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     ABSTRACT 

Extrapolation methods are reliable, objective, inexpensive, quick, and easily automated. As a result, 
they are widely used, especially for inventory and production forecasts, for operational planning for 
up to two years ahead, and for long-term forecasts in some situations, such as population forecasting. 
This paper provides principles for selecting and preparing data, making seasonal adjustments, 
extrapolating, assessing uncertainty, and identifying when to use extrapolation. The principles are 
based on received wisdom (i.e., experts’ commonly held opinions) and on empirical studies. Some of 
the more important principles are: 
 

• In selecting and preparing data, use all relevant data and adjust the data for important events 
that occurred in the past. 

 
•  Make seasonal adjustments only when seasonal effects are expected and only if there is 

good evidence by which to measure them.  
 

• In extrapolating, use simple functional forms. Weight the most recent data heavily if there 
are small measurement errors, stable series, and short forecast horizons. Domain knowledge 
and forecasting expertise can help to select effective extrapolation procedures. When there is 
uncertainty, be conservative in forecasting trends. Update extrapolation models as new data 
are received. 

 
• To assess uncertainty, make empirical estimates to establish prediction intervals.  

 
•  Use pure extrapolation when many forecasts are required, little is known about the situation, 

the situation is stable, and expert forecasts might be biased. 
  

Key words: acceleration, adaptive parameters, analogous data, asymmetric errors, base rate, Box-
Jenkins, combining, conservatism, contrary series, cycles, damping, decomposition, discontinuities, 
domain knowledge, experimentation, exponential smoothing, functional form, judgmental 
adjustments, M-competition, measurement error, moving averages, nowcasting, prediction intervals, 
projections, random walk, seasonality, simplicity, tracking signals, trends, uncertainty, updating. 
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Time-series extrapolation, also called univariate time-series forecasting or projection, relies on quantitative methods 
to analyze data for the variable of interest. Pure extrapolation is based only on values of the variable being forecast. 
The basic assumption is that the variable will continue in the future as it has behaved in the past. Thus, an 
extrapolation for Exhibit 1 would go up.  
 

Exhibit 1
A Time Series
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 Extrapolation can also be used for cross-sectional data. The assumption is that the behavior of some actors 
at a given time can be used to extrapolate the behavior of others. The analyst should find base rates for similar 
populations. For example, to predict whether a particular job applicant will last more than a year on the job, one 
could use the percentage of the last 50 people hired for that type of job who lasted more than a year. 
 
 Academics flock to do research on extrapolation. It is a statistician’s delight. In early 2000, using a search 
for the term time series (in the title or key words), I found listings in the Social Science Citation Index (SSCI) for 
over 5,600 papers published in journals since 1988; adding the term forecasting reduced this to 580 papers. I found 
730 by searching on seasonality, decreased to 41 when the term forecasting was added. Searching for extrapolation 
yielded 314 papers, reduced to 43 when forecasting was added. Little of this research has contributed to the 
development of forecasting principles. In my paper, only 16 studies published during this period seemed relevant to 
the development of  principles for extrapolation. 
 
 Few statisticians conduct studies that allow one to generalize about the effectiveness of their methods. 
When other researchers test the value of their procedures, they show little interest and seldom cite findings about the 
accuracy of their methods. For example, Fildes and Makridakis (1995) checked the SSCI and SCI (Science Citation 
Index) to determine the number of times researchers cited four major comparative validation studies on time series 
forecasting (Newbold and Granger 1974; Makridakis and Hibon 1979; Meese and Geweke 1984; and Makridakis et 
al. 1982). Between 1974 and 1991, a period in which many thousands of time-series studies were published, these 
four comparative studies were cited only three times per year in all the statistics journals indexed. In short, they were 
virtually ignored by statisticians. 
 
 I found some research to be useful, especially studies comparing alternative extrapolation methods on 
common data sets. Such studies can contribute to principles for extrapolation when they contain descriptions of the 
conditions. In reviewing the literature, I looked at references in key papers. In addition, using the term 
“extrapolation,” I searched the SSCI for papers published from 1988 to 2000. I sent drafts of my paper to key 
researchers and practitioners, asking them what papers and principles might have been overlooked. I also posted the 
references and principles on the Forecasting Principles website, hops.wharton.upenn.edu/forecast

 

, in August 1999, 
and issued a call to various e-mail lists for information about references that should be included. 



PRINCIPLES OF FORECASTING 3 
 The first part of the paper describes the selection and preparation of data for extrapolation, the second 
considers seasonal adjustments, the third examines making extrapolations, and the fourth discusses the assessment 
of uncertainty. The paper concludes with principles concerning when to use extrapolation 
 
 
SELECTING AND PREPARING DATA  
 
Although extrapolation requires only data on the series of interest, there is also a need for judgment, particularly in 
selecting and preparing the data.  
 

• Obtain data that represent the forecast situation. 
 

 For extrapolation, you need data that represent the events to be forecast. Rather than starting with data, you 
should ask what data the problem calls for. For example, if the task calls for a long-term forecast of U.S. retail prices 
of gasoline, you need data on the average pump prices in current dollars. Exhibit 1 presents these data from 1962 
through 1981. The gasoline case is typical of many situations in which ample data exist on the variable to be 
forecast.  
 
 Sometimes it is not obvious how to measure the variable of interest. For example, if you want to 
extrapolate the number of poor people in the U.S., you must first define what it means mean to be poor. Alternate 
measures yield different estimates. Those who use income as the measure conclude that the number of poor is 
increasing, while those who use the consumption of goods and services conclude that the number is decreasing. 
 
 If you have few data on the situation, you should seek data from analogous situations. For example, to 
forecast the start-up pattern of sales at a new McDonald’s franchise, you could extrapolate historical data from 
McDonald’s start-ups in similar locations. 
 
 If you can find no similar situations, you can develop laboratory or field experiments. Experiments are 
especially useful for assessing the effects of large changes. Marketers have used laboratory experiments for many 
years, for example, in testing new products in simulated stores. Nevin (1974) tested the predictive validity of 
consumer laboratory experiments, finding that they provided good estimates of market share and market share for 
some brands. Analysts have used laboratory simulations successfully to predict personnel behavior by using work 
samples (Reilly and Chao 1982, Robertson and Kandola 1982, and Smith 1976). In these simulations, subjects are 
asked to perform typical job duties. From their performance on sample tasks, analysts extrapolated their behavior on 
the job. 
 
 For greater realism, analysts may conduct field experiments. Compared to lab experiments, field 
experiments are costly, offer less control over key factors, and have little secrecy. Field experiments are used in 
many areas, such as marketing, social psychology, medicine, and agriculture. The validity of the extrapolation 
depends upon how closely the experiment corresponds to the given situation. For example, when running field 
experiments in a test market for a new product, you must first generalize from the sample observations to the entire 
test market, then from the test market to the total market, and finally to the future. In addition, such experiments can 
be influenced by researchers’ biases and by competitors’ actions. 
 
