(−1/p,∞)

K(X(a), α, p)√
2 log p

= 2.

The proof can be found in Appendix A.3. The theorem shows that for
exchangeable designs the PoSI constant remains much closer to the orthog-
onal case than the Scheffé case. Thus, for this family of designs it is possible
to improve on the Scheffé constant by a considerable margin.

The following detail of geometry for exchangeable designs has a bearing
on the behavior of their PoSI constant: The angle between pairs of predictor
vectors as a function of a is cos(Xj(a),Xj′(a)) = a(2 + pa)/(pa2 + 4a+ 2).
In particular, as the vectors fall into the rank-(p − 1) collinearity at a =
−1/p, the cosine becomes −1/(2p− 3), which converges to zero as p → ∞.
Thus, with increasing dimension, exchangeable designs approach orthogonal
designs even at their most collinear extreme.

We finish with a geometric depiction of the limiting polytope ΠK as X(a)
approaches either collinearity: For a ↑ ∞, the predictor vectors fall into the
1-D subspace span(e), and for a ↓ −1/p they fall into span(e)⊥. With duality
in mind and considering the permutation symmetry of exchangeable designs,
it follows that the limiting polytope is a prismatic polytope with a p-simplex
as its base in span(e)⊥. In Figure 4 we show this prism for p = 3. The
unit vectors l̄1·{1} ∼ X1, l̄2·{2} ∼ X2 and l̄3·{3} ∼ X3 form an equilateral

triangle. The plane span(e)⊥ also contains the six once-adjusted vectors
l̄j·{j,j′} (j′ 6= j), while the three fully adjusted vectors l̄j·{1,2,3} collapse to
e/
√
p, turning the polytope into a prism.

4.2. An Example where K(X) is close to the Scheffé Bound. In this
section, we describe an example where the asymptotic upper bound for
K(X, α, p) is O(

√
p), hence close to the Scheffé constant KSch in terms

of the asymptotic rate. In this example we consider SPAR1 (Section 2.5)
whereby a predictor of interest has been chosen, Xp, say. The goal of model
selection with SPAR1 is to “boost the effect” of Xp by adjusting it for opti-
mally chosen predictors Xj (j < p). The search is over the 2p−1 models that
contain Xp, but inference is sought only for the adjusted coefficient βp·M.

The task is to construct a design for which simultaneous inference for all
adjusted coefficients βp·M requires the constant K(p)(X) to be in the order
of
√
p. To this end consider the following upper triangular p×p design matrix

in canonical coordinates:

(4.2) X = (e1, ..., ep−1,1p) ,
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l 1⋅1

l 2⋅2

l 3⋅3

l 1⋅123=l 2⋅123=l 3⋅123

Fig 4. Exchangeable Designs: The geometry of the limiting PoSI polytope for p = 3 as
a ↓ −1/p or a ↑ +∞ in (4.1).

where ej are the canonical basis vectors, (ej)i = δij , and 1p = (1, ..., 1)T ∈
IRp. We have the following theorem:

Theorem 4.2. The designs (4.2) have PoSI1 simultaneous 1− α confi-

dence intervals for Xp of the form

[
β̂p ±K(p)(X)

√
(XTX)−1pp

]
where

lim
p→∞

K(p)(X)
√
p

= 0.6363....

A (partial) proof is in Appendix A.4. (We will only show the ≥ part). As
always, we consider the case of “large n − p,” that is, σ known; for small
n − p the constant is larger. The theorem shows that even if we restrict
consideration to a single predictor Xp and its adjustments, the constant
K(p) to reach valid simultaneous inference against all submodels contain-
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ing that coefficient can be much greater than the O(1) t-quantiles used in
common practice. Also, since for the unrestricted PoSI constant K(X) we
have K(X) ≥ K(p)(X), the theorem shows that there exist design matri-
ces for which the PoSI constants are of the asymptotic order of the Scheffé
constants.

4.3. Bounding Away from Scheffé. We provide a rough asymptotic upper
bound on all PoSI constants K(X, α, p). It is strictly smaller than the Scheffé
constant but not by much. The bound, however, is loose because it is based
on letting go of the rich structure of the sets L(X) (Section 3.3) and only
using their cardinality |L| = p 2p−1. We state the bound for more general
cardinalities |L| than required for the PoSI problem:

Theorem 4.3. Denote by Lp arbitrary finite sets of p-dimensional unit

vectors, Lp ⊂ Sp−1, such that |Lp| ≤ ap where a
1/p
p → a (> 0). Denote by

K(Lp) the (1−α)-quantile of supl̄∈Lp |l̄
T
Z|. Then the following describes an

asymptotic worst-case bound and its attainment:

lim
p→∞

sup
|Lp|≤ap

K(Lp)√
p

=

(
1− 1

a2

)1/2

.

