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Abstract

A gambler starts with fortune f < 1 and plays in aVardi casino with infinitely many tables
indexed by their odds, r ≥ 0. In addition, all tables return the same expected winnings
per dollar, c < 0, and a discount factor is applied after each round. We determine the
optimal probability of reaching fortune 1, as well as an optimal strategy that is different
from bold play for fortunes larger than a critical value depending exclusively on c and
1 + a, the discount factor. The general result is computed explicitly for some relevant
special cases. The question of whether bold play is an optimal strategy is discussed for
various choices of the parameters.
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1. Introduction

The main result of the paper is Theorem 1, which states the optimal probability, P0(f ), of
reaching wealth of at least 1 (nonextinction) when we start with wealth f , 0 ≤ f ≤ 1, in
a casino with a continuum range of odds r ∈ R, at tables indexed by r ≥ 0, with expected
winnings per dollar equal to c ∈ (−1, 0) at every table and inflation (or interest) rate a > 0.
More precisely, a gambler starts off with wealth f and at any table of the casino is allowed to
stake an amount s with the restrictions that 0 ≤ s ≤ f and f + rs ≤ 1+a. The latter condition
can be ignored because, as we will show, it is never violated for any optimizing strategy. Tables
are indexed by their odds, r , meaning that a stake s at table r is lost with probability 1 −w and
returns rs if, with probability w, the gambler wins. In this paper, every time a game is played,
the current wealth is discounted by a factor (1 + a)−1, accounting for inflation (or interest). It
is probably true that the optimal strategy is unique for a > 0, but for a = 0 this is false.

What we mean by a Dubins (r, c) casino is a casino with only one table, this giving odds r
and returning expected payoff c < 0 on a dollar bet (also known as a subfair casino). Dubins
and Savage [6] considered the more general case where the casino has several tables, but they do
not seem to have considered the casino proposed by Vardi [13], where a table, Tr , is available for
every odds r and c is fixed and has the same negative value at all the tables. Such a casino will

Received 23 May 2006; revision received 6 October 2006.
∗ Postal address: Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA.
∗∗ Email address: igrigore@math.miami.edu
∗∗∗ Email address: chen@math.miami.edu
∗∗∗∗ Postal address: Department of Statistics, Rutgers University, Piscataway, NJ 08855, USA.
Email address: shepp@stat.rutgers.edu

199



200 I. GRIGORESCU ET AL.

hereafter be called a Vardi casino, with or without interest, respectively according to whether
a > 0 or a = 0. This terminology was introduced in [12].

The expected payoff, c, is equal to (+1)rw + (−1)(1 − w) < 0, which implies that
(throughout the paper) w ≡ w(c, r) = (1 + c)/(1 + r). It thus provides an upper bound
on the optimal probability of reaching fortune 1 in any casino if c is the largest expected return
on any of the tables. It is shown by John Lou in a forthcoming thesis [9] that having all the
additional tables and odds provided in the Vardi casino yields only a relatively small gain in
the optimal probability of reaching fortune 1 over that of the Dubins casino, which seems quite
surprising.

All tables are independent of each other, and all games at each table are independent of each
other. More formally, let � = {−1,+1}R×Z+ with the σ -field F generated by cylinder
functions and Fn denoting the sequences of outcomes for all tables up to time n. Since
� = ⊗

r∈R�r , where�r = {ω(r, ·) : ω ∈ �} are the projections of�, we introduce Bernoulli
measures Pr on �r assigning probability w(c, r) = (1 + c)/(1 + r) to +1 and probability
1 − w(c, r) to −1 for all n, and write P = ⊗

r∈R Pr for their infinite product.
A gambling strategy, or simply a strategy, S is a sequence of measurable functions

Sn(ω, ·) : [0, 1] → [0, 1] × R, Sn(ω, f ) = (s, r), n ≥ 0, ω ∈ �,
adapted to the filtration {Fn}n≥0, that assign a pair (s, r) ≡ (sn(ω, f ), rn(ω, f )) = Sn(ω, f )

to every value f ∈ [0, 1] current at time n, with the single restriction that

0 ≤ sn(ω, f ) ≤ f. (1)

The set of strategies will be denoted by S.
In other words, strategy S tells the gambler how much he should bet and at which table, for a

given fortune, at a given time. More general strategies than Markovian strategies do not provide
any additional probability of reaching fortune 1. In fact, we show that all optimal strategies
discussed here are simply functions of f , not of ω and n. In other words, all the optimal
strategies discussed here are Markovian. In the following, we shall omit ‘ω’ from Sn(ω, f ),
and we shall use the convention that we omit the subscript ‘n’ whenever Sn(f ) depends only
on f .