 Exhibit 2 summarizes different types of data sources. I rated them against five criteria. No one source 
provides the best data for all situations. When large structural changes are expected, traditional extrapolation of 
historical data is less appropriate than extrapolations based on analogous data, laboratory simulations, or field 
experiments. 
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Exhibit 2: Ranking of Data for Extrapolations  
(1 = most appropriate or most favorable)  

 

Data Source 

To reduce 
cost of 

forecasts 

To control 
for effects of 
researcher’s 

bias 

To estimate 
current 
status 

To forecast 
effects of 

small changes 

To forecast 
effects of 

large changes 

Historical  1 1 1 1 4 

Analogous situation  2 2 2 4 3 

Laboratory experiment 3 4 4 3 2 

Field experiment 4 3 3 2 1 
 

• Use all relevant data, especially for long-term forecasts 

 The principle of using all relevant data is based primarily on received wisdom, and little evidence supports 
it. Clearly, however, extrapolation from few data, say less than five observations, is risky. In general, more data are 
preferable. Analysts must then decide what data are relevant. For example, older data tend to be less relevant than 
recent data and discontinuities may make some earlier data irrelevant. 
  
 There is some evidence that having too few data is detrimental. For example, Dorn (1950), in his review of 
population forecasts, concluded that demographic forecasters had been using too few data. Smith and Sincich 
(1990), using three simple extrapolation techniques for U.S. population forecast, found that accuracy improved as 
the number of years of data increased to ten. Increasing beyond ten years produced only small gains except for 
population in rapidly growing states, in which case using more data was helpful. Not all evidence supports the 
principal, however. Schnaars (1984) concluded that more data did not improve accuracy significantly in 
extrapolations of annual consumer product sales. While the evidence is mixed, accuracy sometimes suffers when 
analysts use too few data, so it seems best, in general, to use all relevant data. 
 
 The longer the forecast horizon, the greater the need for data. I found evidence from six studies that 
examined forecast accuracy for horizons from one to 12 periods ahead. Using more data improved accuracy for the 
longer forecast horizons (Armstrong 1985, pp. 165-168).  
 
 In the case of U.S. prices for gasoline, why start with 1962? Annual data exist back to 1935. The issue then 
is whether these early data are representative of the future. It seems reasonable to exclude data from the Great 
Depression and World War II. However, data from 1946 on would be relevant.  
 

• Structure the problem to use the forecaster’s domain knowledge. 
 

 Domain knowledge can be used to decompose the problem prior to extrapolation. To forecast population, 
break the problem down by births, deaths, emigration, and immigration. To forecast sales of a self-help book, one 
might extrapolate the sales per literate adult and the number of literate adults. You could also extrapolate total 
industry sales (for all self-help books) and the market share (for the proposed book), then multiply. MacGregor 
(2001) provides evidence for the value of decomposition. 
 
 Another common decomposition is to adjust forecasts of dollar sales by a consumer price index. This is a 
reasonable thing to do because different factors affect the inflation rate and the series of interest. Consider again the 
price of gasoline. We can decompose the task into making forecasts of inflation and the real price for gasoline. 
Exhibit 3 provides inflation-adjusted data from 1946 through 1981. It shows that with the exception of the run-up in 
1979, 1980, and 1981, the upward trend in Exhibit 1 was due primarily to inflation. A more refined analysis might 
have also decomposed the tax and non-tax portions of the price. 
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Exhibit 3
U.S. Gasoline Prices 

(1982 Dollars)

= Current dollars

= Constant dollars

 

Source: International Petroleum Encyclopedia, 1999; Tulsa Petroleum Publishing Company 

 
• Clean the data to reduce measurement error. 

Real-world data are often inaccurate. Mistakes, cheating, unnoticed changes in definitions, and missing 
data can cause outliers. Outliers, especially recent ones, can lead to serious forecast errors. 

  
The advice to clean the data applies to all quantitative methods, not just extrapolation. Analysts might 

assume that someone has already ensured the accuracy of the data. For example, Nobel Prize recipient Robert Solow 
assumed that the data reported in his 1957 paper were accurate. These data, drawn from 1909 to 1949, fell along a 
straight line with the exception that the 1943-1949 data were parallel to the other data but shifted above them. Solow 
devoted about one-half page to a hypothesis about this “structural shift.” He even drew upon other literature to 
support this hypothesis. In a comment on Solow’s paper, Hogan (1958) showed that, rather than a “structural shift,” 
the results were due to mistakes in arithmetic. 

 
 Even small measurement errors can harm forecast accuracy. To illustrate the effects of measurement error, 
Alonso (1968) presented an example in which the current population was estimated to be within one percent of the 
actual value and the underlying change process was known perfectly. He then calculated a two-period forecast, and 
the forecast of change had a prediction interval of plus or minus 37 percent. (Armstrong 1985, pp. 459-461, provides 
a summary of Alonso’s example.) 
 
 One protection against input errors is to use independent sources of data on the same variable. For example, 
to estimate the crime rate in an area, you could use police reports and also a survey of residents to see how many 
were victimized. Large differences would suggest the possibility that one of the measures was inaccurate. If you 
cannot identify the source of the error, you might use an average of the two measures. 
 
 If you are working with hundreds of series or more, you need routine procedures to clean the data. One step 
is to set reasonable limits on the values. For example, sometimes values cannot be negative or go beyond an upper 
limit. Programs can check for violations of these limits. They can also calculate means and standard deviations, and 
then show outliers (say with a probability of less than one in a hundred of coming from the same process.) If 
feasible, you should examine outliers to determine whether they are due to mistakes or to identifiable causes. 
Graphical procedures may also be useful to examine potential errors in the data. In practice, mistakes in data are 
common. 
 
 It is wise to modify outliers because they can affect estimates of seasonal factors, levels, and trends. You 
can reduce outliers to equal the most extreme observation about which you feel confident (Winsorizing). Another 
procedure is to replace them with the overall mean of the series (excluding outliers) or with a median. For trended 
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data, replace outliers with local averages such as the average of the observations just prior to and just after an 
outlier. Also, you can make forecasts with the outlier included and then with it replaced by a modified value to 
assess its effects on forecasts and on prediction intervals. 
 

• Adjust intermittent time series 
 

 An intermittent series (also called interrupted series or intermittent demand or irregular demand) is a non-
negative series that contains zeros. Such series may reflect a pattern of demand where orders occur in lumps and one 
or more periods of zero demand ensue. Examples of intermittent demand occur in forecasting the demand for 
computer components, expensive capital goods, and seasonal goods such as grass seed or snow shovels.  
 
 Extrapolation methods can encounter difficulties because of the use of zero (especially for series modeled 
in multiplicative terms) and for the resulting large increases that make it difficult to estimate the trend. There are a 
number of ways to adjust the series. 
 
 One way is to aggregate the time-series interval so that it is long enough to rule out intermittent values. For 
example, if a daily series contains zeros, aggregate to weeks; if a weekly series contains zeroes, aggregate to 
months; if a monthly series contains zeroes, aggregate to quarters.  Aggregation also removes outliers in some series 
(for cases in which demand shifts from one period to the next). One disadvantage of this approach is that the length 
of the interval may be longer than desired for decision-making. It also means that updating will be less frequent.  
 