The proof of Theorem 4.3, to be found in Appendix A.5, is an adaptation
of Wyner’s (1967) techniques for sphere packing and sphere covering. The
worst-case bound (≤) is based on a surprisingly crude Bonferroni-style in-
equality for caps on spheres. Attainment of the bound (≥) makes use of the
artifice of picking the vectors l̄ ∈ L randomly and independently. — Apply-
ing the theorem to PoSI sets L = L(X), we have |L| = p 2p−1 = ap, hence

a
1/p
p → 1/2, and therefore the theorem applies with a = 1/2:

Corollary 4.1. A universal asymptotic upper bound on PoSI constants
is given by

lim
p→∞

sup
X

K(X)
√
p
≤
√

3

2
= 0.866... .

The corollary shows that the asymptotic rate of K(X) is strictly below
that of the Scheffé constant, albeit possibly not by much. We do not know
whether there exist designs X for which the bound of the corollary is at-
tained, but the theorem states that the bound is sharp for unstructured
sets L.
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5. Computations. The results in this section are for both finite n and
finite p. The computations of the design-specific constant K = K(X, α, p, n)
are MC-based, while those of the universal upper bound K = Kuniv(α, p, n)
derive from an analytical formula for a lower bound on the coverage proba-
bility inspired by Theorem 4.3.

5.1. Computation of PoSI Constants K = K(X, α, p, n). We derive a
simple algorithm for computing K(X, α, p, n) for up to p = 20 predictors.
For finite n we revert from z- to t-statistics with the assumption that all
tj·M share the estimate sF of σ from the full model in the denominator. For
calibration of coverage probabilities we rely on the pivotality of t-statistics
in β and σ, which allows us to perform simulations conveniently for β = 0
and σ = 1. We also work in canonical coordinates (Section 3.1) which are
fully constructive and reduce design vectors Xj and their adjustments l̄j·M
from n to p dimensions. Thus we write the t-statistics as tj·M = l̄j·MZ/sF
where Z ∼ N (0p, Ip), l̄j·M ∈ Sp−1, and (n − p)s2F ∼ χ2

n−p is independent
of Z. The criterion is the maximal magnitude of t’s, which, using the usual
notation L = {l̄j·M : j ∈ M} from (3.4), we write as

max
j,M:j∈M

|tj·M| = max
l̄∈L
|l̄TZ|/sF .

The obvious algorithm would be to sample Z(1),..., Z(I) i.i.d. from N (0p, Ip)

and independently s
(1)
F ,..., s

(I)
F i.i.d. from

√
χ2
n−p/(n− p), and calibrate an

MC estimate of the coverage probability with a bisection search for K:

P[max
l̄∈L
|l̄TZ|/sF ≤ K] ≈ 1

I
|{i : max

l̄∈L
|l̄TZ(i)|/s(i)F ≤ K}| = 1− α.

However, it is possible to increase precision by removing some of the variance
from this MC simulation by integrating out the radial component of Z/sF .
As the distribution of Z/sF is spherically symmetric about 0p, it can be
decomposed into a radial and an angular component (see also the proof of
Theorem 4.3, Appendix A.5):

Z/sF = RU, R2/p ∼ Fp,n−p , U ∼ Unif(Sp−1), R,U independent.

The maximal t-statistic becomes

max
j,M:j∈M

|tj·M| = max
l̄∈L
|l̄T (RU)| = Rmax

l̄∈L
|l̄TU| = RC,

where C = maxl̄∈L |l̄
T
U| is the random variable that measures the maximal

magnitude of the cosine between U and the vectors in the set L. We integrate
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the radial component:

P[ max
M,j:j∈M

|tj·M| ≤ K] = P[RC ≤ K]

= E[P[R2/p ≤ (K/C)2/p |C ] ]

= E[Fp,n−p((K/C)2/p)] ,

where Fp,n−p(...) denotes the c.d.f. of the F -distribution (not its quantiles).

Proposition 5.1. Let U ∼ Unif(Sp−1) and C = maxl̄∈L |l̄
T
U|; then

the PoSI coverage probability for K is

(5.1) P[ max
M,j:j∈M

|tj·M| ≤ K] = E[Fp,n−p((K/C)2/p)]

The expectation on the right hand side refers to the random variable C.
The connection of this formula to Scheffé protection is as follows: The Scheffé
case arises for L = Sp−1 and hence C ≡ 1, in which case calibration of the
right hand side of (5.1) requires Fp,n−p(K

2/p) = 1 − α, which reproduces

the Scheffé constant KSch =
√
pF−1p,n−p(1− α). To gain on Scheffé, one needs

C < 1 in distribution, which is the case for any |L| <∞.
The PoSI constant K = K(X, α, p, n) can be approximated by cali-

brating an MC estimate of (5.1). To this end, we sample i.i.d. unit vec-
tors U(1), ...,U(I) ∼ Unif(Sp−1), calculate their maximal absolute cosines

C(i) = maxl̄∈L |l̄
T
U(i)| and calibrate:

(5.2) P[ max
M,j:j∈M

|tj·M| ≤ K] ≈ 1

I

∑
i=1,...,I

Fp,n−p((K/C
(i))2/p) = 1− α .

