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ORDERED CYCLE LENGTHS 
IN A RANDOM PERMUTATION 

BY 

L. A. SHEPP AND S. P. LLOYD 

1. Introduction. Problems involving a random permutation are often concerned 
with the cycle structure of the permutation. Let tY.n be the n! permutation operators 
on n numbered places, and let a(X) = (aI(Q), x2(Q), ***, ;r)) designate the cycle 
class of X E .Y. 9 that is, permutation nr has xcl(Q) cycles of length 1, a2(7r) cycles of 
length 2, *-- . Suppose the elements of 9Yn are assigned probability 1/n! each. In a 
variety of problems one seeks limiting (large n) properties of random variables 
which depend on 7r only by way of oa(X). In the matching problem, for instance, the 
result limn prob {la = 0} = e-' is an old one [1, p. 50]. Goncharov in [2], [3] 
gives limiting forms for the distribution of each cj, of ?j, and of the longest cycle. 
In [4], [5] Golomb also investigates the longest cycle. With 4n the expected length 
of the longest cycle, Golomb shows that la/n is monotone decreasing, and 
gives the numerical value 0.62432965 ... for the limit. Answering in part 
a question raised by Golomb, we give a closed form for this limit (Equa! 
tion (14)); in fact, we give in ?4 the corresponding result for the mth moment 
of the length of the rth longest cycle for m = 1, 2, *-- and r = 1, 2, *-, and we give 
the limiting distribution for the length of the rth longest cycle. In ?5 we give 
asymptotics for the distribution and all moments of the length of the rth shortest 
cycle, r = 1,2,-* . The results and proofs are more complicated for the moments 
of the rth shortest cycle than for the rth longest. Our methods are straightforward: 
we set up generating functions, get leading terms in closed form, and use Tauberian 
methods to recover the asymptotic dependence on n. The Tauberian side conditions 
needed are based on the combinatorial arguments of ?6. 

2. A model. For given n the distribution of a is obtained by dividing the 
number of permutations in class a by n!: 

P{al = al,M2 = a2, .. an = an} 

(1) ~~~~~~~~n (11y,a n 

=15 

= 0 otherwise, 

the a's being any nonnegative integers [1, p. 67]. It will prove natural to include 
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the case n = 0; Yo consists of 0! elements, namely, the identity permutation on 
the empty set (all ox's are 0). 

The a's above would be independent if it were not for the condition on Zja1. 

Consider then a sequence a = (al 0Xv2, * .) of mutually independent nonnegative 
integer valued random variables, where for j = 1,2, the random variable oc 
has the Poisson distribution of mean zi/j, viz.: 

(2) 
,' 

J 
(zJII)aa1 

1 
(PJj = a}=exp[-(Z/j)] a! a= O, 1,*. 

Here, the parameter z which has been introduced is such that 0 < z < 1 and is the 
same for each j = 1, 2,- .. From now on, probabilities and expectation based on 
the family (2) will carry subscript z, while those based on (1) will carry sub- 
script n. 

We have PjQ1j 0} = 1-exp -z i/j] < zi/j, so that YT1P {aj 0 0} is 

finite. By the Borel-Cantelli lemma, Pj{oj # 0 for infinitely many j} = 0. Thus 
the random variable v(oa)= J (jcj is finite with probability 1, and the joint 
distribution of the cx's may be written meaningfully as 

} (1 00~ (J/j)a 

={l a,, 02 = a2, } = (1 Z)ZV(a) aj a1! 

for all sequences a = (a1, a2, ...) of nonnegative integers eventually 0. It is easy to see 
that the conditional distribution of the a's given v does not depend on z; it is just 

Pja2l = a,, OC2 = a2, ... I v(2) = n} 
nfl 

)a 00 

H l) if ]jaj= n, 
j=1 aj! = 

= 0 otherwise, 

so that we have recovered (1). On the other hand, the distribution of v is 
Pj{v(oc) = n} = (1 _ z)z n, n = 0, 1, * * *; the degree of a random permutation under 
PZ is a geometrically distributed random variable. Its expected value is 
E_{v} = z/(l - z), so that z -+ 1 will correspond to n -+ oo. 