 Another solution, when working with only a few series, is to replace zero observations with a local average 
based on the values before and after the zero observation. This enables an analyst to make frequent updates in the 
system, except for the periods with zero demand. 
 
 In addition to aggregation across time, one could aggregate across space. For example, instead of looking at 
county data, look at state data; instead of state data, use national data. However, this may create problems if the 
decisions are made at the county level.  Another approach is to aggregate across similar items. Rather than 
forecasting for a particular size of a toothpaste brand, data could be aggregated across sizes. 
 
 Still another solution, known as Croston’s Method, is to use exponential smoothing to estimate two series: 
one for the time between non-zero values and the other for the values. Details are provided in Croston (1972) with a 
correction by Rao (1973). Willemain et al. (1994) tested Croston’s method against exponential smoothing. Their 
tests, which involved artificial and actual data, showed that Croston’s method produced substantially more accurate 
forecasts of demand per period than were obtained by simply using exponential smoothing. However, this is only a 
single study. Furthermore, no comparisons have been made on the efficacy of other approaches such as aggregating 
the data.  
  

• Adjust data for historical events 
 
When sporadic events have important effects on historical time-series, you should try to remove their 

effects. Such events could include policy changes, strikes, stockouts, price reductions, boycotts, product recalls, or 
extreme weather. This advice is based primarily on received wisdom. To make subjective adjustments, analysts need 
good domain knowledge. When similar historical events have occurred often, you should try to obtain quantitative 
assessments of their impacts on the variable of interest. For example, if a brand uses periodic price reductions, you 
should estimate their effects on sales and remove them from the data. As noted by Tashman and Hoover (2001), 
some forecasting software programs have procedures for handling these adjustments. Econometric methods can also 
be useful here (Allen and Fildes 2001),  as can judgmental estimates. 

 
Consider again the rising price of gasoline in the late 1970s. It was caused by collusion among the oil 

producers. Received wisdom in economics is that collusion cannot be sustained, and the more participants there are, 
the more likely it is that cheating will occur. To make a long-range forecast of U.S. gasoline prices, it seems sensible 
to modify the observations for 1979, 1980, and 1981. Using Winsorizing, one could set the value equal to the 
highest price observed in the ten years before 1979. 
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SEASONAL ADJUSTMENTS 
 
For data reported in periods of less than a year, it is often useful to adjust the data for seasonality.  Making seasonal 
adjustments is an important way to reduce errors in time-series forecasting. For example, in forecasts over an 18-
month horizon for 68 monthly economic series from the M-Competition, Makridakis et al. (1984, Table 14) found 
that seasonal adjustments reduced the MAPE from 23.0 to 17.7 percent. However, Nelson (1972) showed that 
seasonal adjustments sometimes harm accuracy. 
 
 Seasonal factors can be estimated by regression analysis where months are represented by dummy 
variables, or by the relationship between each month and a corresponding moving average (commonly referred to as 
the ratio-to-moving-average method). Little evidence exists to show that these approaches differ substantially in 
accuracy, so you might choose between them based on convenience and costs. The ratio-to-moving average is 
commonly used, although Ittig (1997) claims that, when a trend is present, the seasonal factors contain a systematic 
error, especially when the trend is multiplicative. Ittig’s evidence for this, however, is not strong. 
 
 Typically, analysts test seasonal factors and use them only if they are statistically significant. This is a 
situation where tests of statistical significance seem to be useful.Testing them requires at least three, but preferably 
five or more years of data. Many software programs require at least three years (Tashman and Hoover 2001).  
 
 The Census X-12 program (or its predecessor X-11) can be used to estimate seasonal factors. It has 
provisions for seasonality, trend, adjustments of outliers, trading day adjustments, and differential weighting of 
observations (Findley, Monsell & Bell 1998; Scott 1997). This program grew from a stream of research initiated by 
Shiskin, who produced a useful program in the early 1960s (Shiskin 1965). Teams of statisticians have been making 
improvements since the 1960s. These improvements have helped in identifying historical patterns of seasonality, but 
they are disappointing for forecasters because they have made the program more difficult to understand, and 
researchers have done little work to show how the changes affect forecasting. (The program can be downloaded at 
no charge from the Forecasting Principles site.) 
  

• Use seasonal adjustments if domain knowledge suggests the existence of seasonal fluctuations 
and if there are sufficient data. 

 
 I speculate that seasonal adjustments should be made only when domain experts expect seasonal patterns. 
Analysts can classify series into three groups: those in which there is no reason to expect seasonality, those in which 
seasonality might occur, and those expected to have strong seasonal patterns. For some data, such as monthly series 
for consumer products, almost all series have seasonal patterns.  For example, beverage sales can be expected to 
exhibit strong seasonal patterns because of weather and holidays. For other series, such as data on the stock market, 
it is difficult to imagine why there would be seasonal patterns; attempts to apply seasonal adjustments for such series 
will produce false seasonal factors that harm accuracy. 
 
 When data are lacking, the forecaster might still impose seasonal factors based on domain knowledge. For 
example, sales of a revolutionary new product for winter sports, garden supplies, or new school supplies will have 
pronounced seasonality. You could use data from similar products to estimate seasonal factors. 
 

• Use multiplicative seasonal factors if the seasonal pattern is stable, measurement errors are 
small, the data are ratio-scaled and not near zero, and there are ample data. 

 
 Seasonal factors can be stated in multiplicative form (e.g., demand in January is 85% of that in the typical 
month) or additive (e.g., demand in January is 20,000 units below the average). You should use domain knowledge 
to decide which is most appropriate. Multiplicative factors are most appropriate when measurement errors are small, 
data are ample, and the seasonal pattern is stable. Also, multiplicative factors are relevant only for ratio-scaled data 
and when the observations are not near zero. These conditions commonly occur. If any of these conditions is not 
met, consider additive factors. 
 
 Multiplicative factors are also useful if you calculate seasonal factors for analogous series (all luxury car 
sales, for example), and combine these estimates with those from the series itself (e.g., BMW sales). This cannot be 
done using additive factors. 
 

• Damp seasonal factors when there is uncertainty 
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 Applying seasonal factors can increase forecast errors if there is a great deal of uncertainty in their 
estimates. Uncertainty in seasonal factors arises in a number of ways. First, the analyst may be uncertain whether the 
data are subject to seasonal patterns. Second, it may be difficult to adjust for historical events, especially if the 
pattern varies from year to year. Third, there may be few years of data with which to estimate seasonality; at the 
extreme, with only one year of data, it would be difficult to distinguish between random variations, trend, and real 
seasonal effects, and you would not be able to test for statistical significance of the seasonal factors. Fourth, there 
may be measurement errors in the data. Finally, the longer the forecasting horizon, the more likely the seasonal 
patterns are to change. 
 
 To address uncertainty, I suggest damping the seasonal factors. For multiplicative factors, this would 
involve drawing them in toward 1.0. For example, a damping factor of 0.5 would reduce a seasonal factor of 1.4 to 
1.2 (reducing the seasonal impact from 40% to 20%). For additive factors, it would mean drawing them closer to 
zero. The optimal degree of damping may also depend on the extent to which the trend is damped. 
 