The real computational expense is in calculating the values C(i), which in-
volves maximizing the magnitude of the inner product of U(i) with the
p 2p−1 vectors l̄ ∈ L. Currently we completely enumerate the set L, and
this is why the computations are limited to about p ≤ 20. For p = 20
(p 2p−1 = 10, 485, 760), elapsed time on 2010 computing equipment is about
one hour. Once the values C(i) are calculated (for I = 1, 000, say), they are
re-used in (5.2) for all values of K that are tried in the bisection search,
which therefore takes up negligible time. — An implementation of this algo-
rithm in R-code (http://www.r-project.org/) can be obtained from the
authors’ web pages.
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5.2. Computation of Universal Upper Bounds Kuniv(α, p, n). The same
technique that produced the universal asymptotic upper bound in Sec-
tion 4.3 (see the proof in Appendix A.5) can be used to compute a univer-
sal finite-n/finite-p upper bound: Kuniv(α, p, n) ≥ K(X, α, p, n) (∀X), yet
strictly less than the Scheffé bound, Kuniv(α, p, n) < KSch(α, p, n). This ex-
ercise has two purposes: (a) providing a computational method, and (b) giv-
ing the message that the asymptotic bound 0.866 of Theorem 4.3 should be
taken with a grain of salt; for p→∞ it is approached from above, hence it
is not conservative for any finite p in providing a bound for unstructured L
of size |L| = p 2p−1.

As in Section 4.3 we ignore all structure in L except for its cardinality,
hence the technique really works for arbitrary coverage problems involv-
ing many linear estimable functions. We start from the expression (5.1) for
the coverage probability and observe that for any random variable C ′ that

dominates C stochastically, C ′
D
≥ C, we have

E[Fp,n−p((K/C
′)2/p)] ≤ E[Fp,n−p((K/C)2/p)],

because c 7→ Fp,n−p((K/c)
2/p) is monotone decreasing for c > 0. Thus

calibrating the left hand side results in a more conservative constantK ′ ≥ K.
We can create C ′ following the lead of Theorem 4.3 by using its proof’s

Bonferroni-style bound (A.15) and relying on the fact that every (l̄
T
U)2

has a Beta(1/2, (p− 1)/2)-distribution (A.16):

P[C > c] = P[max
l̄∈L
|l̄TU| > c] ≤ |L|(1− FBeta,1/2,(p−1)/2(c2))

The r.h.s. depends on L (and hence on X) only through the cardinality |L|.
We define the c.d.f. of C ′ in terms of a capped version of the r.h.s.:

Proposition 5.2. Let C ′ be a random variable with the following c.d.f.:

FC′(c) = 1−min(1, |L|(1− FBeta,1/2,(p−1)/2(c2))).

Then a universal lower bound on PoSI coverage probabilities for all designs
X is:

(5.3) E[Fp,n−p((K
′/C ′)2/p)] ≤ P[ max

j,M:j∈M
|tj·M| ≤ K ′].

Thus, if the l.h.s. in (5.3) is calibrated with a search over K ′ so that

E[Fp,n−p((K
′/C ′)2/p)] = 1− α,
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we obtain a constant K ′ = Kuniv(α, p, n) that satisfies for all X

K(X, α, p, n) ≤ Kuniv(α, p, n) < KSch(α, p, n).

For the last inequality, note that the Scheffé constant is for C ≡ 1, whereas
P[C ′ < 1] = 1.

Good approximations of the l.h.s. in (5.3) for arbitrary K ′ are obtained by
calculating a grid of equi-probability quantiles for the distribution of C ′ once
for all, and re-use it in the bisection search for K ′. For a grid of length I, the
grid points can be obtained by solving FC′(ci) = i/(I + 1) or, equivalently
but more conveniently, 1− FC′(ci) = i/(I + 1):

ci = F−1Beta,1/2,(p−1)/2

(
1− i

(I + 1) |L|

)1/2

.

