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OPTIMAL RECONSTRUCTION OF A FUNCTION
FROM ITS PROJECTIONS

B. F. LOGAN AND L. A. SHEPP

§1. Introduction.

Let f(x, y) be square integrable and supported on the unit disk C. The
projection P,(t, 6) of f is the integral of f along the line L(¢, 6): « cos 0 4+ y
sin 6 = t. We find an explicit formula for the unique function g(x, y) supported
on C and of minimum L, norm, which has the same projections as f in each
of n equally spaced directions or views, i.e., P,(t, 6,) = P,(t, 9;), for all ¢ and
n equally spaced 6; = jr/n,j = 0,1, --- , n — 1. We also show that the
unique polynomial P(z, y) of degree n — 1 which best approximates f in L*(C)
is determined from the above n projections of f, and give a relatively simple
explicit formula for P. The exact conditions on n functions P;(f),j = 0, - - -,
n—T1, to be the n projections P,(t, 6;) of some f € L*(C) are found.

These questions arise naturally in attempting to reconstruct the density
i(z, y, 2) of an object, in each cross-sectional z — y plane with z = 2z, fixed,
from measurements of P,(¢, §) obtained by passing a thin beam of z-rays along
lines L(t, 6) in the z = 2, plane. In the case treated here the z-ray beam is
considered to move discretely in 6 and then to translate continuously in .

In a similarly motivated but different situation, considered by R. B. Marr [M],
it is supposed that the projections of f are known over the N(N — 1)/2 lines
which join each pair of N equally spaced points on the circumference of C.
Marr found an explicit formula for the polynomial P (x, y) of degree M <
N — 2 whose integrals along the given lines best matches the N(N — 1)/2
given projections in the sense of minimizing the sum of squares of the differences.
He also studied the case where all projections P(t, §) are known and, among
other results, found the exact conditions for a function Q(t, ) to be the projec-
tions P, (¢, 6) for some f &€ L*(C).

Marr's criterion for optimality has the form of finding the polynomial ¢
whose projections match certain finitely many given projections with minimum
error e. There is of course no reason to restrict ¢ to be a polynomial. In fact
if the degree M of the polynomial is > N — 2, the error ¢ can be made zero.
For a general function g, even for the case considered here where all line integrals
in each of n views are given, there are many functions g with the exact given
projections (assuming the given values are actually the projections of some
function). One must give further conditions on ¢ to determine it uniquely.
Here we use the criterion of minimizing the L, norm of ¢ because (a) this allows
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646 B. F. LOGAN AND L. A. SHEPP

an explicit solution, (b) ¢ is then the function with least oscillations about its
mean value, which appears reasonable. It is perhaps worth remarking that
the problem of minimizing the weighted L, norm, [[¢ W (z, ¥)¢°(z, y) dx dy,
among functions g with the given projections appears very difficult to solve
explicitly for all W except the constant weight W considered here. Indeed
it would be especially interesting to know the solution for, e.g., the weight
Wiz, y) = (1 — & — %°)* which gives less importance to oscillations in ¢
near the circumference of C, k > 0, than the constant weight (W = 1, k = 0)
does.

A more realistic optimum reconstruction criterion would suppose the pro-
jections of g are given for only finitely many lines and seek the minimum L,
norm function with these projections. Unfortunately this is not well posed in
the sense that there are null functions ¢ having the given finite number of
projections, constant along the lines inside C, and zero elsewhere. If we replace
lines by strips the problem becomes awkward to solve in an explicit way except
by a direct and nonilluminating matrix inversion.