 Damping can be done in many ways. If it is difficult to adjust for the timing and magnitude of historical 
events, a local mean or spill-over strategy can be used. Here, a suspected seasonal factor could be modified by using 
an average of the seasonal factors for the month along with those immediately before and after it. To adjust for 
measurement error, you can damp the seasonal factors based on the amount of data available. Finally, seasonal 
factors can be damped based on the length of the horizon, with longer horizons calling for more damping because 
seasonal patterns might change. 
 
 Fred Collopy and I conducted a small-scale unpublished study on the accuracy of damped seasonal factors. 
We selected a stratified random sample of 62 series from the monthly data used in the M-competition. Using our 
own (limited) domain knowledge, we made rule-based forecasts for one- to 18-month-ahead forecasts with the 
seasonal adjustment factors from the M-Competition. We repeated the process using damped seasonal factors, again 
based on limited domain knowledge. For one-month-ahead forecasts, damping reduced the MdAPE by 7.2%. For 
18-month-ahead forecasts, damping reduced the error by 5.0%. Damping with a shrinkage modifier (for 
measurement error) improved accuracy for 66% of the series. Use of a horizon modifier improved accuracy for 56% 
of the series. These findings, discussed on the Forecasting Principles website, provide mild support for the principle 
that damped seasonals can improve accuracy.  
 
  
MAKING EXTRAPOLATIONS 
 
Once you have prepared the data, you must decide how to extrapolate them. The standard approach has been to 
decompose the data into level, trend, and cycles. 
 
 
Estimating the Level 
 
 One source of error in forecasting is inaccurate “nowcasting,” that is, errors in estimating values at the 
origin of the forecast. This is a problem particularly when using regression based only on the time series. Because 
the prior data are all weighted equally, the estimate of the current level may be outdated. This problem is more 
serious for data measured in longer intervals, such as annual rather than monthly data. You can reduce the effects of 
this problem if you can estimate the trend reliably (or if no trend exists), or by correcting for lag (as suggested by 
Brown 1959).  
 
 Another source of errors is large changes that have not yet affected the historical time-series. For example, 
recent reports carried by the mass media concerning the hazards of a consumer product could harm its sales, but 
their effects might not yet have been fully reflected in the reported sales data. 
 
 Statistical procedures may help in setting the starting value (at the beginning of the calibration data). 
Backwards exponential smoothing was used in the M-Competition (Makridakis et al. 1982). Gardner (1985, p. 1242) 
achieved accurate forecasts by using regressions to backcast the starting levels. According to the study by Williams 
and Miller (1999), using either of these rules is more accurate than using the series mean as the starting level and 
setting the trend to zero. 
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 Forecasts of levels are also important when using cross-sectional data. When one lacks knowledge about a 
particular situation, base rates can be useful. Sometimes base rates have an obvious link to predictions. For example, 
in trying to predict which cars are likely to be transporting drugs, New Jersey state troopers are unlikely to stop 
inexpensive cars driven by elderly white women. Other times, domain knowledge might lead to less obvious base 
rates.  Consider the following problem. You have been asked by the U.S. Internal Revenue Service to predict who is 
cheating on their tax returns. Normally, the IRS predicts cheating based on departures from base rates, such as high 
charitable contributions. However, Mark Nigrini, an accounting professor, suggested they use a base rate for the 
digits used in numbers. This uses Benford’s Law, named for the research by Frank Benford in 1938, although 
similar findings have been traced back to an astronomer, Simon Newcomb, in 1881 (Hill 1998). Benford’s law 
shows the pattern of numbers that often appear in socio-economic data, especially when the series involve 
summaries of different series. In Benford’s Law on significant digits, 1’s appears as the first digit 30% of the time 
and the numbers then decrease steadily until 9, which occurs less than 5% of the time. Cheaters, being unaware of 
the base rate, are unable to create series that follow Benford’s law. Benford’s Law could also be used to identify 
those who create false data in corporations’ financial statements (Nigrini 1999). 
 

• Combine estimates of the level 
 
Given uncertainty, it makes sense to combine estimates for the level (in year to). This could include 

estimates from exponential smoothing, regression, and the random walk. It could also include a subjective estimate 
when experts have observed large recent changes, especially when they understand their causes and can thus judge 
whether the changes are temporary or permanent. This principle is based mostly on speculation, although Armstrong 
(1970), Sanders and Ritzman (2001), Tessier and Armstrong (1977), and Williams and Miller (1999) provide some 
empirical support. Such combinations can be automated. 

 
Combined estimates are helpful when the measures of level are unreliable. Thus, if one were trying to 

predict the outcome of a political election, it would be sensible to combine the results from surveys by different 
polling organizations or to combine the results from a series of polls over time by a given organization (assuming no 
major changes had occurred during that time). 

 
 
Trend Extrapolation 

A trend is a trend is a trend,  
But the question is, will it bend?  
Will it alter its course  
Through some unforeseen force 
And come to a premature end?   

     Cairncross (1969) 
 
Will the trend bend? Some statisticians believe that the data can reveal this. In my judgment, this question can best 
be answered by domain knowledge. Experts should have a good knowledge of the series and what causes it to vary. 
 

• Use a simple representation of trend unless there is strong contradictory evidence. 
There are many ways to represent behavior. Researchers seem to be enamored of complex formulations. 

However, as Meade and Islam (2001) showed, various sophisticated and well-thought-out formulations often do not 
improve accuracy. That said, some degree of realism should aid accuracy. For example, economic behavior is 
typically best represented by multiplicative (exponential) rather than additive (linear) relationships. Sutton (1997) 
describes why multiplicative relationships represent human behavior well. To use multiplicative trends effectively, 
you must have ratio-scaled data and small measurement errors.  

The principle of simplicity must be weighed against the need for realism. Complexity should only be used 
if it is well supported. Simplicity is especially important when few historical data exist or when the historical data 
are unreliable or unstable. 

 
 To assess the value of simplicity, I reviewed empirical evidence on whether you need a method that is more 
complex than exponential smoothing. Of the 32 studies found, 18 showed no gain in accuracy for complexity, nine 
showed that simpler methods were more accurate, and only five showed that more complex methods improved 
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accuracy. This summary is based on studies listed in Armstrong (1985, pp. 494-495), excluding those that had been 
challenged and those that compared exponential smoothing to moving averages. 
 
 In one of the studies, Schnaars (1984) compared sales forecasts generated by six extrapolation methods for 
98 annual time-series. The methods ranged from simple (next year will be the same as this year) to complex 
(curvilinear regression against time). The forecast horizon ranged from 1 to 5 years, and Schnaars used successive 
updating to examine almost 1,500 forecasts. The simplest models performed well, especially when there were few 
historical data and when the historical series seemed unstable. (Stability was assessed just as effectively by subjects 
who looked at the historical scatter plots as by using auto-correlation or runs statistics). Models that added 
complexity by squaring the time variable were especially inaccurate. 
 