Numerically this works for up to about p = 40; for larger p the “Bonferroni”
denominator |L| = p 2p−1 creates quantiles that are too extreme for conven-
tional numerical routines of Beta quantiles. If it works, the approximation
to the l.h.s. of (5.3) is

E[Fp,n−p((K
′/C ′)2/p)] ≈ 1

I

∑
i=1...I

Fp,n−p((K
′/ci)

2/p).

which can be used for calibration.
A comparison of the distribution of the variable C ′ with the values C ≡ 1

(Scheffé) and C =
√

3/2 = 0.866... (asymptotic bound) is of interest because
it shows (a) to what degree simultaneous inference problems involving |L|
estimable functions are necessarily less stringent than Scheffé, and (b) to
what degree the asymptotic bound is approximated by C ′. Such comparisons
are given in Figure 5: all distributions are strictly below 1, beating Scheffé as
they obviously should, but the asymptotic bound 0.866 is approached from
above, which means that this value should be enlarged somewhat. In view of
Figure 5, a good rough and ready rule for practice might be using a fraction
0.9 of the Scheffé constant as an approximate universal PoSI constant.

5.3. P-Value Adjustment for Simultaneity. Statistical inference for re-
gression coefficients is probably more often carried out in terms of p-values
than confidence intervals. There exists an immediate translation between the
two modes of inference: Informally, the two-sided p-value is the complement
of the coverage probability of a confidence interval that exactly touches the
null hypothesis βj·M = 0. This statement translates to

pvalj·M = 1− Fj·M(|tobsj·M|) where Fj·M(t) = P[|tj·M| < t]
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p = 5

0.85 0.90 0.95 1.00

p = 10

0.85 0.90 0.95 1.00

p = 20

0.85 0.90 0.95 1.00

p = 40

0.85 0.90 0.95 1.00

Fig 5. Distribution of the variable C′ of Section 5.2 used for calculating the universal
upper bound on the PoSI constants. The vertical bold line on the left shows the asymptotic
bound

√
3/2. The distributions approach the asymptotic value from above, thereby showing

that universal upper bounds for finite p tend to be somewhat larger than the asymptotic
limit, yet less than 1 and hence less than the Scheffé constant.

is the c.d.f. of the |tn−p| distribution and tobsj·M is the observed value of the
t-statistic for βj·M. This is the familiar definition of the marginal p-value:
the probability of a test statistic more extreme than the observed one. The
marginal p-value suffers from ignoring multiplicity/simultaneity of perform-
ing as many as |L| tests.

The globally simultaneous or PoSI p-value is defined as

pvalPoSI = 1− Fmax( max
j,M: j∈M

|tobsj·M|),

where

(5.4) Fmax(t) = P[ max
j,M: j∈M

|tj·M| < t]

is the c.d.f. of the max test statistic under the global null hypothesis. The
calculation of this c.d.f. is the subject of Section 5.1, in particular Equa-
tion 5.1 in Proposition 5.1. The role of the global PoSI p-value is that of a
competitor of the p-value of the overall F -test, which in turn derives from
Scheffé protection. Thus the PoSI p-value may provide sharper overall infer-
ence than the overall F -test, even though it was designed to adjust for the
multiplicity of arbitrary model selection.

To correct the deficiencies of the marginal p-values pvalj·M, it is useful to

introduce adjusted versions pvalPoSIj·M that do account for multiplicity. The
informal definition of an adjusted p-value starts again with a confidence
interval whose width is such that it exactly touches the null hypothesis; the
difference to the marginal p-value is in the assigned coverage, which can be
conservatively calculated as the simultaneous coverage of all intervals of this
width across all M and all j ∈ M. As an equivalent informal characterization,
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we can define the adjusted p-value to be the probability of observing a t-
statistic greater in magnitude than the observed t statistic anywhere among
all submodels M and all coefficients j ∈ M:

(5.5) pvalPoSIj·M = 1− Fmax(|tobsj·M|),

where Fmax(t) is as in (5.4) above. This “one-step” adjustment is practica-
ble once the basic computations outlined in Section 5.1 are completed. The
adjustment is an over-adjustment for all but the maximal |tj·M|. A sharper
form of adjustment could be achieved with a “step-down” method such as
the algorithm described by Pacifico et al. (2004, Section 2), but the compu-
tational expense may be prohibitive and the gain in statistical efficiency may
be minimal. The adjustment (5.5) provides strong family-wise error control
and has the simultaneity guarantee given in Pacifico et al. (2004): The set
{ (j,M) | pvalPoSIj·M > α } characterizes a superset of the true null hypothe-

ses βj·M = 0 with probability ≥ 1 − α. Conversely: { (j,M) |pvalPoSIj·M ≤ α }
characterizes a subset of the true alternatives βj·M 6= 0 with probability
≥ 1− α.

(Final note: “Adjustment” of p-values for multiplicity and “adjustment”
of predictors for other predictors are two concepts that share nothing except
the partial homonym.)