We assume that R = [0,∞), but it is interesting to put the present results in the context
of various other choices of R. The classical result of Dubins and Savage [6] (see also [10]
for more background on the problem) showed that, when a = 0 and R = {r}, the optimal
strategy is bold play: more precisely, Sb(f ) = f when f ≤ (1 + r)−1 and Sb(f ) = (1 −f )/r
when f > (1 + r)−1 (use the maximum bet allowed at any time). The bold-play conjecture
dating back to Coolidge [5] (see also [4] for more comments on this) is not valid for a Vardi
casino without inflation, as shown in [12], where the parameters are a = 0 and R = [0,∞).
Nonoptimality of bold play in a one-table casino in the presence of inflation was proved in
earlier work [1], [2], [8] and in a different setting in [7]. For a subfair primitive casino with
one table, this satisfying the condition that 1/r ≤ a ≤ r , for r > 1 Chen et al. [3] showed
that bold play is not optimal, yet conjectured for r < 1 that it is. A recent result [4] proves the
conjecture under the additional assumption that w ≤ 1

2 .
The present article sheds some light on the interplay between various parameters defining the

casino, and on when bold play is optimal. We give a complete answer to the problem in the case
in which a > 0 and R = [0,∞). As anticipated from the preceding discussion, a dichotomy
between the bold- and nonbold-play regimes emerges, depending on the choice of parameters
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(c, a). There exists a value, f̂ , such that the optimal strategy is strict bold play (s(f ) = f )
for f ≤ f̂ and a more cautious policy is required for f > f̂ (see (17) for a particular case).
Some parameter combinations, such as those for which a2 > |c| (see Section 2), have f̂ = 1,
allowing bold play only, in some sense concealing the nature of the general problem. Another
remarkable feature of the solution is the presence of a jump at f = 1, meaning that if a > 0
then the extinction probability is bounded away from 0 even as f tends to 1, showing that the
gambler cannot beat inflation, even under optimal play. An interesting question is: what effect
would a random inflation rate have on the discontinuity at f = 1?

The authors believe that the present constructive approach based on the variational formulae
(12) and (14) from Theorem 1 can settle the other cases, when various subsets of [0,∞) are
used for R in the definition of the casino.

Let φ denote a continuous function on [0, 1]. For a given strategy S, let {XSn }n≥0 be the
discrete-time stochastic process representing the fortunes at timesn = 0, 1, . . . under strategyS.
The chain starts at XS0 = f ∈ [0, 1], is adapted to {Fn}n≥0, and satisfies the relation

E(φ(XSn+1) | XSn = g) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w(c, rn(g))φ

(
g + rnsn(g)

1 + a

)

+ (1 − w(c, rn(g)))φ

(
g − sn(g)

1 + a

)
, g ∈ (0, 1),

φ(g), g = 0, 1.

(2)

We note thatXn is not Markovian in general, as the strategy S may take into account the whole
past.

The chain {XSn }n≥0 is bounded above and below and is a supermartingale with respect
to {Fn}n≥0 (see Theorem 1), as a consequence of the subfair nature of the casino. With
probability 1, the limit limn→∞XSn exists, and we denote it by XS∞. Let PSf be the probability
of reaching fortune 1 before extinction, starting with initial fortune f , while applying the
strategy S, with (recall) P0(f ) being the optimal probability of doing so, i.e.

PSf = P(XS∞ = 1 | XS0 = f ), P0(f ) = sup
S∈S

PSf . (3)

Our goal is to determine P0(f ) for any f ∈ [0, 1] and to formulate at least one strategy to
achieve it.

Strict bold play is the strategy consisting of staking all the gambler’s fortune for any f ∈
(0, 1). Of course, this strategy is never optimal if a is small, since it is foolish to exceed
fortune 1.

It is intuitively clear that, for large a, (i) the gambler will be forced to bet all his wealth f , for
all f ∈ (0, 1) (strict bold play), and (ii) the optimal strategy has a gap at f = 1, i.e.P0(1−) < 1.
This behavior contrasts with the zero-interest rate setting (a = 0), where, as was proved in [12],
P0(f ) = 1 − (1 − f )1+c. In Section 2 we present the special case in which a drops below
the critical value,

√|c|, in which case strategy (i) applies. While this is covered by the general
result from Theorem 1, it is shown directly in Proposition 1.

In Section 3 we prove the general result. The optimal probability is defined via a variational
formula, (12), for R(f ) = 1 − P0(f ), and is shown to be convex in (14). The discontinuity at
f = 1 is consistent with the fact that P0(f ) is lower semicontinuous.