More precisely, the projection of f along the line

(1.1) L{t, 0) = {(z,y) :xcos 6 + ysin § = ¢}

18
(1.2) P, 6) = f {(t cos 0 — ssin 6, tsin 6 + s cos 6) ds

noting that
(1.3) Pi(t, 0 + m) = P;(—t, 6)
and the integral in (1.2) only extends between == (1 — #*)* since f(z, y) vanishes
if & 4+ > > 1.
It is easy to see thatif f is square integrable P,(, 6) is defined for a.e. ¢ and
6 by (1.2) and it is known [R] that P, determines f up to a null function.
Suppose that P,(t, ;) = P;(t) is known only for 6, = jr/n,j=0,1,--- ,n — 1
and all ¢, i.e., n projections of f are given. Now f is not uniquely determined,
and there are many functions ¢ € L*(C) with

(1.4) P,t, 6,) = P, 0;), for j=0,1,---,n— 1landallt

We give an explicit formula for the (unique) function ¢ satisfying (1.4) and
smoothest in the sense that

(1.5) Vig) = ffc (9 — §)° dz dy is minimum

where § is the average of g over C,

(1.6) 7= ][ o v deay.
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We show ¢ is a sum of ridge functions in directions 6, , i.e.,

n—1

a.m g9, y) = 2 pi(x cos 6; + ysin ;)

i=0

and in fact ¢ is the best L approximation to f by functions of the form (1.7).
We show in §5 that every polynomial P(z, y) of degree n — 1 in (x, y) is
of the form (1.7) with p; polynomials in one variable and that the (unique)
polynomial of degree n — 1 in z and y which best approximates f in L*(C) is
determined from P,(, 6,),j = 0,1, --- ,n — 1.
We give in §6 the exact (consistency) conditions on 7 functions P;(t), j =
0,1, -+, n — 1 to be the n projections of some function f & L*(C),

(19) Pi(t)=Pf(t70i)7 j=0,1;"‘,n—1,—13t$1-

§2. Ridge functions.

We note that a ¢ € L*(C) satisfying (1.4) and (1.5) satisfies the following
problem:
Problem. Find a function ¢ € L*(C) satisfying

(213) Pv(tyoi)'_'Pf(t’oi); j=0>1,"‘;"“1:—15.t.<_1

and

(2.1b) f f ¢*(x, y) dz dy is a minimum.
c

Indeed, the mean § of (1.6) satisfies

~_ 1 _
2.2) 7=2 Pt 8) dt =

N =

/ Py, 6 di =

forj =0,1, --- , n — 1 using (1.4) so that § is determined by (1.4). (Note
that [_,* P,(t, 6;) dt must be independent of j.)

Since (1.5) is given by

23) V@) = [[ 7@ ) daay - =y

we see that minimizing (1.5) subject to (1.4) is the same as (2.1).
Define the inner product and norm in L*(C) in the usual way

2.4) Gty = [[ 1, WP=00 1 1ETHO

and consider the closed subspace R*(C), of sums ¢ of ridge functions, p; , with
direction 6, , that is

n—1

(25) g(x, y) = Z Pi(xv y)

i=0
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Here we call a ridge function p(x, y) with direction 6 a function of the form

(2.6) o(x, y) = p(x cos 6 + y sin 6).

Note that if p is a ridge function with direction 6 and f = f(z, y) € L*(C),
then from (1.2),

@.7) G0 = [ Pit, 0000) .

We next show that any g satisfying (2.1) is unique and is a sum of ridge
functions. Let g, be the (Hilbert space) projection of f € L*(C) onto R*(C)
so that g, € R*(C) and satisfies (2.5). The difference, f; = f — ¢: , is then
orthogonal to R*(C),

(2.8) fi=1f—g L RO

and so from (2.7), if p; is a ridge function with direction 6, ,

1
29) 0= r,0) = [ Putt, 000) .
Since p; can be an arbitrary function in L*(—1, 1)
(2.10) P (¢ 0;) =0 ij=0,1,---,n—1,
or from (2.8)
(2.11) P, 0,) = P, 6)).

Any function g with the same projections as f will have its norm reduced by
projection onto R*(C) and so if g satisfies (2.1) we must have g = ¢, . Since
g = ¢, ¢ is unique, is a sum of ridge functions, and is the best approximation
to f by a function in R*(C), i.e., by a sum of ridge functions.