6. Summary and Discussion. We investigated the Post-Selection In-
ference or “PoSI” problem in the classical Gaussian linear model under the
classical assumption n� p. We showed that, while finding the distribution
of post-selection estimates is hard, valid post-selection inference is possible
via simultaneous inference. The principal idea is to consider the regression
coefficient of a given predictor as distinct when it occurs in different sub-
models: βj·M and βj·M′ are different parameters if M 6= M′. We show that
simultaneity protection for all parameters βj·M provides valid post-selection
inference. In practice this means enlarging the constant t1−α/2,n−p used in
conventional inference to a constant K(X, α, p, n) that provides simultane-
ity protection for up to p 2p−1 parameters βj·M. We showed (for known σ or
“n =∞”) that the constant depends strongly on the design matrix X as the
asymptotic bound for K(X, α, p) ranges between the minimum of

√
2 log p

achieved for orthogonal designs on the one hand, and a large fraction of
the Scheffé bound

√
p on the other hand. This wide asymptotic range of

constants K(X, α, p) suggests that computation is critical for large p. Our
current computational methods are limited to p ≤ 20.

We carried out post-selection inference in a limited framework. Several
problems remain open, and many natural extensions are desirable, some
more feasible than others:
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• Among open problems is the quest for the largest fraction of the
asymptotic Scheffé rate

√
p attained by PoSI constants. So far we know

this fraction to be at least 0.6363 but no more than 0.8660...
• Computations for p > 20 are a challenge. Straight enumeration of the

set of up to p 2p−1 linear contrasts should be replaced with heuristic
shortcuts that yield practically useful upper bounds on K(X, α, p, n)
that are specific to X, unlike the 0.8660 fraction of the Scheffé bound
which is universal.
• The methodology is easily adapted to practically useful variations such

as these: (1) Data analysts might be interested only in small submod-
els, |M| ≤ 5, say, when p is large. (2) We introduced SPAR (“Sin-
gle Predictor Adjusted Regression”, Section 2.5) defined as the search
among all predictors for strong adjusted “effects”. Practitioners might
be more interested in strong adjusted effects in one predetermined pre-
dictor of special interest, as in SPAR1. — Any limitation to a lesser
number of submodels or regression coefficients to be searched increases
the computationally accessible size of p.
• Among models to which the PoSI framework should be extended next

are generalized linear models and mixed effects models.
• Alternative PoSI frameworks with quite different interpretations could

possibly be based on bootstrap resampling.

R code for computing the PoSI constant for up to p = 20 can be obtained
from the authors’ webpages.

Acknowledgments. We thank M. Freiman, E. George, E. Pitkin, L. Shepp,
N. Sloane and M. Traskin for very helpful discussions.

APPENDIX A: PROOFS

A.1. Proof of Proposition 3.3.

1. The matrix X∗M = XM (XT
MXM )−1 has the vectors lj·M as its columns.

Thus lj·M ∈ span(Xj : j ∈ M). Orthogonality lj·M ⊥ Xj′ for j′ 6= j fol-
lows from XT

MX∗M = Ip. The same properties hold for the normalized
vectors l̄j·M.

2. The vectors {l̄1·{1}, l̄2·{1,2}, l̄3·{1,2,3}, ..., l̄p·{1,2,...,p}} form a Gram-
Schmidt series with normalization, hence they are an o.n. basis of IRp.

3. For M ⊂ M′, j ∈ M, j′ ∈ M′\M, we have l̄j·M ⊥ l̄j′·M because they can
be embedded in an o.n. basis by first enumerating M and subsequently
M′ \M, with j being last in the enumeration of M and j′ last in the
enumeration of M′ \M.
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4. For any (j0,M0), j0 ∈ M0, there are (p − 1) 2p−2 ways to choose a
partner (j1,M1) such that either j1 ∈ M1 ⊂ M0 \ j0 or M0 ⊂ M1 \ j1,
both of which result in l̄j0·M0 ⊥ l̄j1·M1 by the previous part.

A.2. Proof of Duality: Lemma 3.1 and Theorem3.1. The proof
relies on a careful analysis of orthogonalities as described in Proposition 3.3,
part 3. In what follows we write [A] for the column space of a matrix A, and
[A]⊥ for its orthogonal complement. We show first that, for M ∩M∗ = {j},
M ∪M∗ = MF , the vectors l̄

∗
j·M∗ and l̄j·M are in the same one-dimensional

subspace, hence are a multiple of each other. To this end we observe:

l̄j·M ∈ [XM] , l̄j·M ∈ [XM\j ]
⊥,(A.1)

l̄
∗
j·M∗ ∈ [X∗M∗ ] , l̄

∗
j·M∗ ∈ [X∗M∗\j ]

⊥,(A.2)

[X∗M∗ ] = [XM\j ]
⊥, [X∗M∗\j ]

⊥ = [XM] .(A.3)

The first two lines state that l̄j·M and l̄
∗
j·M∗ are in the respective column

spaces of their models, but orthogonalized with regard to all other predic-
tors in these models. The last line, which can also be obtained from the
orthogonalities implied by XTX∗ = Ip, establishes that the two vectors fall
in the same one-dimensional subspace:

l̄j·M ∈ [XM] ∩ [XM\j ]
⊥ = [X∗M∗ ] ∩ [X∗M∗\j ]

⊥ 3 l̄∗j·M∗ .