For general parameters (a, c), the case in which a2 < |c| is more complex than that in
which a2 ≥ |c|, since P0(f ) is not given explicitly, even though it is technically speaking fully
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computable, not just numerically. This is because the infimum in (12) is a finite-dimensional
problem, since the number (see (10)) of parameters, k ≤ n(a, c) < ∞, is a constant dependent
on a and c but not on f . For a relevant particular choice of parameters (a, c) such that k = 1,
in Section 4 we derive explicit expressions (see (17)) for P0(f ) and the discontinuity at f = 1.

Finally, in Section 6 we provide an upper bound (see (22)) for P0(f ), equal to a smooth
perturbation of the result of [12], which corresponds to a = 0. This approximation does not
exhibit the discontinuity at f = 1, making it useful in the intermediate parameter range above
the bold-play range yet away from 1 for pairs (a, c) with large n(a, c).

The gambler with current fortune f is allowed to bet s dollars on a table with r ≥ (1 +
a − f )/s. If he wins, his new fortune will exceed f = 1 before application of the discount
(1 + a)−1. However, if his strategy is optimal then the strategy with r = (1 + a− f )/s would
be optimal as well, since the value of r does not matter when the gambler loses, according
to (2).

In addition, given that the gambler will stop when his fortune reaches either 0 or 1, the
strategies can be defined arbitrarily at f = 0 and f = 1. We adopt the natural choice
sn(0) = sn(1) = 0, n ≥ 0, and can choose r arbitrarily, since for fortune f = 0 or f = 1 the
gambler does not actually play the next game. Notice that in the absence of inflation (a = 0),
it would be enough to specify that s = 0, whereas for a > 0 even passively waiting a turn
and not playing reduces the fortune to f/(1 + a). Without loss of generality, we shall assume
throughout the paper that any strategy S satisfies

0 ≤ sn(f ) ≤ f, rn(f )sn(f ) ≤ 1 + a − f, sn(0) = sn(1) = 0, (4)

for any n ≥ 0. For simplicity, we shall use the notation p = (1 + c)/(1 + a).

2. The case a2 ≥ |c|
We prove that the optimal probability of survival (see (3)) is achieved by the strict bold-play

strategy Ssb(f ) = (f, (1 + a − f )/f ), f ∈ (0, 1), and is equal to

P0(f ) =
{
pf, f < 1,

1, f = 1.
(5)

Proposition 1. For all f with 0 ≤ f ≤ 1, s with 0 ≤ s ≤ f , and r ≥ 0 with rs ≤ 1 + a − f ,
the function P0(f ) satisfies

P0

(
f + rs

1 + a

)
w(c, r)+ P0

(
f − s

1 + a

)
(1 − w(c, r)) ≤ P0(f ). (6)

Proof. We have to prove (6) for f < 1. For f = 1 the inequality is trivial, since s = 0.
If (f + rs)/(1 + a) < 1 then the inequality is equivalent to sc ≤ af , which is evidently

true since c < 0. If (f + rs)/(1 + a) = 1, then the inequality becomes

w + p

(
f − s

1 + a

)
(1 − w) ≤ pf, with w = 1 + c

1 + r
. (7)

Fix r ≥ 0 and regard (7) as an inequality in f . The restriction that 1+a = f + rs makes sense
only if r ≥ a. In addition, we must have f ≥ (1 + a)/(1 + r). Moving all the terms to the
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right-hand side of the inequality yields an expression linear in f . It is sufficient to verify the
inequality at the endpoints. For f = (1 + a)/(1 + r), it is easy to verify. For f = 1, it reads

1 + c

1 + r
+ 1 + c

1 + a

(
1 + r

r(1 + a)
− 1

r

)(
1 − 1 + c

1 + r

)
≤ 1 + c

1 + a
, (8)

which is equivalent to (r − a)(ra − |c|) ≥ 0. The restrictions on the parameters mean that
r ≥ a, concluding the proof.

Remark 1. The range of r is indeed arbitrarily close to a for bold play; this can be seen by
taking f = s = 1 − ε and r = (1 + a − f )/f for arbitrary ε > 0.

Proposition 2. Strict bold play, that is, betting the full wealth f , 0 < f < 1, on the table with
odds r = (1 + a − f )/f , achieves the probability of survival P0(f ) in (5).

Proof. We see by conditioning on the outcome of the first game that, for all f ∈ (0, 1),
the probability, P(f ), of reaching wealth 1 when starting with wealth f under strict bold play
satisfies

P(f ) = 1 + c

1 + r
P

(
1 + r

1 + a
f

)
= 1 + c

1 + (1 + a − f )/f
P (1) = P0(f ).

3. The general case

In the following we shall use the notation η = (a + a2)/(a + |c|).
Proposition 3. Let f̂ be the largest value of f ≤ 1 for which (6) is satisfied for any choice of
s and r admissible in the sense of (4). Then f̂ = 1 for a2 ≥ |c| and f̂ = η for a2 < |c|.