Given the projections of f, —1 <t <1,

(2.12) P;(t) = P, 0,),
we know from (2.5) and (2.11) that there exist functions p;(¢) such that
(2.13) P,(t) = P,(t, 0,) = P,(t, 0,)
where from (2.5) ¢ is the sum of the ridge functions p; ,
n—1
(2.14) g, y) = 2 pi(@ cos 6; + ysin 6;).

i=

However, not every set of n functions P;(t) satisfies (2.12) for some f € L*(C),
e.g., their integrals (2.2) must be independent of j among other restrictions
(see Theorem, below). Moreover, the functions p;(f) are not unique, although
their sum ¢ is unique as was proved. For the special case of equally-spaced
angles 6, , --- , 6,_, we can determine the explicit formula for the solution,
g, to problem (2.1), as follows next.
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§3. Equally-spaced angles 6;.
First we consider the projection in the direction 8 of a single ridge function
restricted to the unit circle. For convenience, we assume the ridge function
has direction 6, = 0. We have
Vi-e

3.1) Pz, 6) = f p(x cos 6 4+ y sin 6) dy.
-V 1—z2

Now we set « = cos 7 to obtain

sin T

(3.2) P, (cos 7, 0) = / p(cos 7 cos 0 + y sin 6) dy.

—sin T

Then setting u = cos 7 cos 6 + y sin 8, we have

1 cos (t—0)
(3.3) P,(cos 7, 0) = ol p(u) du.
Replacing u by cos ¢ we obtain the simple relation
1 T+0
(3.4) P,(cos 7, 6) = el B h(t) dt

where h(t) = p(cos t) sin ¢
Then for the projection of the sum of ridge functions given by (2.14) we have

n—1 1 v+ (0-04)
(3.5) P,(cos 7, 6) = ;sin @ =) )y, MO
where
(3.6) h;@t) = p;(cos t) sin .
The functions {sin wr}, w = 1, 2, ... , are orthogonal and complete over
(0, 7). So if we define
3.7 I,(r, 6) = P,(cos r, 6) = o M,(w, 6)sin wr
w=1
and write
(3.8) hi(r) = 2 h;(w) sin wr

w=1

we find from (3.5) that the Fourier coefficients are related by

(3.9 (0, 0) = 2 2: %’Sll—n“%?_—% hiw).

For the case of equi-spaced projection angles, setting 6 = 6, = kr/u and

(310) na(wr ok) = nk(w))
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we wish to find for each w, w = 1,2, 3, --- , a solution {A.(w)} of the set of
equations

wrsinw(e — )7

hi(w), k=0,1,2,--- ,n—1
. o
sm(k—j)ﬁ

3.11) Mw) =

S

i=0
where we take, according to (3.9)

sin w(k — j);—';
(3.12) =W for j=k.
sin (k — 7) -

According to (3.9), fI(w, 6) as a function of 6 is a trigonometric polynomial
of degree w — 1, so the solution of (3.11) is clearly not unique for w < n.
If w is a multiple of n, the matrix is diagonal and

(3.13) ho(mn) = MY,(mn), m=1,2,3, ..

For w > n, (3.11) has a unique solution which we obtain as follows: We

consider the sum

1 o gin w(m — k);—;
(3.14) Suw) = 2 2 M(w) —

k=0 N ™
1 — k)=
gin (m )n

We have from (3.11)

(3.15) Sulw) = 2 3 8. hs(w),
where

»e1 81D w(m — k) T gin wk — j) z
(3.16) 8w =23 n n,

™ k=0 gin (m — Ic)% sin (k — j)%

It may be verified that
sin w(m — j)%

(8.17) Su.iW) = @p 4 1) ——————— — plp + Dndn;
gin (m — j) ”

where
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and

(3.18) p = p(w,n) = [w/n],

the largest integer contained in w/n, i.e.,

(3.19) w = un + v, 0<v<n—1

Thus we have from (3.17), (3.14), and (3.11) the result

) sin w(m — Ic) =
B + Dnha(w) = @ + 1) 5 M) — Z () ——— ,
(3.20) sin (m — Ic) ~

w

,2,3, -
m 1,2

1
0, , e, — 1.

b

So for w > n we have the unique solution to (3.11).