Since they are normalized, it follows l̄
∗
j·M∗ = ±l̄j·M. This result is sufficient

to imply all of Theorem 3.1. The lemma, however, makes a slightly stronger
statement involving lengths which we now prove. In order to express lj·M
and l∗j·M∗ according to (3.3), we use PM\j as before and we write P∗M∗\j for

the analogous projection onto the space spanned by the columns M∗ \ j of
X∗. The method of proof is to evaluate lTj·M l

∗
j·M∗ . The main argument is

based on

(A.4) XT
j (I−PM\j)(I−P∗M∗\j)X

∗
j = 1,

which follows from these facts:

PM\jP
∗
M∗\j = 0, PM\jX

∗
j = 0, P∗M∗\jXj = 0, XT

j X∗j = 1,

which in turn are consequences of (A.3) and XTX∗ = Ip. We also know
from (3.3) that

(A.5) ‖lj·M‖ = 1/‖(I−PM\j)Xj‖ , ‖l∗j·M∗‖ = 1/‖(I−P∗M∗\j)X
∗
j‖ .
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Putting together (A.4), (A.5), and (3.3), we obtain

(A.6) lTj·M l
∗
j·M∗ = ‖lj·M‖2 ‖l∗j·M∗‖2 > 0.

Because the two vectors are scalar multiples of each other, we also know
that

(A.7) lTj·M l
∗
j·M∗ = ± ‖lj·M‖ ‖l∗j·M∗‖.

Putting together (A.6) and (A.7) we conclude

‖lj·M‖ ‖l∗j·M∗‖ = 1, l̄
∗
j·M∗ = l̄j·M,

This proves the lemma and the theorem. �

A.3. Proof of Theorem 4.1. The parameter a can range from −1/p
to∞, but because of duality there is no loss of generality in considering only
the case in which a ≥ 0, and we do so in the following. Let M ⊂ {1, . . . , p}
and j ∈ M. If M = {j} then lj·M = Xj , the j-th column of X, and l̄j·M =

lj·M/
√
pa2 + 2a+ 1. It follows that for Z ∼ N (0p, Ip),

(A.8) |l̄Tj·MZ| ≤ |
∑
k 6=j

Zk|/
√
p+ |Zj | ≤

√
2 log p(1 + op(1))

because ‖Z‖∞ = (1 + op(1))
√

2 log p.
Because of (A.8) we now need only consider model selection sets, M, that

contain at least two indices. For notational convenience, consider the case
that j = 1 and M = {1, . . . ,m} with 2 ≤ m ≤ p. The following results can
then be applied to arbitrary j and M by permuting coordinates.

When m ≥ 2 the projection of X1 on the space spanned by X2, . . . ,Xm

must be of the form

Proj =
c

m− 1

m∑
k=2

Xk =

ca, ca+
c

m− 1
, . . . , ca+

c

m− 1︸ ︷︷ ︸
m−1

, ca, . . . , ca︸ ︷︷ ︸
p−m


where the constant c satisfies l1·M = (X1 − Proj)⊥Proj. This follows from
symmetry; no calculation of projection matrices is needed to verify this. Let
d = 1− c. Then

(l1·M)k =


1 + da k = 1

da− 1−d
m−1 2 ≤ k ≤ m

da k ≥ m+ 1

.
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Some algebra starting from lT1·MX2 = 0 yields

d =
1/(m− 1)

pa2 + 2a+ 1/(m− 1)
.

The term d = d(a) is a simple rational function of a, and it is easy to check
when m ≥ 2 that 0 ≤ da < 1/(2

√
p).

Note also that ‖l1·M‖ ≥ 1. Hence l̄1·M = l1·M/‖l1·M‖ satisfies

|̄lT1·MZ| ≤ |Z1|+|
1

m− 1

m∑
j=2

Zj |+|
1

2
√
p

p∑
j=1

Zj | ≤ 2
√

2 log p(1+op(1))+Op(1).

This verifies that

(A.9) lim sup
p→∞

supa∈(−1/p,∞)K(X(a))
√

2 log p
≤ 2 in probability.