 The need for simplicity has been observed in demography over the past half century. In a review of the 
research, Dorn (1950) found that complex extrapolations were less accurate than simple extrapolations. According 
to Hajnal’s literature review (1955), crude extrapolations are as accurate as complex ones. Smith’s (1997) review led 
him to conclude that complexity did not produce more accurate population forecasts. Finally, and of key importance, 
the M-competition studies have shown that simplicity is a virtue in extrapolation (Makridakis et al. 1982; 
Makridakis et al. 1993; Makridakis and Hibon 2000). 
 
 Complex functional forms might be appropriate when you have excellent knowledge about the nature of 
relationships, the properties of the series are stable through time, measurement errors are small, and random sources 
of variation are unimportant. This combination of conditions probably occurs infrequently, although it could occur 
for cross-sectional predictions or for long-term forecasting of annual time series.  
 

• Weight the most recent data more heavily than earlier data when measurement errors are small, 
forecast horizons are short, and the series is stable. 

 
It seems sensible to weight the most recent data most heavily, especially if measurement errors are unbiased and 

small. This is important for short-range forecasts of long-interval data (e.g., one-ahead annual forecasts), because 
much of the error can arise from poor estimates of levels. Exponential smoothing provides an effective way to do 
this. Using Brown’s (1962) formulation, for example, the level is estimated from:  

 
    
 
where Yt represents the latest value of the series at time t, and tY represents the smoothed average of that series. The 
 determines how much weight to place on the most recent data: the higher the factor, the heavier the weight. For 
example, an  of 0.2 would mean that 20 percent of the new average comes from the latest observation, and the 
other 80 percent comes from the previous average. The weights on each period drop off geometrically. Thus, data 
from the latest period is weighted by α, data from the period before that by α(1 – α), and data from the observation 
two periods ago by α(1 – α)2; data of d periods ago would be weighted by α(1 – α)d . You can use a similar 
procedure for a smoothing factor, beta (), for the trend calculations, or for a smoothing factor for seasonal 
factors. If there is a trend in the data, make an adjustment to update the level such as: 
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*
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where tG  is the smoothed value of the trend. For a comprehensive treatment of exponential smoothing, see Gardner 
(1985).  
 

However, if the series is subject to substantial random measurement errors or to instabilities, a heavy 
weight on recent data would transmit random shocks to the forecast. These shocks are particularly detrimental to 
long-term forecasts, that is, after the effects of the short-term instabilities have worn off. In 1981, this would have 
been a danger for forecasts of gasoline prices. 

 
 There is evidence to support the principle to weight recent data more heavily. In one of the earliest studies, 
Kirby (1966) examined monthly sales forecasts for 23 sewing machine products in five countries using seven and a 
half years of data where the forecast horizon ranged from one to six months. He compared exponential smoothing 

1ttt Yα)(1αYY −−+=



PRINCIPLES OF FORECASTING 

 

11 
with moving averages (the latter did not weight recent data more heavily). For a six-month horizon, the three 
methods were comparable in accuracy. As he shortened the forecast horizon, however, exponential smoothing 
became slightly more accurate. Kirby also developed forecasts from artificial data by imposing various types of 
measurement error upon the original data. He found, for example, that with more random error, moving averages 
were more accurate than exponential smoothing. This is consistent with the fact that recent errors can transmit 
shocks to an exponentially smoothed forecast. 
 
 The M-competition showed exponential smoothing to be more accurate than equally weighted moving 
averages (Makridakis et al. 1982).  For example, in 68 monthly series (their Table 28), the Median APE, averaged 
over forecast horizons of one to 18 months, was 13.4% for the (untrended) moving average versus 9.0% for the 
(untrended) exponential smoothing. Exponential smoothing was more accurate over all reported horizons, but its 
improvements over the moving average were larger for short-term horizons. Similarly, gains were found for 20 
annual series (their Table 26); over the forecast horizons from one to six years, the moving average had an error of 
13.9% versus 11.5% for exponential smoothing. Gains were observed only for the first three years; the accuracy of 
the two methods was equal for the last three years. 
 

Should the search for the optimal parameters be tailored to the forecast horizon? This makes sense in that a 
heavier weight on recent observations is more appropriate for short-term forecasts. On the other hand, such a search 
reduces the sample size and leads to problems with reliability. Dalrymple and King (1981), in a study of 25 monthly 
time-series for products and services, found, as might be expected, that the optimum α was larger for short than for 
long horizons. However, their attempts to optimize smoothing coefficients for each horizon improved accuracy in 
only one of the eight forecast horizons they examined, and harmed accuracy in six.  
 

• Be conservative when the situation is uncertain 
 

 If you ask people to extend a time-series that fluctuates wildly, they will often produce a freehand 
extrapolation that fluctuates wildly because they want the forecast to look like the historical data. This typically 
leads to poor forecasts, especially when the forecaster does not understand the reasons for the fluctuations. To the 
extent that you lack knowledge about the reasons for fluctuations, you should make conservative forecasts.  
 
 What does it mean to be conservative in forecasting? It varies with the situation, so once again, it is 
important to draw upon domain knowledge. For example, to be conservative about trends for growth series, you 
might use additive trends rather than multiplicative (exponential) trends. However, if a series with a natural zero is 
expected to decay sharply, a multiplicative trend would be more conservative because it damps the trend and 
because it would not forecast negative values. 
 
 Using multiplicative trends can be risky for long-range forecasts, so it may be wise to damp the trend. The 
longer the time horizon, the greater the need for damping. Mark Twain explained what might happen otherwise in 
Life on the Mississippi:  
 

In the space of one hundred and seventy-six years the Lower Mississippi has shortened 
itself two hundred and forty-two miles. That is an average of a trifle over one mile and a 
third per year. Therefore,. . .  any person can see that seven hundred and forty-two years 
from now the Lower Mississippi will be only a mile and three-quarters long, and Cairo and 
New Orleans will have joined their streets together, and be plodding comfortably along 
under a single mayor. . .  There is something fascinating about science. One gets such 
wholesale returns of conjecture out of such a trifling investment of fact.  
 

 I inferred the strategy of damping trends from prior research (Armstrong 1978, p. 153). Gardner and 
McKenzie (1985) published the first direct empirical test of damping. Their scheme estimated a parameter that 
automatically increased damping for erratic trends. They analyzed the 1,001 time-series data from the M-
competition (Makridakis et al. 1982). Damping, required for 20% of the annual series and for 70% of the quarterly 
and monthly series, led to substantial improvements in accuracy. It was especially valuable for long forecast 
horizons, and it reduced the likelihood of large errors. 
 
 The principle of conservatism also argues against estimating trends in a trend (acceleration or deceleration). 
Doing this might be reasonable for short-term forecasts when you have good causal explanations (e.g., early stages 
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of a new product) and when there are good data. In practice, it seems unlikely that these conditions would arise, and 
if they did, it is unlikely the analyst would recognize them. I reviewed eight studies on acceleration (Armstrong 
1985, pp. 169-170). An acceleration term improved accuracy in only one of these studies and it was worse in five. 
However, the researchers did not perform these studies in situations in which one might expect acceleration to be 
useful. In any event, no evidence exists to support its use, and it is a risky procedure.  
 