For1 £ w < n — 1, we have u = 0, and hence we must have according
to (3.20)

smw(m—k)—
(3.21) m(w)——Zﬁk(w ————, 1<w<n-1,
sm(m—k)—

m=20,1,2, .-+ ,n— 1.

These are the consistency requirements on the Fourier coefficients of equi-
spaced projections of any function integrable over the unit circle and vanishing
outside the unit circle.

Comparing (3.21) and (3.9) we see that we may take

(3.22)  hnw) = ,,.(w), 1<w<n—-1 m=0,1,2,---n—1.

In fact (3.22) is valid for w = n, agreeing with (3. 20) and (3.13). We note
that the particular solution (3.22) minimizes Y., |A.(w)|* over all solutions,
for it follows from (3.21) and (3.9) that

(3.23) :Z:: Iﬁk(w)|2 = %:‘L :—Z: hh(w)nk*(w); 1<w<n

where the asterisk denotes the complex conjugate and we have included the
case w = n, using (3.13). Then Schwarz’s inequality applied to the sum on
the right gives the desired result. Furthermore, since h.,(w) is uniquely de-
termined for w > n we can assert that the solution we have given minimizes

; /(: |ho(7)|* dr = ; /;r |on(cos 7)|* sin® 7 dr
] el dzay

(3.24)

I
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as well as

(8.25) ff lg(x, y)|* dz dy subject to (2.1a) with 6, = %
22 +y?<1

§4. An expression for ¢.

Now we would like to obtain a closed-form expression for k;(r) and hence
a closed-form solution to the problem (2.1)

First we summarize the relations.

(4.1) I,(r) = (cos 7] ) Z 10;(w) sin wr, 0<rs<nr

w=1

(4.2) hi(r) = p;(cos 1) sin 7 = Z h;(w) sin wr, —ar<r<nw
(4.3) hw =g 0w 1<w<n

i”i(w) = Hﬁi@)
(4.4)

sin w(j — Ic);—:

3 ) ————2
 2uls + 2ulu + 1 12 sin (j — Ic);—r

w=>n

where

u=[%:|’ w=uwn+v,0<v<n—1).

We have h;(r) = p;(cos 7) sin 7+ which is an odd function so that the Fourier
series in (4.2) is valid for negative 7. Then if we agree to extend II;(r) as an
odd function i.e.,

(4.5) I;,(—7) = —I(7)

which is natural in accordance with the Fourier series in (4.1), we can express
h;(r) in terms of convolution operators on the projections IT,(r). Let us write

(4.6) hi(r) = :2: hix(7)

where y,,(r) is the component of y;(r) that depends only on II,(r). We have
from (4.3) and (4.4)

hiiw) = H w), 0w<n
4.7
_1 v(n_— v) -
= 2(1 T+ D 1)>ﬁ"(w)’ nsw<
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and for & £ j
haw) =0, 0<w<n
(4.8) . .
_ W sin (w(j — k)r/n) -
halw) = 2n°u(u + 1) sin ((j — k)yr/n) L), n<w< .
From (4.7) we see that the coefficient of II;(w) tends to 3 as w — « so that
1 ™
(+.9) halr) = HLG) + 5 [ MO — 0 dt
where
n—1
- _ J_1> _vln =
(4.10) Ko(r) = w=-2(':'—1) ( + 2 ;nu( T 1) cos wr.
Performing the indicated sums, we find
Ko(r) = —- (S‘;IE"TT//?) + [cos (n7/2) — [sin (nr/2)| T(nr/2)]

(4.11) "
-[cos (r/4) sin (n7/2) — 2nsin (r/4) cos (nr/2)]/[4n*(sin (1/4))],

where T'(z) is the periodic triangular function defined by
(4.12) T() =7 — 2 |z, —r<z<mw
T(x + 27) = T(x).