It remains to prove that equality holds in (A.9). Let Z(1) < Z(2) < . . . < Z(p)

denote the order statistics of Z. Fix m. It is well-known that, in probability,

lim
p→∞

Z(1)√
2 log p

= −1 and lim
p→∞

Z(j)√
2 log p

= 1 ∀j : p−m ≤ j ≤ p.

Note that

lim
a→∞

da = 0 and lim
a→∞

‖l1·M‖2 = 1 + (m− 1)−1.

For any given Z one may choose to look at lj∗·M∗ , with j∗ being the index
of Z(1) and M∗ = {j∗} ∪ {j : Zj = Z(k), p−m+ 2 ≤ k ≤ p}. The above then
yields, in probability,

lim
p→∞,a→∞

|̄lTj∗·M∗Z|√
2 log p

≥ 2√
1 + (m− 1)−1

.

Choosingm arbitrarily large and combining this with (A.9) yields the desired
conclusion.

A.4. Partial Proof of Theorem 4.2. While the theorem is correct
as stated, of interest is only the inequality

(A.10) K(p)(X) ≥ (0.6363...)
√
p (1 + oP (1)),

the point being that a non-zero fraction of the Scheffé rate
√
p can be at-

tained by PoSI1 constants. As the proof of the reverse inequality is lengthy,
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we provide here only the more straightforward proof of inequality (A.10) and
indicate below the missing part which can be obtained from the authors on
request. The following preparations are required for both inequalities.

To find l̄p·M, we need to adjust the predictor of interest Xp = 1p for other
predictors Xj = ej (j < p) in the model M. In this case adjusting means
zeroing out the components of Xp for j ∈ M with the exception of j = p,
hence the z-statistic (3.1) for the predictor of interest are

zp·M = l̄
T
p·MZ =

Zp +
∑

j /∈M Zj(
1 +

∑
j /∈M 1

)1/2 .
We will consider only the one-sided problem based on maxM(3p) zp·M as the
two-sided criterion is the larger of the one-sided criteria for Z and −Z, which
are asymptotically the same. We also simplify the problem by dropping the
terms Zp and 1 which are asymptotically irrelevant:

max
M(3p)

zp·M√
p

= max
M: p∈M, |M|>1

z′p·M√
p

+ oP (1) ,

where

z′p·M =

∑
j /∈M Zj(∑
j /∈M 1

)1/2 .
Next we observe that for a fixed model size |M| =

∑
j∈M 1 = m (> 1) and a

given Z the maximizing model has to include the predictors j for which Zj is
smallest, hence is of the form MB = { j : Zj < B }∪ {p}, where B is chosen
such that |M| = m. It is therefore sufficient to consider only models of the
form MB. Furthermore, we can limit the search to B ≥ 0 because adding j
with Zj < 0 to the model increases the numerator of the above ratio and
makes it positive, and also it decreases the numerator, thereby increasing
the ratio again:

max
M: p∈M, |M|>1

z′p·M = max
B≥0

z′p·MB
= max

B≥0

∑
j<p Zj I(Zj > B)(∑
j<p I(Zj > B)

)1/2 .
The asymptotic properties of the right hand ratio is provided by the following
lemma:

Lemma A.1. Define A(B) = φ(B)/
√

1− Φ(B). Then it holds uniformly
in B ≥ 0:

z′p·MB√
p

= A(B) + oP (1).
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It is the uniformity in the statement of the lemma that is needed to
prove the reverse inequality of (A.10). We provide here only the simple
proof of the pointwise statement, which is sufficient for (A.10): Because
E[Zj I(Zj > B)] = φ(B), we have for p→∞

1

p− 1

∑
j<p

Zj I(Zj > B)
P→ φ(B),

1

p− 1

∑
j<p

I(Zj > B)
P→ 1− Φ(B).

The pointwise assertion of the lemma follows. �
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Fig 6. The function A(B) = φ(B)√
1−Φ(B)

from the proof of Theorem 4.2 in Appendix A.4.

Continuing with the proof of the theorem, we look for B ≥ 0 that makes
zp·MB

asymptotically the largest. Following the lead of the lemma we obtain
the maximum of A(B) as Amax = maxB≥0 φ(B)/

√
1− Φ(B) = 0.6363...,

attained at Bmax ≈ 0.6121. (The graph of A(B) is shown in Figure 6.)
We have therefore zp·MBmax

= (0.6363... + oP (1))
√
p. Since maxB zp·MB

≥
zp·MBmax

, the PoSI1 constant is lower-bounded by K(p) ≥ 0.6363...
√
p (1 +

op(1)). �

A.5. Proof of Theorem 4.3. We will show that if a
1/p
p → a (> 0), we

have

• a uniform asymptotic worst-case bound:

limp→∞ sup|Lp|≤ap maxl̄∈Lp |l̄
T
Z|/√p

P
≤
√

1− 1/a2;