Proof. Proposition 1 proved that if a2 ≥ |c| then (6) is satisfied for all f ≤ 1, showing that
f̂ = 1 in this case.

If a2 < |c| then, following the steps of the proof of Proposition 1, we see that (6) is satisfied
automatically for (f + rs)/(1 +a) < 1. For f + rs = 1 +a, (6) becomes (7). The restrictions
in (4) imply that f ≥ (1 + r)/(1 + a). The easiest way to check this is to plot (s, t) with all
other parameters fixed and see that the domain defined by 0 ≤ s ≤ f and f + rs ≤ 1 + a has
vertices (0, 0), (0, 1 + a), and ((1 + r)/(1 + a), (1 + r)/(1 + a)). We rewrite (7) as

ra − |c|
r(1 + a)

(
f − 1 + a

1 + r

)
≥ 0. (9)

Let r ′ = |c|/a. If f ≤ η then 1 + r ′ = (1 + a)/η ≤ (1 + a)/f ≤ 1 + r , so (9) is satisfied,
showing that f̂ ≥ η. However, for f > η there exist admissible values of r such that (9) is not
satisfied, implying that f̂ ≤ η.

Remark 2. The table with index r ′ = |c|/a appearing in (8) and (9) corresponds to the critical
value f̂ = η, and can be achieved under bold play with the bet s′ = η.

Propositions 1, 2, and 3 suggest that there must be two regimes of play, respectively according
to whether the current fortune f is above or below the critical value f̂ = η. Assuming that we
start with f > η, we shall look at sequences of descending fortunes fj obtained for consecutive
unsuccessful bets. In general, the only restriction is that (1+a)fj = fj−1−sj−1 ≤ fj−1. Once
the fortune drops below η, we intuitively know that the optimal strategy is bold play. Finally, the
optimal strategy is obtained by optimizing over all scenarios (descending sequences) leading
to a fortune below η. We now formalize these ideas, starting with a definition.
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Definition 1. Let f ∈ [0, 1). A descending sequence for f of length k + 1 is a sequence of
fortunes fj , j = 0, 1, . . . , k, such that (i) f0 = f , (ii) k = 0 if f ≤ η, (iii) fj ≤ (1+a)−1fj−1,
j = 1, . . . , k, and (iv) fk−1 > η and fk ≤ η. Such a sequence will be denoted by {f }, the
set of descending sequences will be denoted by D(f ), and the set of descending sequences of
length k will be denoted by Dk(f ).

A descending sequence has finite length for any f . The maximum admissible length, kmax,
is bounded above by

n(a, c) = − ln η

ln(1 + a)
+ 1 = ln(a + |c|)− ln(a + a2)

ln(1 + a)
+ 1, (10)

a constant depending exclusively on a and c. Recall that p = (1 + c)/(1 + a).
For every f and every {f } ∈ Dk(f ), we construct the function

R{f }(f ) = (1 − pfk)

k−1∏
j=0

(
1 − p

fj − (1 + a)fj+1

1 − fj+1

)
, (11)

with the convention that R{f }(f ) = (1 −pf ) for f ≤ η, which is consistent with Definition 1.
We notice that 0 ≤ R{f }(f ) ≤ 1 and define the function P0(f ) by P0(f ) = 1 for f = 1

and by
P0(f ) = 1 − R(f ), with R(f ) = inf

k
inf{f }∈Dk(f )

R{f }(f ), (12)

for f < 1.
The infimum is achieved at least for a certain k ≡ k(f ) and a certain {f } ∈ Dk(f ). To see

this, we recall that k ≤ n(a, c) has a finite range independent of f . Equation (12) shows that the
functionsR{f }(f ) can be written as continuous functions of the k+1 variables f0, f1, . . . , fk on
a compact domain associated with f . For each f , we choose one of the minimizing sequences
of (12) and denote it by {f }−. Then evidently R(f ) = R{f }−(f ).

Proposition 4. The function P0(f ) is convex in f .

Proof. We have to show that R(f ) is concave. As defined in (12), the infimum is taken
over a set depending on f itself; we shall write it in a form that clearly shows that R(f ) is the
infimum of a family of linear functions over a set independent of f . For a pair (fj , fj+1), let
rj and γj be defined by the equality

γj = fj − (1 + a)fj+1

1 − fj+1
= 1 + a

1 + rj
.

We can interpret fj+1 = (fj − sj )/(1+a) as the result of losing a bet sj at the table rj , chosen
such that a winning bet would have increased the fortune to exactly 1, i.e. (fj+rj sj )/(1+a) = 1
(bold play). Then

rj = 1 + a − fj

sj
≥ 1 + a − fj

fj
≥ a.