Suppose I = I(oc) is some given functional of the cycle class a = (a', C2, ) of 
a random permutation, defined for all degrees; we put OCn + 1 () = C0 +2 (m) .. 0 

if t E $",. By what has been said above, 

Ez{(DJ Ez{Ez{(D I v}} 

00 

(3) = z Pz{v = n} Ez{D I v = nl}, 
n = O 

00 

= E (1 -Z)ZnEn{4D, 
n = 0 
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where E(QD) is the expected value of (D for the distribution (1). Thus EzQD)/(1 - z) 
is the generating function for the sequence E{(D}, n = 0, 1, 

To illustrate, we derive the limiting distributions of each oc and Yc; obtained 
by Goncharov. Under P,, c; is Poisson with mean Z so the characteristic function 
of cj has the familiar form 

E.{exp[itocj]} = exp[(z /j)(e t-1)], -oo < t < 00. 

Using our basic relation (3), it is straightforward that 

E,{exp[itcej]} = Il 1 (e J ) 

limE,{exp[itcej]} = exp[(I/j)(eit - 1)], - 00 < t < 00. 
n 00oo 

This last is the characteristic function of the Poisson distribution of mean l/j. 
Since Pn{acj is an integer} = 1, the theorem of Paul Levy gives 

lim Pn{tj=a} = exp[-(I/j)] (Ii a)=a01 
n -aoo 

for the limiting distribution of cj. Consider next the total number of cycles 
v() = c,1oc;. Under Pz, the ac's are Poisson and independent, so a is Poisson 
with mean Y (zi/j) = log(1/(I - z)). Hence 

( exp[it] - 1I) 

Ez{eita} = 1- 1, -o < t < 00, 

and the coefficient of z nin Ez{eita}I/(1 - z) is the binomial coefficient 

E I=F(n + eit) 
En{eit'1 =F(eit)n! ) - < t < oo, n = O, 1,***. 

Using a Binet form of the Stirling approximation [6, p. 249] we obtain easily 

(4) En{e1ta} = I(t [ n-1] <00 n = 2, 3, 

with I On(t) I ? M < oo uniformly in the range indicated. The mean and variance 
of a under Pn are 

n1 
En{af} 

= E --=log n + 0(1), 
P=1 P 

n= P 

En{l - En2 {a}= z 2 = log n + 0(1), 

and for the normalized variable (a - log n)/ / log n we obtain from (4) 
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limE Iexpit ( log1 n ) exp -It2 ] - o<t<oo. 

We apply the Levy theorem and have Goncharov's result 

liM Pn logn 2 \]27]d n -+ 
j ep[ 

JV0t 

In the same vein, let a' = a2 + a4 + be the total number of odd cycles. (That is, 
(- 1)" is the character of the alternating representation.) Just as above, we 
obtain [ (exp[it] - 1)/ 2 

i (a(eit+ l)+p) 

En{eit } 00- o < t < oo, 

r ( (e't + 1) )p! 

n = 2p or 2p + 1, 

p 0,1, ... 

and (' - I log n)/l (1 log n) is standard Gaussian in the limit. 

3. The model extended. The following setting for the probability measure 
PZ will render transparent the formulas for generating functions involving the 
rth longest and rth shortest cycles. Let a Poisson process take place on 
T = {-oo < t < oo} at unit rate. That is, if I c T is any interval of length I, 
the probability that p jumps of the process occur in I is e -1I| I P/p!, p = O, 1, * , 
independently of any conditions on the process on T - I. We lay off to the right 
of the origin successive intervals of length zi/j, j = 1, 2,* . Explicitly, the endpoints 
are 