For Ik # §, we see from (4.8) that only the high-frequency components (jw| > n)
of I, (r) affect h;(r). We have

ha(s) = [/20) sin G = By /) [ (0 + G = Ryw/m)

(4.13)
— It — (G — k)x/n)]K\(r — t) dL, kE#j.
where
[sin (nr/2)| sin (n7/2) 3
(4.14) Ei(r) = 4n sin (7/2) (nT/2)|:n sin (7/2) 2 cos {(n 1)7/2}]

4+ [cos (7/2) — (sin n7)/(2n sin (v/2))]/4n sin (7/2).

Remark. For the special case of a centrally symmetric function f, we have

(4.15) P, 6;,) = P@t) = P(—1)
or
(4.16) II;(r) = (7).

We have

(4.17) hi(r) = hr) = () + [ MK — 0 dt
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where
(4.18) K,(r) = [cos nr — cos 7 sin nr/(n sin 7)]sgn(sin(nr)/(4 sin 7).

We have explicitly determined a closed-form expression for the solution ¢
to problem (2.1), namely ¢ is given by (2.14), where p; are given by (4.2) in
terms of h; , and h; in turn are given by (4.6), (4.9), and (4.13). The solution
is complicated, but involves only finite sums of convolutions with the explicit
kernels K, and K, of (4.11) and (4.12) which involve only trigonometiic
functions.

It should be mentioned that since g(z, y) for fixed (z, y) depends linearly
on f, there exists a kernel-measure u,(dz’, dy’) for which

(4.19) 9z, y) = f fo 1@, y )u(d2’, dy’).

Because of the direct component $II;(r) in h;(r) and the requirement
(4.20) H,'(‘T) = P/(COS T, 0,)

and since the right side of (4.20) is a line integral of f, it follows that the kernel-
measure u, in (4.19) is not absolutely continuous with respect to Lebesgue
measure on C, i.e., has a nonvanishing singular component. A reconstruction
scheme based on approximating the explicit formula for ¢ when the integrals
of f are known for only finitely many strips would have the difficulty of de-
termining the appropriate contribution of the singular line integral, i.e., the
first term in (4.9), to the ridge functions, when the individual line integrals
are not known for all lines.

§5. The optimum polynomial approximation.

Next we explicitly determine the polynomial p(z, y) of degree n — 1 which
best approximates f in L*(C), being given n views of f. We show that p is
obtained from g by simply truncating the series (4.2) to w < n.

Let ¢ be a polynomial of degree N in x and y, i.e.,

(5.1) q@, ) = 2 2 ana'y’

i+k <N
A ridge polynomial of degree N with direction 6 is of the form
(5.2) o(x, y) = p(x cos 0 + y sin 6)

where p(z) is a polynomial of degree N in x.

LemmMa 1. Every polynomial of degree n — 1 in x and y is a sum of n ridge
polynomials (with directions 0, , 0, , - -+ , 0,_y which are distinct mod =) of degree
n — 1.

Proof. 1If the statement of Lemma 1 were false there would exist a poly-
nomial ¢(z, y) of degree n — 1 in z and y which is orthogonal in L*(C) to the
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subspace generated by the ridge polynomials of degree n — 1 with direction
6=20,,7=0,---,n— 1. But then from (2.7) forallj =0, --- ,n — 1

5.3) 0= 0= [ Pt 00000 at

and every polynomial p(f) of degree n — 1lin¢. From (1.2) we see that P(t, 6;)
is the product of a polynomial in ¢ of degree n — 1 and the function (1 — #*)*.
Thus from (5.3), we obtain for each j = 0,1, --- ,n — 1

(5.4) Po(t,6) =0, —o <i< .