 To be conservative with cross-sectional data, stay close to the base-rate (typical behavior). For example, to 
forecast the probability of success of a recently introduced fast-moving consumer good, find the average success for 
a group of similar products that were introduced previously. 
 

• Use domain knowledge to prespecify adjustments to be made to extrapolations 
 

 Managers often have information about important events that will affect a series. Sometimes they even 
have control over key events. In such cases, you can use structured judgment to estimate the effects of these events. 
For example, a routine questionnaire could be used to ask managers to estimate the impact of a proposed price 
reduction for a product. The problem could be worded "By what percentage will sales of product X change during 
the time that the price is reduced, given the following details about the proposed sale?” Average estimates could 
then be used to make adjustments to the extrapolations. Such a procedure can be inexpensive, requiring less than a 
minute per series per manager. 
 

• Use statistical procedures as an aid in selecting an extrapolation method. 
 

 When many forecasts are needed, you can use either structured judgment or statistical procedures 
to select extrapolation methods. The structured use of domain knowledge is applied in rule-based 
forecasting (Armstrong, Adya and Collopy 2001). I discuss statistical procedures here. 
 
 Can statistical procedures aid in the selection of the most appropriate extrapolation procedures? The Box–
Jenkins procedures attempt to do this, and they have had an immense impact on forecasting. In reviewing research 
on Box-Jenkins procedures, I found that they were more accurate than other extrapolation methods in only four of 
the fourteen comparative studies (Armstrong 1985, pp. 174-178). The poor accuracy of Box-Jenkins procedures has 
been demonstrated in various comparative studies (Makridakis and Hibon 1979, and Makridakis et al. 1982, 1984, 
1993). See also the commentary and discussion by the M-competition authors published in Armstrong and Lusk 
1983. For example, in the real-time M2-competition, which examined 29 monthly series, Box-Jenkins proved to be 
one of the least-accurate methods and its overall median error was 17% greater than that for a naive forecast 
(Makridakis et al. 1993, p.19). 
 
 Despite the failure of Box-Jenkins, some statistical rules seem to improve accuracy. Tashman and Kruk 
(1996) analyzed 123 time series and found that statistical rules improved forecast accuracy by indicating which 
extrapolation methods would best suit the conditions. Also, computerized searches for the best smoothing constants 
(grid search routines) can help to improve accuracy. 
 
 Statistical procedures pose some dangers. Structural changes often occur in the forecast horizon, 
and this may cause a statistical model to be ineffective. Because forecasters often assume that statistical 
procedures are sufficient, they may ignore important aspects, such as domain knowledge. Also, traditional 
statistical procedures are generally not well designed to deal with discontinuities (Collopy and Armstrong 
1992b). However, Williams and Miller (1999) deal effectively with this issue by letting forecasters include 
judgmental adjustments within an exponential smoothing model.  
 
 One of the primary advantages of using statistical rules is increased objectivity. This would have been 
important in 1981 in forecasting gasoline prices because politics affected  the forecasts. Some analysts, most notably 
Julian Simon, claimed that collusion among the major oil producers was unstable and that the long-term price of 
gasoline would eventually revert to its long-term path. How long would that take? In our work on rule-based 
forecasting, we concluded that six years worked well for annual data (Collopy and Armstrong 1992a). Thus, for 
gasoline prices, we could assume a straight line from the last observation in 1981 to the long-term trend line in 1987. 
This simple extrapolation would have worked well for forecasts from 1982 to 1997 (Exhibit 4).  
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Exhibit 4

Actual and Forecast Prices for U.S. Gasoline

1.60

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Actual
Ex ante forecast

19
45

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

(1982 US Dollars)

 
 

 Most selection procedures use testing within the calibration sample. However, I have had difficulty finding 
direct evidence for the value of this procedure. It seems sensible to base the search on holdout data to more closely 
match the forecasting situation. As described by Tashman and Hoover (2001), some dedicated forecasting software 
packages make it easy to do out-of-sample testing. 
 

• Update estimates of model parameters frequently 
 

 Smoothing factors are usually held constant for exponential smoothing. But what if statistical tracking 
signals showed that drastic changes have occurred? One of the early approaches was to use adaptive parameters 
(e.g., Brown 1962). For example, in exponential smoothing, the model would use large parameters for the level and 
trend during the period of change. I found 12 studies concerning this issue (Armstrong 1985, p.171). Four studies 
found that adaptive parameters improved accuracy, but three of them were not confirmed when replicated; five 
studies showed no difference; and three studies concluded that adaptive models were less accurate. Thus, only one 
of 12 studies showed reliably that adaptive parameters based on tracking signals improved accuracy. Many software 
programs have dropped this feature (Tashman and Hoover 2001). I suspect that adaptive parameters might be useful 
if based on domain knowledge For example, what if major changes were planned, such as an improvement in 
product design? 
 
 Tracking signals can respond to real changes, but they also respond to transient changes  or to mistakes and 
thus introduce instability. Indeed, in a study using 9,000 simulated time-series, Gardner and Dannenbring (1980) 
found that adaptive parameters generated unstable forecasts even when the underlying process was stable but was 
subject to random errors. This might have happened with the retail price of gasoline. A transient event, collusion, 
would have been picked up as a change. As a result, an adaptive model, by putting more weight on the recent data, 
would have been highly inaccurate. 
 

Given the low cost of computing, it is now feasible to update models at each new forecast origin. Thus, 
adaptive models have become less relevant. The period-to-period changes in parameters are likely to be stable 
because frequent updating uses all of the prior data to estimate parameters.  

 
Clearly it is important to update the level whenever new data are obtained. In effect, this shortens the 

forecast horizon and it is well-established that forecast errors are smaller for shorter forecast horizons. In addition, 
evidence suggests that frequent updating of the parameters contributes to accuracy. Fildes et al. (1998), in a study of 
261 telecommunication series, examined forecasts for horizons of one, six, 12, and 18 months, with 1,044 forecasts 
for each horizon. When they updated the parameters at each forecast horizon (e.g., to provide six-month-ahead 
forecasts), the forecasts were substantially more accurate than those without updated parameters. Improvements 
were consistent over all forecast horizons, and they tended to be larger for longer horizons. For example, for 
damped-trend exponential smoothing, the MAPE was reduced from 1.54% to 1.37% for the one-month-ahead 
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forecasts, a reduction of 11%. For the 18-month-ahead forecasts, its MAPE was reduced from 25.3% to 19.5%, an 
error reduction of 23%.  

 
 
Estimating cycles 
 
 Cycles can be either long-term or short-term. By long-term cycles, I mean those based on observations 
from annual data over multiple years. By short-term cycles, I mean those for very short periods, such as hourly data 
on electricity consumption. 
 

• Use cycles when the evidence on future timing and amplitude is highly accurate. 
 

 Social scientists are always hopeful that they will be able to identify long-term cycles that can be used to 
improve forecasting. The belief is that if only we are clever enough and our techniques are good enough, we will be 
able to identify the cycles.  Dewey and Dakin (1947) claimed that the world is so complex, relative to man’s ability 
for dealing with complexity, that a detailed study of causality is a hopeless task. The only way to forecast, they said, 
was to forget about causality and instead to find past patterns or cycles. These cycles should then be projected 
without asking why they exist. Dewey and Dakin believed that economic forecasting should be done only through 
mechanical extrapolation of the observed cycles. They were unable to validate their claim. Burns and Mitchell 
(1946) followed the same philosophy in applying cycles to economics. Their work was extended in later years, but 
with little success.  
 