t1(z) = 0, 

t2(z) = 1 

z z2 
t3(z) = + 

j -1 zk 

t(z)= zZ k 

00 (k 

t 0,(z) = a ___lg 

1 k~- 
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andthe jth interval is {t: tj(z) < t < t1+1(z)}, j=1,2, ---. Let A,(t), - x < t < oc, 
be the function whose value is j on the jth interval, j = 1,2, --, and 0 if t < 0 or 
t > t,,(z). Then for each j = 1, 2, -.. the interval {t: Az(t) = j} has length zJ/j, the 
probability that aj jumps of the Poisson process occur in this interval is 
exp [ - (z j/j)] (zhj/)aiIaj!, aj = 0, 1, -., and these various events for j = 1,2, ** 
are mutually independent; we are back to Pz. To be quite explicit, here is how we 
may choose a random permutation according to Pz. We take a sample function 
of the Poisson process; the jumps in the interval [0, to (z)) are finite in number with 
probability 1, occurring at the times z1 < T2 < i'''-T,, say (with a random, 
of course). We take the positive integers Az(J) _ Az(T2) ?< " < A (T) as the 
lengths of the a cycles of a permutation on v = is z(-T) places, and in this 
class of Yv we choose a permutation at random with uniform distribution. 

We will see now that this machinery is well adapted to investigating the rth 
longest and rth shortest cycles for any given r =12, * Let Sr = S) be the 
length of the rth shortest cycle in a permutation of cycle class ac; we define Sr(a) = 0 
if j < r. The probability density at t of the rth jump of the Poisson process 
counting to the right from t1(z) is trI etl(r - 1)!, 0 < t < o, as is well known. 
If this rth jump occurs at t, then the value of Sr is A,#), according to our model. 
It follows that the distribution of Sr under P_ is 

tj + 1() tr - I 
-td 1,2- ! Pz{Sr = J} = ( 9 ~ t j=1 ,- 

(5) 
X r-1 

t, j=0. 
too(z) (r-I)! 

We will treat this in more detail in ?5. 
Let Lr = L4(a) be the length of the rth longest cycle in a permutation of cycle 

class a; we define Lr(a) = 0 if Eaj < r. The probability density at t of the rth 
jump of the Poisson process counting to the left from to,,(z) is 

[too,(Z) _ t]r exp [[too,(z) - tl](r -1)!, -t < t < t(z). 

As with (5) then, 

(6) Pz{Lr 4 = LJ 0[a(() -t] exp[-[to(z) - t]]dt, = 1,2, 
Jt(Z) (r - 1)! 

- f [tO(z)-tfl exp [[to(z)-t]] dt, j =0. 

We consider this in detail in the next section. 
We conclude the present section with some analytical preliminaries regarding 

the tj(z). With z = e s, 0 < s < oo, we have 
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e -ks 

t,,(e-s) - tj(e-s) = E j = 1,2,.... 
J k 

On the interval {y: ks < y < (k + 1)s} there obtains 

e-ks e-Y e-(k+ 1)s 

ks >y >(k + l)s 
and y 

e-ks (k+ 1)s e-Y e-(k+)s 

k> - dy > k+1 

Summing on k, we have bounds 

oo e-ks 

(7) E(js) < k <E((j- )s), j1 2, 

where 

E(x) = -dy, 0 < x < 0, ( + oo, x=0), 

is the exponential integral. The mapping x -* E(x) is an order reversing homeo- 
morphism of 0 < x < co onto itself, so for each j = 1, 2,*-- and each 0 < s < oc 
the equation 

00 -ks 

(8) z = E(xj(s)) k 

has a unique root 0 < xj(s) < oo. Using (7), we obtain (j - 1)s < xj(s)< js, 
j=1,2,**-. 

In ?5 we will need a closer estimate for xl(s). From the well-known identity 

(9) E(x) = f e dy-logx-y, 0<x < oo, 

(wherey = 0.577 is Euler's constant) we obtain, since E(x1(s)) = log(l/( -z)), 

(10) x1(s) = (1-z)e&"exp [J dyj 

= (1-z)e~ + 0(1 -Z)2, z -+1. 

For the last expression we have used the bound 

xl(s) e-e 0< o dy < xl(s) < s 

given in the preceding paragraph. 
Although we do not use it, the following expression for xj(s) may be of interest. 