• attainment of the bound when |Lp| = ap and l̄ ∈ Lp are i.i.d. Unif(Sp−1)
independent of Z:

limp→∞ maxl̄∈Lp |l̄
T
Z|/√p

P
≥
√

1− 1/a2.
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These facts imply the assertions about (1−α)-quantilesK(Lp) of maxl̄∈Lp |l̄
T
Z|

in Theorem 4.3. We decompose Z = RU where R2 = ‖Z‖2 ∼ χ2
p and

U = Z/‖Z‖ ∼ Unif(Sp−1) are independent. Due to R/
√
p

P→ 1 it is suffi-
cient to show the following:

• uniform asymptotic worst-case bound:

(A.11) lim
p→∞

sup
|Lp|≤ap

max
l̄∈Lp

|l̄TU|
P
≤

√
1− 1/a2 ;

• attainment of the bound when |Lp| = ap and l̄ ∈ Lp are i.i.d. Unif(Sp−1)
independent of U:

(A.12) lim
p→∞

max
l̄∈Lp

|l̄TU|
P
≥

√
1− 1/a2 .

To show (A.11), we upper-bound the non-coverage probability and show
that it converges to zero for K ′ >

√
1− 1/a2. To this end we start with a

Bonferroni-style bound, as in Wyner (1967):

P[ max
l̄∈L
|l̄TU| > K ′] = P

⋃
l̄∈L

[ |l̄TU| > K ′](A.13)

≤
∑
l̄∈L

P[ |l̄TU| > K ′](A.14)

= |Lp|P[ |U | > K ′],(A.15)

where U is any coordinate of U or projection of U onto a unit vector. We
will show that the bound (A.15) converges to zero. We use the fact that
U2 ∼ Beta(1/2, (p− 1)/2), hence

(A.16) P[ |U | > K ′] =
1

B(1/2, (p− 1)/2)

∫ 1

K′2
x−1/2(1− x)(p−3)/2dx

We bound the Beta function and the integral separately:

1

B(1/2, (p− 1)/2)
=

Γ(p/2)

Γ(1/2)Γ((p− 1)/2)
<

√
(p− 1)/2

π
,

where we used Γ(x + 1/2)/Γ(x) <
√
x (a good approximation, really) and

Γ(1/2) =
√
π.∫ 1

K′2
x−1/2(1− x)(p−3)/2dx ≤ 1

K ′
1

(p− 1)/2
(1−K ′2)(p−1)/2,
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where we used x−1/2 ≤ 1/K ′ on the integration interval. Continuing with
the chain of bounds from (A.15) we have:

|Lp|P[ |U | > K ′] ≤ 1

K ′

(
2

(p− 1)π

)1/2 (
|Lp|1/(p−1)

√
1−K ′2

)p−1
.

Since |Lp|1/(p−1) → a (> 0) by assumption, the right hand side converges to
zero at geometric speed if a

√
1−K ′2 < 1, that is, if K ′ >

√
1− 1/a2. This

proves (A.11).

To show (A.12), we upper-bound the coverage probability and show that
it converges to zero for K ′ <

√
1− 1/a2. We make use of independence of

l̄ ∈ Lp, as in Wyner (1967):

P[ max
l̄∈Lp
|l̄TU| ≤ K ′] =

∏
l̄∈Lp

P[ |l̄TU| ≤ K ′] = P[ |U | ≤ K ′]|Lp|(A.17)

=
(
1− P[ |U | > K ′]

)|Lp|(A.18)

≤ exp
(
−|Lp|P[ |U | > K ′]

)
.(A.19)

We will lower-bound the probability P[ |U | > K ′] recalling (A.16) and again
deal with the Beta function and the integral separately:

1

B(1/2, (p− 1)/2)
=

Γ(p/2)

Γ(1/2)Γ((p− 1)/2)
>

√
p/2− 3/4

π
,

where we used Γ(x+1)/Γ(x+1/2) >
√
x+ 1/4 (again, a good approximation

really). ∫ 1

K′2
x−1/2(1− x)(p−3)/2dx ≥ 1

(p− 1)/2
(1−K ′2)(p−1)/2,

where we used x−1/2 ≥ 1. Putting it all together we bound the exponent
in (A.19):

|Lp|P[ |U | > K ′] ≥
√
p/2− 3/4√
π (p− 1)/2

(
|Lp|1/(p−1)

√
1−K ′2

)p−1
.

Since |Lp|1/(p−1) → a (> 0) by assumption, the right hand side converges to
+∞ at nearly geometric speed if a

√
1−K ′2 > 1, that is, if K ′ <

√
1− 1/a2.

This proves (A.12).
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