With this in mind, the sequence of γj defines a finite number of parameters in (0, 1], without
other restrictions depending on f .
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To make the computation easier, let αj = (1 + a − γj )
−1 and βj = γjαj . Then

f1 = α0f0 − β0,
...

fk−1 = αk−2fk−2 − βk−2,

fk = αk−1fk−1 − βk−1

and

fk = Af − B with A =
k−1∏
j=0

αj , B =
k−1∑
j=0

βj

k−1∏
i=j+1

αi. (13)

Recasting (see (12)) in terms of the independent {γj }0≤j≤k−1, 0 < γj ≤ 1, and f , we have

R(f ) = inf
k

inf
{γ }∈(0,1]k

(1 + pB − pAf )

k−1∏
j=0

(1 − pγj ), (14)

where the first factor is a linear function of f , as in (13). This proves that R(f ) is concave
(see [11]).

In the notation of Definition 1, for every {f } ∈ D(f ) we define the sequence of bets
{s} = {s0, s1, . . . , sk} as follows, according to the sequence length k(f ): if k(f ) = 1 then
s0 = f0, and if k(f ) > 1 then sj = fj − (1 + a)fj+1, j = 0, . . . , k − 1, with sk = fk . We
denote by {s}− the sequence corresponding to {f }−.

Definition 2. Let S− be a strategy defined as follows. For f = 0 or f = 1, we stop. For
0 < f < 1, we have two alternatives.

1. If f ≤ η then we bet s(f ) = f on the table with r(f ) = (1+a−f )/s(f ); if we win then
we have reached 1 and we stop, and if we lose then we stop as well, since f − s(f ) = 0.

2. Iff > η then we generate a minimizing descending sequence {f }− ={f−
0 , f

−
1 , . . . , f

−
k },

k ≡ k(f ), starting with f−
0 = f and ending with f−

k ≤ η (by construction), with the
corresponding sequence of bets {s}− = {s−0 , s−1 , . . . , s−k }. We first bet s(f ) = f−

0 −
(1 + a)f−

1 on the table with r ≡ r(f ) = (1 + a − f )/s(f ); if we win then we stop,
and if we lose then we proceed by betting s(f−

1 ) = s−1 , and so on, until we either win
(and stop) or reach f−

k(f ) ≤ η. If we reach f−
k(f ) ≤ η then we set f = f−

k(f ) and go to
alternative 1.

Theorem 1. The optimal probability of reaching fortune 1 when we start with wealth f , 0 ≤
f ≤ 1, is P0(f ) = 1 −R(f ) if f < 1 and P0(f ) = 1 if f = 1, and is realized by the strategy
S−. In addition, 1 − P0(1−) ≥ (1 − p)n(a,c)+1 > 0, where n(a, c) is the bound in (10).

The theorem will be proved in three steps: in Proposition 5 we show that the strategy S−
yields P0(f ) = 1−R(f ) for f < 1, in Proposition 6 we show that P0(f ) is an upper bound on
the probability of reaching fortune 1, and finally we prove the lower bound for the discontinuity
at f = 1.

Proposition 5. The probability of survival PS
−

f defined in (3), starting from f < 1 and
corresponding to the strategy S− from Definition 2, is equal to P0(f ).
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Proof. Let R−(f ) = 1 − PS
−

f , let f = f0, and let f−
1 be the wealth in case of loss while

applying S− (in one step). By conditioning upon the events of winning and losing in the first
play, the law of total probability and (2) applied to the chainXS

−
n yield forR−(f ) the recurrence

relation

R−(f0) =
(

1 − p
f0 − (1 + a)f−

1

1 − f−
1

)
R−(f−

1 ). (15)

To see this, we remember that

f0 − (1 + a)f−
1

1 − f−
1

= 1 + a

1 + r−1
, r−1 = r(f0),

according to Definition 2. Note that, for f ≤ η, (15) leads trivially to equality between R−(f )
and R(f ), since f−

1 = 0. For f > η, (15) is satisfied by R(f ) once again, as seen in (11)
applied to the optimizing sequence. We can repeat this reasoning for f−

2 , f−
3 , and so on, to see

that R−(f ) = R(f ). Alternatively, if {f }− is an optimal descending sequence for f and f−
1 is

the second term in the sequence, then the truncated sequence {f−
1 } = {f−

1 , f
−
2 , . . . , f

−
k }, that

is, the same sequence shifted by one unit, is an optimal descending sequence for f−
1 . This fact

is clear by construction. We have thus shown that R−(f ) = R(f ).

Proposition 6. For any given (a, c) and any triple (f, s, r) compatible in the sense of (4), with
0 ≤ f < 1, 0 ≤ s ≤ f , and r ≥ 0, the function P0 in (12) satisfies the inequality

P0

(
f + rs

1 + a

)
w + P0

(
f − s

1 + a

)
(1 − w) ≤ P0(f ). (16)

We note that f = 1 implies that s = 0, in which case (16) is trivial.