We find xj(s) = Z' 1A,(j)sP, convergent for all s, with the first few coefficients 
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Al(j)= exp[r'(j)/F(j)] = exp[ - + (l/k)] 

_1 1 1 
2 + 24 482 + 

A2(j) = Al(j) Al(i) j + 2 

1 0 

A3Aj= A4(]){ [AI(j)- +fl [5AI(Q) 3(1 2) 3 12 } 

1 
960j 

A4(i) - 2880 

We omit the proof. 

4. The rth longest cycle. According to (6), the mth moment of the length 
of the rth longest cycle under P. is 

0 jti + I(z) [too(z) - tlr l 
Ezf(4r)mJ = z jm X 

(r 1)!]_ exp[-[t,(z)-t]]dt, m,r=1,2, **. 

Underthe change of variable t,(z) - t = E(x), this becomes 

{ *, Xj i(S) [E(x)]r eE(x), e dx 
j1 Jx(s) (r -1) x 

with z = e-s again and xj(s) given by (8). Now xi(s) < js < xj+ (s), so that the 
quantity SmEz{(Lr)m} is bounded above by EJ- I[xj+1(s)]mpuj and below by 
Xj= 1 [xj(s)]m,j, with 

Sxj+ j(s) 

Pi = dp(x), 
Jxj(s) 

[E(x)]'- E(X)e 
(r -1)! x 

These bounds are just the upper and lower Darboux sums for the Darboux-Stieltjes 
integral fxi(s) X mdL(x) based on the mesh determined by xj(s), j = 1, 2,... From 
(j - 1)s < xj(s) < js < xj+ 1(s) < (j + 1)s it follows that the mesh size vanishes 
as s - 0. As z -+ 1 then, we have s = log (1/z) -*0, s/(1 -z)- -1, x1(s) -*0, and hence 

(11) lim (l 
- 

Z) Ez{(Lr)m} = Gr,m, r = 1,2 ,- , 

where the constants Gr,m are 
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(G Xm-l _E(x)__-_ 

(12) Gr_ [ = J(x)Lexp [-E(x) - x] dx. r,m ~ m (r -1)! 

In ?6 we prove that En{(Lr)m} is monotone nondecreasing in n. If we apply the 
Karamata-Hardy-Littlewood Tauberian theorem [7, p. 143], [8, p. 203] to (11) 
we obtain 

(13) limEs (( n J Gr,m, M 1, 

forthe limiting form of the moments of Lr/n. The case m = 1, r = 1 is the limit of 
Golomb mentioned in the Introduction: 

(14) limEn ( nk} exp [- x -(e- Iy)dyjdx). 

The numbers Gr,m have the property 

e -my 
Elm (m + 1)r Gr,,= m ! X~ m-=0, 13v 
r-+ xo 

We sketch the proof. The change of variable E(x) = C in (12) gives 

Grm JL m! (r-1) 
e 

where 4(X) is the function inverse to E(x): 4(E(x)) = x, 0 < x < oo. For large r the 
density Trl e-?/(r - 1)! is negligible if T is not large. From the identity (9) we 
obtain easily 4(T) e -t -+ o, for the asymptotic form of 4(T). We substitute 
this in the expression for Gr,m and the result follows. (The argument can be made 
rigorous; we omit the details.) 

For the limiting distribution of LrIln we seek a distribution Fr(4), 0 < _ 1, 
with the property fJ {m dFr(0) = Gr.,, m = 0, 1, . .-. If such an Fr exists then 

lm p ( (Lr )< 4}F (03 0 < f 13, 
n-*oo k)f n ) 

is obtained according to the method of moments [9, p. 27]. From (12) it is straight- 
forward that if there is an Fr such that 

10 e"Y4dFr(4)= J [E(x)] r- EW e -x e 
~ f (r-) e 

- 
dx 

(15) 

p =r (r-1)!(p-r)!p' 
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Mrs. L. A. Needham of our organization has obtained the following numerical 
values for the first moments G,,1. 