 Small errors in estimating the length of a cycle can lead to large errors in long-range forecasting if the 
forecasted cycle gets out of phase with the actual cycle. The forecasts might also err on the amplitude of the cycle. 
As a result, using cycles can be risky. 
 
 Here is my speculation: If you are very sure about the length of a cycle and fairly sure of the amplitude, use 
the information. For example, the attendance at the Olympic games follows a four-year cycle with specific dates that 
are scheduled well in advance. Another example is electric consumption cycles within the day. Otherwise, do not 
use cycles. 
 
 
ASSESSING UNCERTAINTY 
 
 Traditional approaches to constructing confidence intervals, which are based on the fit of a model to the 
data, are well reasoned and statistically complex but often of little value to forecasters. Chatfield (2001) reviewed 
the literature on this topic and concluded that traditional prediction intervals (PIs) are often poorly calibrated for 
forecasting. In particular, they tend to be too narrow for ex ante time series forecasts (i.e., too many actual 
observations fall outside the specified intervals). As Makridakis et al. (1987) show, this problem occurs for a wide 
range of economic and demographic data. It is more serious for annual than for quarterly data, and more so for 
quarterly than monthly data. 
 

• Use empirical estimates drawn from out-of-sample tests. 
  

 The distributions of ex ante forecast errors differ substantially from the distributions of errors when fitting 
the calibration data (Makridakis and Winkler 1989). (By ex ante forecast errors, we mean errors based on forecasts 
that go beyond the periods covered by the calibration data and use no information from the forecast periods.) The ex 
ante distribution provides a better guide to uncertainty than does the distribution of errors based on the fit to 
historical data. 
 
 Williams and Goodman (1971) examined seasonally adjusted monthly data on sales of phones for homes 
and businesses in three cities in Michigan. They analyzed the first 24 months of data by regression on first 
differences of the data, then made forecasts for an 18-month horizon. They then updated the model and calculated 
another forecast; they repeated this procedure for 144 months of data. When they used the standard error for the 
calibration data to establish PIs (using 49 comparisons per series), 81% of the actual values were contained within 
the 95% PIs. But when they used empirically estimated PIs, 95% of the actual values were within the 95% PIs. 
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 Smith and Sincich (1988) examined ten-year-ahead forecasts of U.S. population over seven target years 
from 1920 to 1980. They calculated empirical PIs to represent the 90% limits. Ninety percent of the actual values 
fell within these PIs. 
 
 While it is best to calculate empirical prediction intervals, in some cases this may not be feasible because of 
a lack of data. The fit to historical data can sometimes provide good calibration of PIs for  short-term forecasts of 
stable series with small changes. For example, Newbold and Granger (1974, p. 161) examined one-month-ahead 
Box-Jenkins forecasts for 20 economic series covering 600 forecasts and 93% of the actual values fell within the 
95% PIs. For their regression forecasts, 91% of the actual values fell within these limits. 
 

• For ratio-scaled data, estimate the prediction intervals by using log transforms of the actual and 
predicted values.  

 
 Because PIs are typically too narrow, one obvious response is to make them wider. Gardner (1988) used 
such an approach with traditional extrapolation forecasts. He calculated the standard deviation of the empirical ex 
ante errors for each forecast horizon and then multiplied the standard deviation by a safety factor. The resulting 
larger PIs improved the calibration in terms of the percentage of actual values that fell within the limits. However, 
widening the PIs will not solve the calibration problem if the errors are asymmetric. The limits will be too wide on 
one side and too narrow on the other. Asymmetric errors are common in the management and social sciences. 
 
 In the M-competition (Makridakis et al. 1987), academic researchers used additive extrapolation models. 
The original errors from these forecasts proved to be asymmetric. For the six-year-ahead extrapolation forecasts 
using Holt’s exponential smoothing, 33.1% of the actual values fell above the upper 95% limits, while 8.8% fell 
below the lower 95% limits (see Exhibits 3 and 4 in Makridakis et al. 1987). The results were similar for other 
extrapolation methods they tested. The corresponding figures for Brown’s exponential smoothing, for example, were 
28.2% on the high side and 10.5% on the low side. Although still present, asymmetry occurred to a lesser extent for 
quarterly data, and still less for monthly data. 
 
 You might select an additive extrapolation procedure for a variety of reasons. If an additive model has been 
used for economic data, log transformations should be considered for the errors, especially if large errors are likely. 
Exhibit 5 illustrates the application of log-symmetric intervals. These predictions of annual Ford automobile sales 
using Holt’s extrapolation were obtained from the M-competition study (Makridakis et al. 1982, series number 6). 
We (Armstrong and Collopy 2000) used successive updating over a validation period up to 1967 to calculate the 
standard 95 percent prediction intervals (dotted lines) from the average ex ante forecast errors for each time horizon. 
This provided 28 one-year ahead forecasts, 27 two-ahead, and so forth up to 23 six-ahead forecasts. The prediction 
intervals calculated from percentage errors are unreasonable for the longer forecast horizons because they include 
negative values (Exhibit 5). In contrast, the prediction intervals calculated by assuming symmetry in the logs were 
more reasonable (they have been transformed back from logs). The lower level has no negative values and both the 
lower and upper limits are higher than those calculated using percentage errors. 
 

Exhibit 5 
Illustration of Shift in Prediction Intervals When Logs Are Used 

(M-competition Series 6: “Ford Automobile Sales”) 
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• Use safety factors for contrary series 

 When a domain expert’s expectation about a future trend conflicts with the trend from a traditional 
statistical extrapolation, we refer to the series as contrary (Armstrong, Adya and Collopy 2001). For example, if the 
causal force for a series is growth (domain experts expect the series to go up) and the forecasted trend (based, say, 
on Holt’s estimate) is downward, the series is contrary. For such situations, the actual series is expected to diverge 
from the extrapolation in the direction of the causal forces. 
 
 To determine whether a series is contrary at a given time, we (Armstrong and Collopy 2000) compared the 
direction implied by the causal forces with the trend component forecasted by Holt’s exponential smoothing. We 
assumed that the causal forces were constant over the forecast horizon for each series. We drew data from 18 annual 
series from the M-competition data, as well as 26 annual economic/demographic series called the Weatherhead data. 
We made forecasts over six-year horizons and used successive updating. Holt’s trend direction sometimes changed 
as we updated the forecast. Of the 4,062 forecasts, about one-sixth were contrary. For the forecasts involving 
contrary series, 81% of the errors were consistent with the direction of the causal forces. For example, if the 
expectation was growth and Holt’s predicted a downward trend, the actual was much more likely to exceed the 
forecast. These results were statistically significant when compared against the null hypothesis that the direction of 
the errors is random. 
 
 
CONDITIONS FAVORING EXTRAPOLATION 
 

• Use extrapolations when a large number of forecasts are needed. 
 