Proof of Proposition 6. By construction, the function P0(f ) is convex, being the supremum
over linear functions of f , according to Proposition 4. As functions of s, both P0((f +
rs)/(1 + a)) and P0((f − s)/(1 + a)) are convex, so the left-hand side of (16) is convex in s.
The maximum can only be achieved at extreme values of s. Given the restrictions on s,

(i) if f > (1 + a)/(1 + r) then the extreme values are s = 0 and s = (1 + a − f )/r , and

(ii) if f ≤ (1 + a)/(1 + r) then the extreme values are s = 0 and s = f .

Suppose that s = 0 in either case (i) or case (ii). If f ≤ η then we recover (6), and the
proof is the same. If f > η then f0 = f and f1 = f/(1 + a) can be seen to be the first two
admissible terms of a descending sequence {f }. By construction, P0(f1) ≤ P0(f0).

Now suppose that s = (1 + a − f )/r in case (i). This corresponds to bold play, that is, r is
such that we reach fortune 1 if we win. We have to prove thatR(f ) ≤ R((f−s)/(1+a))(1−w).
Writing f0 = f and f1 = (f − s)/(1 + a), we have the equivalent inequality

R(f ) ≤
(

1 − p
f0 − (1 + a)f1

1 − f1

)
R(f1),

which is evidently true by construction.
Finally, suppose that s = f in case (ii). We can reduce the problem to showing that

R(f ) ≤ R(f (1 + r)/(1 + a))w + (1 − w) or, equivalently, that

P0

(
1 + r

1 + a
f

)
w ≤ P0(f )
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for all f and r satisfying 0 ≤ r ≤ (1 + a − f )/f = (1 + a)/f − 1 (since s = f ). Rewrite the
desired inequality as

(1 + c)P0

(
1 + r

1 + a
f

)
− (1 + r)P0(f ) ≤ 0.

Let f be fixed. As a function of r , the left-hand side is convex. The maximum is achieved at
one of the endpoints. At r = 0 we have

P0(f ) ≥ P0

(
1

1 + a
f

)
(1 − |c|),

which is weaker than P0(f ) ≥ P0(f/(1 + a)) or, equivalently, R(f ) ≤ R(f/(1 + a)). This
inequality is true for any f < 1 by construction, taking f0 = f and f1 = f/(1 + a) as the
first two terms of a descending sequence for f if f > η, and simply verifying it directly if
f ≤ η. Finally, at the upper endpoint, r = (1 + a)/f − 1, for which f (1 + r)/(1 + a) = 1,
the inequality becomes R(f ) ≤ 1 − pf . This is true by construction, by taking f0 = f and
f1 = 0 in a descending sequence for f .

Proof of Theorem 1. Denote by {XSn }n≥0 the sequence of the values at times n = 0, 1, . . . of
the gambler’s wealth under an admissible strategy S ∈ S, satisfying (2). We drop the superscript
‘S’ since there is no possibility of confusion. At time n, the gambler chooses a stake and a table
corresponding to the current value of his fortune,Xn, according to {(sn(Xn), rn(Xn))}n≥0 with
the convention thatXn stays at 0 or 1 once it has reached either value for the first time. Moreover,
since {Xn} is bounded by 1, it is easy to check that it is a supermartingale. Inequality (16) and
the fact that P0 is bounded show that P0(Xn) is also a supermartingale. The limit, X∞, of Xn
as n → ∞ exists almost surely. Since P0(0) = 0, P0(1) = 1, and 1[1,∞)(x) ≤ P0(x), we have

P(X∞ = 1 | X0 = f ) ≤ E(P0(X∞) | X0 = f ) ≤ E(P0(X0) | X0 = f ) = P0(f ).

However, Proposition 5 shows that P(X∞ = 1 | X0 = f ) ≥ P0(f ), by applying strategy S−.
Finally, it remains to show that P0(1−) < 1 or, equivalently, that R(1−) > 0. Note that the

product (11) has at most k + 1 factors, each bounded below by 1 − p, and that k is bounded
above by a value depending on a and c only. This concludes the proof.

4. Explicit results for k(f ) ≤ 1

For a2 ≤ |c| ≤ 2a2 + a3, we shall see that the descending sequence from Definition 1 has
length k ≤ 1 and an explicit form of the optimum function P0(f ) can be derived. In fact, this
inequality between a and c is equivalent to having k(f ) ≤ 1 for all f . Let f0 = f and f1 < f0
be such that f1 ≤ (1 + a)−1f0. It is easy to see that f1 ≤ η if 2a2 + a3 ≥ |c|, for any initial f .
On the other hand, let us assume that the second term satisfies f1 ≤ η for any f . We want to
prove that 2a2 + a3 ≥ |c|. Since s = f0 − (1 + a)f1, we introduce r , the table where we bet
under the restriction that f + rs = 1 + a (bold play), and obtain,

f1 = 1 + r

r(1 + a)
f0 − 1

r
.