r Gr,i 2reYGr,I 

1 0.62432997 2.2239538 

2 0.20958090 1.4931151 

3 0.08831609 1.2583788 

4 0.04034198 1.1496320 

5 0.01914548 1.0911837 

6 0.00927494 1.0572380 

7 0.00454696 1.0366046 

8 0.00224518 1.0236979 

9 0.00111357 1.0154706 

10 0.00055387 1.0101584 

11 0.00027599 1.0066977 

12 0.00013768 1.0044290 

13 0.00006874 1.0029350 

14 0.00003434 1.0019480 

15 0.00001716 1.0012943 

16 0.00000857 1.0008607 

17 0.00000429 1.0005727 

18 0.00000214 1.0003812 

19 0.00000107 1.0002538 

20 0.00000054 1.0001690 

21 0.00000027 1.0001125 

22 0.00000013 1.0000749 

23 0.00000007 1.0000498 

(sum) 0.99999993 

TABLE 1. Gr,I and 2re Gr, I for r = 1(1)23. 

then Fr will have moments Gr,m. Now, E(y) is the Laplace transform E(y) 

f $o e Yf (u) du of 

f(u)= 0, 0<u<1, 

=-- , 1 U < 00oo, 
U 
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so that the rightmost member of (15) is indeed a Laplace transform. Inverting, 
we obtain 

(- 1)p-r du, du 1 
1 -Fr(0) = .. .. I < <- 

p=r (r-1)!(p-r)!p u>I U1 Up r 
Ut + ... + Up<_1/ 

1 
= O- r< 4 < oo 

for the limiting distribution of LrIn. We observe that for given r, 1 - Fr(4) is the 
sum of q - r + 1 elementary integrals on the interval (q + 1)-' < ? _ q', 
q = r, r + 1,.*-. When r = 1 the above is Goncharov's formula for the limiting 
distribution of Ll/n [2]. 

5. The rth shortest cycle. As z -* 1, the endpoints tj(z) of our model move to 
limiting positions 

j-l 1 
ti = lim tj(z) = - j= 2,3,!** , 

z-41 k 

= 0, j=l, 

and Sr has the z limiting distribution 

tj+l tr 
(16) lim Pz{Sr = = (r- j = 1,2, 

z-~1 I r) 

In ?6 we will show that the Tauberian side condition 

Pn{SrI-} Pn.-{Sr =j}I< n = 1,2,. 

holds, so from (16) and the KHLT theorem we have 

lim Pn{Sr =Il} = (tr-1 e dt, j =1,2, *. 

The tail of this distribution is asymptotically 

e - y[lOgj] r-1 

(r -1)!j2 ' 

+ 0 

using the well-known estimate 

tj = i- = log 1 + y + O 

We see that the limiting distribution of Sr has infinite mean. 
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For the moments of Sr under P_ we have from (5) 
E{() oo = tj+I(Z) tr-l 

J'-1 tj(z) (r -)! 

and the change of variable t00(z) - t = E(x) gives 

00 
'xj + i(s) [t00(z) - E(x)]"-1e E(x) e- 

Ez{(Sr)m} =(I _Z) Jj() (-1()!)- eBX dx, m, r= 1, 2,*... 

with z = e-s again and xj(s) as in (8). 
From the bounds (j - l)s < xj(s) <js < xjl+(s) < (j + 1)s obtained in ?3 

there follows 

00 00a 

i[(j - l)s] ej < D- (<s)mrJ3 < D+ < S [(j+ 1)s]m j 

111 

where 
00 

D_ = [xj(s)]mOj, 

1 
00 

D+= N+SMP 

D+ = r [xj+1(S) [t00(z) - E(x)]r1 E(x) e x 

=x (s) (r 1)! x 

This and the elementary inequalities 

(j+ 1)m? jm + (2m- )jIm-1 

(j _) O> jm mjm-l, j,nm=1,2, ., 

now give 

(1)(1- Z)rn E{Srm ( z .m (00 xrn-i [t00(z) -E(x)]r-1 
(17) 1! Ez{(Sr)\} = S(s) (m-)! (r-1)! 

exp [E(x)-x] dx + A(r, m; z), m, r = 1,2, 2., 

with 

Al(r, m;z)| I_ (1 -z) -1 *I )* ( ) Ez{(Sr)m- I}, m =23-@ Mn- I (mn- 2)! 