Fixing ¢, we see from (1.2) that P,(¢, 0) is a trigonometrical polynomial in
of degree n — 1. But since (1.2) also shows that

(5.5) Py, 0 + m) = P,(—t, 6)

we see from (5.4) that P,(t, 6) has 2n zeros, § = 6, and 6 = 6, + =, j = 0,1, -,
n — 1 and so P,(t, 6) = 0 in 9 and hence also in t. But then @ = 0 as is well-
known [R] and Lemma 1 is proved.

Let f € L*(C) and let p = p(z, y) denote the best approximation to f by a
polynomial in z and y of degree n — 1 in L*(C), so that p is the Hilbert space
projection onto the subspace S*(C) of L?(C) generated by polynomials in z
and y of degree n — 1. Since S*(C) C R*(C), the space of sums of ridge func-
tions, by Lemma, 1, p is the projection of g onto S*(C).

From (3.7), (3.8) and the defining relations

sin wr
(56) Uw—l(t) = sing w = 17 2, ..
(6.7 t=cost

of the Chebyshev polynomials of the second kind, U, , we can write g, using
Lemma 1, in the form

n

(5.8) gz, y) = i i hyw)U -1 (z cos 8; + ysin 6;).

i=0 w=

We next show that p(z, y) is the polynomial obtained by truncating the series
in (4.2) tow < n, i.e., p(x, y) = po(z, y) Where

5.9 Doz, y) = :2; 1:2_:1 fz,(w)Uw_l(x cos 0, + ysin 6;).

Indeed we verify directly that for 1 < k < n < w, we have

(5.10) fj; Up_1(z cos 8; + ysin 6,)U,_,(x cos 8, + ysin 6,) de dy = 0
for j = I as well as for j ¢ | (Note: For j = [, (5.10) becomes

(5.11) fl Upes(YU o () V1 — £ dt = 0
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which is the orthogonality property of the Chebyshev polynomials.) It follows
from (5.10) that

(5.12) (9 — po) L S*(C)

and so p, is the projection of ¢ onto S*(C). Since the projection of g onto
S?(C) is unique we must have p, = p.

We have proved that the polynomial p(z, y) of degree n — 1 which best
approximates f in L* over C is the sum of the ridge polynomials

n=1

(5.13) p@,y) = 2 p;" (& cos 6; + ysin 6;)
i=0

where from (4.3), and (5.9),

(5.14) p;™(cos ) gin 7 = nl_,,- f ;(¢) X w sin wo sin wr do.

0 w=1
Extending II; to be odd as before we may express p;™ as a convolution in the
manner of (4.9),

(5.15) p; " (cos 7) sin 7 = 51; f_, O;(e)K(r — o) do
where as an easy calculation shows

_1fsinm+du 1 [sin (nu/2):]2)‘
(5.16) K(w) = 2( sin 3u n Lsin (u/2)

We note that in contrast to the complicated nature of the explicit formula
for g, the explicit formula (5.13) for p(z, y), where p; are given by (5.15)
is reasonably simple. It is clear from the fact that the troublesome first term
in (4.9) is not present in the expression (5.15) for the ridge function summands
of p that the kernel-measure up(dz’, dy’) is absolutely continuous with respect
to Lebesgue measure in contrast to u, in (4.19).

§6. Consistency conditions.

We next give the exact conditions on a sequence of functions P;(t) to be
the projections of some function f € L?*(C). The results are stated at the end
of the section.

We have given explicit formulas for the h;(r) and hence the components
pi(®) of a sum of ridge functions g(x, y) having the same projections as f(z, y)
in the directions 6, = kr/n, k = 0,1, --- ,n — 1. We have from (2.7), (2.14),
and (3.6)

I

ff l9@, 9)I" dz dy Z [ 11 P;(t)pi(0) dt

6.1)
= 2 | W(Dh(r) dr.

i=0 Y0
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(We assume that P; and p; are real-valued). Now

©2 [ o) ar = § 3 0,0 0)
We have from (4.3) and (4.4)
(6.3) 'fﬁ,.(w)h,.(w) =5 Z—f Lw)p?, 0<w<n
and, for w > n,
> 11, @)y ) = ot S 5
(64) i=0 + 1)