The condition k(f ) ≤ 1 is equivalent to

1 + r

r(1 + a)
f − 1

r
≤ a + a2

a + |c| ,
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which reduces to
1

r
≥ (1 + a)(|c| − 2a2 − a3)

a(a + |c|)(1 + a)
,

satisfied by any r given that
a2 ≤ |c| ≤ 2a2 + a3.

The left-hand side of this inequality is not required to define the strategy, but was included to
underscore the interval in which r is located.

Proposition 7. If a2 < |c| ≤ 2a2 + a3 then any descending sequence has k(f ) ≤ 1 and the
optimal probability of nonextinction is

P0(f ) =

⎧⎪⎨
⎪⎩
pf, f ≤ η,

1 − (
√|c|(1 − p)+ p

√
1 + a − f )2, η < f < 1,

1, f = 1.

(17)

In addition, 1 − P0(1−) = [√|c|(1 − p)+ p
√
a]2 > 0 and P0(f ) has continuous derivative

for 0 ≤ f < 1.

Proof. We want to calculate R(f ) = 1 − P(f ):

R(f ) = inf
f1

(
1 − p

f − (1 + a)f1

1 − f1

)
(1 − pf1) = inf

f1
U(f1), (18)

where 0 ≤ f1 ≤ (1 + a)−1f .
The function U to be minimized in f1 is convex on the interval of interest, [0, 1). We recall

that strict bold play, when we bet s = f for all f , results in the minimum being realized at
f1 = 0 for all f , which we shall see is not the case. Rewriting, we obtain

U(x) = |c|(1 − px)+ p(1 − p)(1 + a − f )(1 − x)−1 + p2(1 + a − f ),

whence
U ′(x) = p(1 − p)(1 + a − f )(1 − x)−2 − p|c|;

in particular,

U ′(0) = p
a + |c|
1 + a

(
a + a2

|c| + a
− f

)
, U ′

(
f

1 + a

)
> 0.

Given that f > η = (a + a2)/(a + |c|), we have U ′(0) < 0, showing that the minimizer
x = f−

1 is in (0, f/(1 + a)). The exact value is

f−
1 (f ) = 1 −

√(
1 − f

1 + a

)(
1 + a

|c|
)
,

providing the exact strategy

s(f ) =
{
f − (1 + a)f−

1 (f ), f > (a + a2)/(a + |c|),
f, f ≤ (a + a2)/(a + |c|).

It is easy to verify the value of the jump discontinuity at f = 1 and the equality of the one-sided
limits at η.
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5. Calculations for k(f ) = 2

To gain some insight into the computational difficulty of the case in which the descending
sequence used in (11) and (12) involves more than two terms, we investigate the simplest case,
in which k(f ) = 2 (the sequence length is at least three).

We have to evaluate

inf
f1,f2

(
1 − p

f − (1 + a)f1

1 − f1

)(
1 − p

f1 − (1 + a)f2

1 − f2

)
(1 − pf2) (19)

with f1 ≤ (1 + a)−1f and f2 ≤ (1 + a)−1f1. An alternative expression, based on (14), is

inf
(γ0,γ1)∈(0,1]×(0,1]

(1 + a − γ0)(1 + a − γ1)+ γ0 − pf

(1 + a − γ0)(1 + a − γ0)
(1 − pγ0)(1 − pγ1),

but we proceed using (19). We are interested in nontrivial (interior) critical points f1 = f ′
1

and f2 = f ′
2 of the function (19), since the boundary cases correspond to k ≤ 1. We make the

observation that if the function

x →
(

1 − p
g − (1 + a)x

1 − x

)
(ρ − x), x ∈ [0, 1), ρ ≥ 1, (20)

has a nontrivial critical point x′ ∈ (0, 1), then this point takes the value

x′ = 1 −
√
(ρ − 1)

(
1

|c| − 1

)(
1 − g

1 + a

)
. (21)

By fixing f2 in (19) and applying (20) and (21) with g = f , ρ = (1 + cf2)p
−1 ≥ 1, and

x = f1, and then fixing f1 in (19) and applying (20) and (21) with g = f1, ρ = p−1 ≥ 1 and
x = f2, we obtain the system of equations

1 − f ′
1 =

√(
1 + a

|c| − (1 + a)f ′
2

)(
1 − f

1 + a

)
,

1 − f ′
2 =

√(
1 + a

|c|
)(

1 − f ′
1

1 + a

)
,

equivalent to finding a real zero of a polynomial of degree four.