<1, mr=1. 

We proceed by induction on m. For m = 1 we integrate by parts in (17): 
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0 
[t,,(z) - E(x)] exp [E(x)-x] dx 

Jx1(s) (r -e1) 

= xI(s)eE(XI(s)) [ttz(z)1 
r ! 

00 
(1 e-x)eE(x) {[to(z) - E(x)1? 

_ 
[t,(z)] I dx, 

ix(s) (1 x 

and separate the formal powers of too(z) = log(1/(1 - z)) = E(x(s)): 

Ez{Sr} = p! log z H 

where 

H(O; ) = xi(s) 
S 

/ 1 z 00 
ex)e E(x)[- EX 

H(q;z) = - 
( e) (1 _ 

dx, q = 1,2,*. 

Using (9) and (10), we see that as z -* 1, 

H(q;z)= H(q)[1+O((1-z) (log q ))l 1 

with 

H(O) e 

H(q) = - (1- [- E( )]e dx, q = 1,2,. 

whence 

(18) E2{S,} - p (-[1?g + 0(1),j z-*1, r=l1,2,.... 

For m = 2, 3, -- we express (17) as 

(1-Z)m-I E 
(m - 1)!- 

r11 1 P 
= , log - K(r-1-p, m; z)+A(r, m,z), m= 2,3,*--.,r= , *- 
p_O p! 1-z 

where the coefficients are 

I - 

_ m 00 oo s-t E(x)]4 
K(q, m; z) = (1- z rn-i [- E(x)*jexp [E(x) - x] dx, 

S IJi(s) (rn-I) 

m =2,) 3, ... ,q q= 0,1. 
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Using (9) and (10) again, we find 

f(xm [E(x)] exp [E(x) - x] dx = 0 (( - Z) (log jz! ) 

m=2,3,*, q=O,1,**. 

This and induction on m in (17) give 

(1 - Z)r Ez {(Sr)m} 

(19) r-1 

p= P! [log 1_z ]+ O(I1- z) (og-f _ z)' 

z-+1, m=2,3,***, r=1,2,***, 
with coefficients 

K(q,m) [rn) exp[E(x)-x]dx, q=0,1,--, m=2,3, *. 
(rn-) q ! 

Formal inversion of (18) gives, for n -+ oo, 

(20) En{Sr} 

r! (84 )Fr(g + 1) -e -(1 e -x)e E(X)[e-E(x) ]dx + 0(), 

while (19) gives similarly r = 1,2, 

(21) En{(Sr)m} 

n 
nr1 !m ( 1)rm exp [(I1- )E(x) x] dx| 

+ O(nm2(logn)r), m = 2,3,***, r = 1,2,. 

However, the authors can prove only that the leading term is correct in (20)-(21), 
viz., 

lim En{Srl} 
e- 

r:= 1,2, .. 

(22) ~~~(log n)r r!' 
im En{(Sr)m} = (r1 r-i 

i nm- (ogn)r- - 1)! (i 1)! exp [E(x) - x] dx, 

m = 2,3, ..., r=1,2, **, 

as follows. 
First, we apply the KHLT theorem with the side condition En{(Sr)M} _ 0 in 

(18)-(19) to get 
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Y En{Sr} =( )N(logN)r[1 + o(l)], N-o o, r= 1,2,G*, 
n23 ? n . 

N-i K(O,m) Nm(log N)f' 
E n(rm = (r -1)!. m [1 + o(1)], N -+ oo, 

m = 2,3,..., r = 1,2,..., 

for the (C, 1) asymptotics of En{(Sr)m}. 
In ?6 we prove the relation 

(24) En{(Sr)m} -En- {(Sr)m} 

< En {(Si)m - (Sr)m} + (2 -1)r En11{(Sr)m}, m,r,nn=1,2,-., 

where SO = 1. We multiply this by n, add En1 {Sr)m} to both sides, and have 

En{(Sr)m}- (n - 1)En. .{(Sr)m} ? Enl{(Sr_..)m} + (2m-1)rEn.i{(Sr)m}. 