 Suppose that a firm has 50,000 stock keeping units and updates its production and inventory forecasts 
weekly. Furthermore, assume that it produces forecasts for each of the next ten weeks. This means the firm will 
generate 26 million forecasts each year. Clearly, cost is a concern. Thus, the possibilities for using judgement are 
limited. Automatic (pure) extrapolation is a low-cost procedure that is appropriate for such situations.  
 

• Use extrapolations when the forecaster is ignorant about the situation. 
 
When the forecaster has little knowledge about the situation, it is often reasonable to assume that the future 

will look like the past. Anyone can be a decent weather forecaster by using today’s weather to forecast tomorrow’s. 
On the other hand, those who know something about the situation, such as professional weather forecasters, are able 
to use more information and thus produce more accurate forecasts than can be achieved by extrapolation. 
 

• Use extrapolations when the situation is stable. 
 

 Extrapolation is based on an assumption that things will continue to move as they have in the past. This 
assumption is more appropriate for short-term than for long-term forecasting. In the absence of stability, you could 
identify reasons for instabilities and then make adjustments. An example of such an instability would be the 
introduction of a major marketing change, such as a heavily advertised price cut. You could specify the adjustments 
to be made prior to making the extrapolation, as Williams and Miller (1999) discuss. 
 

• Use extrapolations when other methods would be subject to forecaster bias. 
 
Forecasts made by experts can incorporate their biases, which may arise from such things as optimism or 

incentives. In such cases, extrapolation offers more objective forecasts, assuming that those forecasts are not subject 
to judgmental revisions. In the forecasts of gasoline prices (from Exhibit 4), the extrapolation was more accurate 
than the judgmental forecasts made in 1982, perhaps because it was less subject to bias. 

 
• Use extrapolations as a benchmark in assessing the effects of policy changes. 
 
Extrapolations show what is expected if things continue. To assess the potential impact of a new policy, 

such as a new advertising campaign, you could describe the changes you anticipate. However, sales might change 
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even without this advertising. To deal with this, you could compare the outcomes you expect with an 
extrapolation of past data. 
 
 
Gasoline Prices Revisited 
 

Pure extrapolation would have led to forecasts of rapidly rising prices for gasoline. The conditions stated 
above suggest that pure extrapolation was not ideal for this problem. It failed the first three conditions. However, it 
did meet the fourth condition (less subject to bias). Through the structured use of domain knowledge, we obtained a 
reasonable extrapolation of gasoline prices. Is this hindsight bias? Not really. The extrapolation methods follow the 
principles and use causal forces. They follow the general guideline Julian Simon used in making his 1981 forecasts 
(Simon 1981, 1985): “I am quite sure that the [real] prices of all natural resources will go down indefinitely.”   
 
 
IMPLICATIONS FOR PRACTITIONERS 
 
Extrapolation is the method of choice for production and inventory forecasts, some annual planning and budgeting 
exercises, and population forecasts. Researchers and practitioners have developed many sensible and inexpensive 
procedures for extrapolating reliable forecasts. By following the principles, you can expect to obtain useful forecasts 
in many situations. 
 
 Forecasters have little need for complex extrapolation procedures. However, some complexity may be 
required to tailor the method to the many types of situations that might be encountered 
 
 The assumption underlying extrapolation is that things will continue as they have. When this assumption 
has no basis, large errors are likely. The key is to identify the exceptions. One exception is situations that include 
discontinuities. Interventions by experts or a method dependent on conditions, such as rule-based forecasting, are 
likely to be useful in such cases. Another exception is situations in which trend extrapolations are opposite to those 
expected. Here you might rely on such alternatives as naive models, rule-based forecasting, expert opinions, or 
econometric methods.  
 
 Pure extrapolation is dangerous when there is much change. Managers’ knowledge should be used in such 
cases. This knowledge can affect the selection of data, the nature of the functional form, and prespecified 
adjustments. Procedures for using domain knowledge can be easily added to standard extrapolation methods. 
 
 
IMPLICATIONS FOR RESEARCHERS 
 
Of the thousands of papers published on extrapolation, only a handful have contributed to the development of 
forecasting principles. We have all heard stories of serendipity in science, but it seems to have played a small role in 
extrapolation research. Researchers should conduct directed research studies to fill the many gaps in our knowledge 
about extrapolation principles. For example, little research has been done on how to deal effectively with 
intermittent series. 
 
 The relative accuracy of various forecasting methods depends upon the situation. We need empirical 
research to clearly identify the characteristics of extrapolation procedures and to describe the conditions under which 
they should be used. For example, researchers could identify time series according to the 28 conditions described by 
Armstrong, Adya and Collopy (2001). 
 
 How can we use domain knowledge most effectively and under what conditions do we need it?  I believe 
that integrating domain knowledge with extrapolation is one of the most promising procedures in forecasting. Much 
is already being done. Armstrong and Collopy (1998) found 47 empirical studies of such methods, all but four 
published since 1985. Webby, O'Connor and Lawrence (2001) and Sanders and Ritzman (2001) also examine this 
issue. Rule-based forecasting represents an attempt to integrate such knowledge (Armstrong, Adya and Collopy 
2001). 
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SUMMARY  
 
Extrapolation consists of many simple elements. Here is a summary of the principles: 
 
 To select and prepare data: 
 

• Obtain data that represent the forecast situation;  
• Use all relevant data, especially for long-term forecasts; 
• Structure the problem to use the forecaster’s domain knowledge; 
• Clean the data to reduce measurement error;  
• Adjust intermittent series; and 
• Adjust data for historical events. 

 
To make seasonal adjustments: 
 

• Use seasonal adjustments if domain knowledge suggests the existence of seasonal fluctuations and 
if there are sufficient data; 

• Use multiplicative factors for stable situations where there are accurate ratio-scaled data; and 
• Damp seasonal factors when there is uncertainty. 

 
To make extrapolations: 
 

• Combine estimates of the level; 
• Use a simple representation of trend unless there is strong evidence to the contrary; 
• Weight the most recent data more heavily than earlier data when measurement errors are small, 

forecast horizons are short, and the series is stable; 
• Be conservative when the situation is uncertain; 
• Use domain knowledge to provide pre-specified adjustments to extrapolations; 
• Use statistical procedures as an aid in selecting an extrapolation method; 
• Update estimates of model parameters frequently; and 
• Use cycles only when the evidence on future timing and amplitude is highly accurate. 

  
 To assess uncertainty: 
 

• Use empirical estimates drawn from out-of-sample tests. 
• For ratio-scaled data, estimate prediction intervals by using log transforms of the actual and 

predicted values; and 
• Use safety factors for contrary series.  

  
 Use extrapolations when: 
 

• Many forecasts are needed; 
• The forecaster is ignorant about the situation; 
• The situation is stable; 
• Other methods would be subject to forecaster bias; and 
• A benchmark forecast is needed to assess the effects of policy changes. 

 
 Much remains to be done. In particular, progress in extrapolation will depend on success in integrating 
judgment, time-series extrapolation can gain from the use of analogous time series, and software programs can play 
an important role in helping to incorporate cumulative knowledge about extrapolation methods. 
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