6. An upper bound

An upper bound for the probability of success is

P1(f ) = 1 − (1 − f )(1+c)/(1+a), (22)

for any initial fortune f , 0 ≤ f ≤ 1.

Remark 3. We note that p = (1 + c)/(1 + a) is such that 0 < p < 1, and any function
1 − (1 − f )p

′
with p′ ≥ p provides an upper bound.

Proposition 8. Let {XSn }n≥0 be the chain describing the evolution of the gambler’s fortune,
satisfying (2), with initial valueX0 = f . Then, for any strategy S ∈ S, the process {P1(Xn)}n≥0
is a supermartingale with respect to {Fn}n≥0.
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Proof. Recall that the winning probability,w(c, r), is equal to (1+c)/(1+r). The reasoning
is identical to that leading to the upper bound from Theorem 1, obtained via Proposition 6. We
have to prove the analogue of (16) for the utility function (22), that is,

P1

(
f + rs

1 + a

)
w(c, r)+ P1

(
f − s

1 + a

)
(1 − w(c, r)) ≤ P1(f )

for 0 ≤ f ≤ 1, 0 ≤ s ≤ f , f + rs ≤ 1 + a, and r ≥ 0. This inequality is equivalent to(
1 − f + rs

1 + a

)p 1 + c

1 + r
+

(
1 − f − s

1 + a

)p(
1 − 1 + c

1 + r

)
≥ (1 − f )p. (23)

We think of (23) as a function of s and f with a and r fixed.
For fixed f , the left-hand side of (23) is a concave function of s, which shows that it is

sufficient to check its values at the endpoints. We write

ψ(s) =
(

1 − f

1 + a
− r

1 + a
s

)p
w(c, r)+

(
1 − f

1 + a
+ 1

1 + a
s

)p
(1 − w(c, r))

= (c1 − c2rs)
pw + (c1 + c2s)

p(1 − w)

with c1 = 1 − f/(1 + a) and c2 = 1/(1 + a). The derivative with respect to s,

p(c1 − rc2s)
p−1(−c2r)w + p(c1 + c2s)

p−1c2(1 − w),

is decreasing, proving that ψ(s) is concave.
It remains to verify (23) at the endpoints of the interval where s is compatible in the sense

of (4). The restrictions on s and f split the problem into two cases: case 1, in which a < r ,
and case 2, in which a ≥ r . Case 1 is further split into case 1(i), in which f ≥ (1 + a)/(1 + r),
implying that 0 ≤ s ≤ (1 + a − f )/r , and case 1(ii), in which f ≤ (1 + a)/(1 + r), implying
that 0 ≤ s ≤ f .

Cases 1(i), 1(ii), and 2 with s = 0. The inequality is trivial in these cases.
Case 1(i) with s 
= 0. We have to check (23) for s = (1 + a − f )/r , i.e.(

1 − f − (1 + a − f )r−1

1 + a

)p
(1 − w) ≥ (1 − f )p.

The inequality is trivially true for f = 1. Divide through by the right-hand side; we then have
to show that (

1 + 1

r

)p(1 − f/(1 + a)

1 − f

)p
(1 − w) ≥ 1.

The function in f is increasing, so it suffices to prove the inequality for f = (1 + a)/(1 + r),
i.e. to prove that

1 − 1 + c

1 + r
≥

(
1 − 1 + a

1 + r

)p
for r ≥ 0. This is a consequence of the fact that (1 − px) ≥ (1 − x)p for all x ≥ 0, with
x = 1/(1 + r) and p = (1 + c)/(1 + a).

Case 1(ii) with s 
= 0. We have to check (23) for s = f , i.e.(
1 − 1 + r

1 + a
f

)p
w + (1 − w)− (1 − f )p ≥ 0, (24)



Optimal strategy for the Vardi casino with interest payments 211

with f ≤ (1 + a)/(1 + r). We can see that the derivative of the function of f on the left-hand
side changes sign only once in the interval, from a positive value to a negative value. This
shows that the minimum is to be found at f = 0 or f = (1 + a)/(1 + r). It is sufficient to
verify that

1 − 1 + c

1 + a
≥

(
1 − 1 + a

1 + r

)p
,

which holds as shown above.
Case 2 with s 
= 0. In this case we have to check (23) for s = f , as in case 1(ii), which

means verifying (24) for 0 ≤ f ≤ 1. Again, with the same reasoning, we find that the minimum
is reached at either f = 0 or f = 1. For f = 0 the left-hand side of (23) equals 0, and for
f = 1 we obtain (

1 − 1 + r

1 + a

)p
w + (1 − w) > 0.
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