Now add these inequalities for 7t = 1, *,N. The left-hand members telescope 
and the right-hand sum may be bounded by using (23); we find, for r = 1,2,.., 
and all large n, 

En{(Sr)m} ? C'(log n)r, m = 1, 

< Cinns-l(logn)yl, m =23,3j,* 

with appropriate constants 0 < C' < oo (depending on m and r, of course). We 
substitute these bounds in the right-hand side of (24). There results 

En{(Sr)m} - En - I {(Sr)m} 

< Cn 2(logn)r, m = 1, 

< Cnm~ 2 (log ny 
- 1 m = 2, 3-,*** 

for some constants 0 < C < oo, and we now have Tauberian side conditions for 
(18)-(19) which serve to prove (22). 

6. The Tauberian side conditions. Let us now obtain the various bounds 
on quantitities En{D} - En_1{4} which we used in ?? 4 and 5. 

For each n = 1,2, *--, we define a mapping 0: fn-* n- which preserves the 
probability structure, as follows. We regard the elements of $fn as the permutation 
operators on n distinguishable objects occupying places numbered 1, -.., n; for 
definiteness let us agree that "p -+ q" means "the object in place p moves to place 
q" (and not "object p where it stands turns into object q".) If i e Efn is given, write 
X in the usual way as a product of disjoint cycles. Erase symbol n in the cycle 
expression for t; the result is the cycle expression for 0() e J/n - I . In more 
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detail, let it E Y,, make the moves p -* n -+ q as far as place n is concerned. Either 
(i) p = n = q, in which case 0() acts on the places different from n the same way as 
In, or (ii) p = n and q # n, in which case 0 (7t) makes the move p -+ q and agrees 
with 7r otherwise. One sees that the n! values 0(z), 7i e 9Y., consist of n copies 
each of the elements of Y. - I . If it' E Y.- I is given, we denote by (a', p), p= 1,* * *,n 
the n distinct elements of 0- '(i') c S,,; p is to be regarded as the variable 
appearing in the above description of 0. When each element of Y. has probability 
l/n! the mapping 0: 9n'-, - induces the distribution P,,{0 -(it')} = n/n! 
= 1/(n -1)1 = P_.,1{it'}, n'cEL-.1,, as desired. 

If D is a functional defined on every 9,, the difference En{'D} - En,. {(D} reduces 
to the average pointwise difference 

En{@D} -En-1 PD 

1 
(25) = t [4?(zE)- (D(0(7E))] 

n* XEsYn 

1_ - 
1 E [D((7r p))- F(D()], n = 1,2,; 

both forms are useful. 
Let us consider first the rth longest cycle. Suppose for given i E Yn the 

values of Lr, r = 1,2,I. are L(i) ? L2(i)... ? 0. For 0(zt) the cycle lengths are 
the same numbers except for one number, wich is less by 1 than before (but not 
negative). If the new list is rearranged in descending order the rth number is the 
same as before except when a cycle of length Lr(it) has been shortened and Lr(it) 
> Lr+ 1(7r) holds, in which event there obtains Lr(0(7t)) = Lr(7t) - 1. It follows from 
(25) that 

En {(Lr)m} -En- (Lr)m} 

n 

z [jm- (j -)m]Pn{Lr = i > Lr+I 
j=1 

& symbol n appears in a cycle of length j}, n, r, m = 1,2, 

The conditional probability that symbol n appears in a cycle of length j, given 
the cycle class, isjajln, so 

En{ (Lr)m}- En -{(Lr)m} 

= [j -(j]- m]En(n' X{Lr=j>Lr+i}} 

where X{ } denotes the characteristic function of event { }. It is obvious that 
the above difference is nonnegative; this is all that is needed in ?4. The following 
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refinement is interesting, however. The event {Lr = j > L4+ 1} in Sn is just the 
event {cSj > O, cj + * * * + ?cn = r}, so that 1 < aj < r for this event. Thus 

En{(Lr)m - En - 1{(Lr)ml 

n 
? mj`m-l(rjIn)PJ{Lr =} 

= En{(Lr)m}, n, r, m = 1, 2,**. 