_ w sin (w(j — k)r/n)
e T D Z ORI ARE

It can be shown that forj = 0,1, --- ,n — 1

6.5) "Z" 80 WG = Byw/n)

2 % nsin (G = kyw/n) — w2n

has nontrivial solutions for two eigenvalues N\ = p and A = p + 1 when v in
(3.19) is nonzero; When » = 0, w is a multiple of #» and there is only one eigen-
value A = y since the sum on the left reduces to uz; . Since a quadratic form is
bounded by its maximum and minimum eigenvalues, we must have

n-1 . n-1 nl sin (w(j — k)r/n)
o MR ION S R 300 G )

<o+ ) LIOEE, w2

From (6.4)
67) Fptp & M S SN@he) <72 S mwr, e

For the upper bound in (6.7) we see easily using (3.19) that w/2nu achieves
its maximum for w > n at w = 2n — 1. Since this upper bound dominates
(6.3) we have

69  Towiws<(i-L) Tner wso

Equality holds in (6.8) only for w = 2n — 1 and only if (since u = 1 from (3.19))
the left-hand equality holds in (6.6), requiring

©6.9) "i‘ 1,(w) sin (w(j — k)r/n)

= wsin (G = ke = POLw) = 1)
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forj=0,1,--- ,n — land w = 2n — 1. It may be shown that there is only
one (normalized) eigenvector of (6.9) with eigenvalue 1, namely

(6.10) nen—-1)=¢ k=012 --,n—1

i.e., equality can hold in (6.8) if and only if

(6.11) N;(r) = ¢sin(@2n — )7, §=0,1,---,n—1

Finally from (6.1), (6.2), and (6.8)

6.12) ffcg2g(1—21—n)'§ "n,.(f)zdm(l—é-%)'ffl—&(—t)z—dt.

i=0 Jo i=0 J-1 1-4#

We note that

P, 0)°
6.13 LD <o [[ Faway,
©19 [tz [ r i
To see this note that from (1.2) and Schwarz's inequality,
(6.14) .Pf(t, 0)2 S 2 \/1 - t2 an(t, 0)

and (6.13) follows by dividing by V/1 — ¢ and integrating over t. Equality
holds in (6.13) if and only if f is a ridge function with direction .

We supposed at the outset that the functions {P;({)} were projections of
some function f € L?(C), which implies that P;(f) vanish for |t| > 1, satisfy

(6.15) _11 % dt <

from (6.13) and obey the consistency conditions (3.21) for the Fourier co-
efficients of IT; for w < n. These are in fact the only requirements on a set
of functions {P;(t)} to be the projections at equi-spaced angles of some f & L*(C)
since we have constructed a sum of ridge functions restricted to C' which have
as projections the given P;(f). We summarize the results of this section in
the following theorem.

TurorEM. Let n functions P;(f),j = 0,1, --- , n — 1 be given satisfying
@ P;t) =0, [f|>1,
1
(i) [ rora-sta< e,
-1

Gi) M) = 30 SRRy

where sin(w(j — k)r/n)/sin((j — k)x/n) = w for k = j, and

n;w) = j; P(cos r)sinwrdr, w=1,2,---
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Then there exists a function g(z, y) vanishing for 2® 4+ y* > 1 for which, setting
0, = .71"/ n,

Vicg
f g(t cos 6; — ssin 6; , tsin 0; + s cos 6;) ds = P;(1),
@iv) Tvime
j=0,1,---,n—1

) ff,w»q 9z, y) de dy < (1 _ 21_n> 'l'z:; f_‘l \[/P_%(_t_—)]; i

where equality holds in (v) ¢f and only f
(vi) P;(cos 1) = csin(2n — 1)7, j=01-:--,n—1

Remark. The function ¢(x, y) corresponding to the extremal P; in (vi) may
be shown to be a multiple of the Legendre polynomial, [AS, 22.10.11].

(6.16) 9@z, y) = c(n — H)C,.(2" — 1), =2+ ¢
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