With m = 1, r = 1 this yields Golomb's results 

En-iAL,) > En(Ll) n 2 

If we work instead from n - 1 to n, we obtain a different result. Suppose the 
values of 4, r = 1,2,**., for r'eYn-I are L1(ir') > L2(ir') >. . >? . In (ir',p) 
the cycle lengths are the same numbers except for one number, which is greater 
by 1 than before. If the new list is rearranged in descending order, the rth number 
is the same as before except when a cycle of length LQr') has been lengthened and 

Lr- 1 (it') > Lr(') holds (put Lo = 00), in which event there obtains 
Lr( (r', p) ) = Lr(i'g) + 1. There follows 

En{(Lr)ml En -I{(Lr)m I 

I 
Pn-I{Lr = O < Lr-l} n 

in-I 
+ - z [(j + )ir -jm]En_,{jfrjx{Lr =i < Lr-I}} n j=I nI 
M 
m jmPn {Lr=i <Lri1} m,r,n=1,2,***. 
n 

For m = 1, r = 1 this is Golomb's result 

En..I {LI} < En{LI, n=},2 
(n-1l)+l= n+1} n=1,2,.. 

The authors have used the above to prove the result En{L1} = (n + DGI,, + o(l) 
conjectured by Golomb on the basis of numerical computations. We omit the 
details. Presumably there is a hierarchy of successively more delicate side conditions 
needed to establish the lower order terms in En{(Lr)m}. 

Consider now the length of the rth shortest cycle. Let 

S 1,(2) <f S2t() < ... <= ST(cl, 0l o ar 

be the values of Sr, r = 1, 2, * * for 7r E- Y, The cycle lengths of 0(zr) are the same 
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numbers except for one number, which is less by 1 than before (but not negative). 
If the first a members of the new list are rearranged in ascending order and the 
initial 0 (if any) is deleted, the rth number in the new list is the same as in the old 
except possibly when (i) symbol n appears in ic in a cycle of length 1; in this event 
Sr(O(ir)) = Sr+ 1(Iz), (ii) symbol n appears in ir in a cycle of length Sr(7) > 1 and 
Sr- 1(ir) < Sr(ir) holds (put SO = 1); in this event SA(0Q)) = Sr() - 1. For the 
distribution of Sr we obtain from (25) 

IPn{Sr = j} Pn- {Sr = j} I 

= IEn{X{Sr=ij}}-En-1{X{Sr=i}}J 

Ent-!X { Sr =i Sr+ 1} CZ X{Sr #i = Sr+ 1} 

+ En ( j {Sr-l <j =Srl- j+) ij+l XSr-1 <j+ 1= Sr}I 

<2 
< , n=1,2,..., j=O,1,., 

since En{jcxj} = 1 for 1 < j < n and = 0 for n < j. The bound above is the Taub- 
erian side condition used in ?5 to obtain the limit of Pn{Sr = i}. 

For the moments of Sr we obtain by similar arguments 

En{(Sr) mI 
- En I OX I(r 

- En {1US[(Sr)m-(Sr 1)M] } 

+ 12 [jm -(j-1)M]En t {S- 1 < i = Sr}} 

I 
+ En l{(Sr-l)m - (So)m} 

n I n-I 
+ - , [(j + 1) m_ jm]En- l{ij(Xj{Sr = J 7& Sr+ 1}} m, r, n =1, 2, ... 

where, again, SO = 1. Let us use the second form. The event {Sr = j # Sr+ } is 
just the event {o(, > O, oc + *. + c,j = r}, so1 < cj < r for this event. Thus 

En{(Sr)m}- En-1{(Sr )M} 

< +En--l{(S_rl)m -(SMI 

1 n-I 
+r n S (2` -1)j`l(Ir)Pn-i{Sr =1 # Sr+I} 

< En {(S,r -)m-(SO)m} + (2m -) E"r E {(S)M}, m,r,n=1,2,***, 

and this is the inequality used in ?5. 
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