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ON THE NUMBER OF LEAVES OF A 
EUCLIDEAN MINIMAL SPANNING TREE 

J. MICHAEL STEELE,* Princeton University 
LAWRENCE A. SHEPP,** AT&T Bell Laboratories 
WILLIAM F. EDDY,*** Carnegie-Mellon University 

Abstract 

Let Vk,n be the number of vertices of degree k in the Euclidean minimal 
spanning tree of Xi, 1 < i n, where the Xi are independent, absolutely 
continuous random variables with values in Rd. It is proved that n -Vkn 
converges with probability 1 to a constant ak,d- Intermediate results provide 
information about how the vertex degrees of a minimal spanning tree change 
as points are added or deleted, about the decomposition of minimal spanning 
trees into probabilistically similar trees, and about the mean and variance of 
Vk,n · 

SUBADDITIVE EUCLIDEAN FUNCTIONALS; VERTEX DEGREES; SELF-SIMILAR 

PROCESSES; EFRON-STEIN INEQUALITY 

1. Introduction 

The initial purpose of this investigation was to provide an asymptotic 
understanding of the number of leaves of the minimal spanning tree of n points 
chosen at random from the unit square. To set this problem precisely, as well 
as to make clear the more general results which will be established, we begin 
with some notation. 

By G = (V, E) we denote a connected graph with vertex set Vand edge set E. 
We also assume that there is a weight function w: E - R which assigns a real 
number to each edge in E. A minimal spanning tree TofG is a connected graph 
with vertex set V and edge set E' C E such that 

E w(e)=w(T) 
eEE' 
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is minimal, i.e. no connected subgraph of G has a smaller total edge weight 
than T = (V, E'). 

One probabilistic model of interest here is specified by taking V= 
{X,, X2,. · , X } where Xi, 1 _ i _ n, are independent random variables with 
the uniform distribution [0, 1]2, letting E consist of all (2) pairs (i,j), 1 _ i < 
j < n, and setting w(xi, xj)= Ix- xj , where the bars denote the usual 
Euclidean distance. We denote by MST(X1, X2,. * , Xn) a minimal spanning 
tree of X,, X2,* · ., Xn under the weight function w. As this language acknow- 

ledges, there can be more than one minimal spanning tree for a given sample 
{xl, 2,* ., x ). However, for Xi with continuous support, the minimal span- 
ning tree is unique with probability 1, since any two sets of n - 1 edges will 
have different total lengths with probability 1. 

Our main focus will be on the number of leaves (i.e., vertices of degree 1) in 
the minimal spanning tree determined by the uniform sample model. We also 
consider the more general problem of general vertex degrees of random 
vertices Xi, 1 _ i n, which are chosen according to an arbitrary density with 
support in Rd, d _ 2. Still, the combinatorial and probabilistic essence of our 
problem is already to be found in the case of uniformly distributed random 
variables in the unit square. 

The motivation for our investigation comes from several sources. First, 
there has already been interesting work done on the number of leaves of a 
random tree where the random tree is less intricate than the Euclidean 
minimal spanning tree. Second, there is a close connection with previous work 
on subadditive Euclidean functionals. After introducing the notation for our 
more general results, it will be possible to give an explicit application of our 
main theorem to the theory of multivariate non-parametric hypothesis tests. 

The earliest work on the number of leaves of a random tree is due to Renyi 
(1959), where the specified model was that of choosing a tree T at random 
uniformly from the set of all n -2 labeled trees with n vertices. If L denotes the 
number of leaves of such a tree, Renyi (1959) established that 

(1.1) ELn, n/e as n -oo 

and also that Ln is asymptotically normal with approximate variance 
n(e - 2)e-2. 

Najock and Heyde (1982) also established a linear growth rate for the 
expected number of leaves in the context of a certain class of (n - 1)! rooted 
trees which arise in a linguistic application. Under their model for a random 
tree, they proved that 

(1.2) lim n - ELn = . 
n - x 

In contrast to the tradition of Renyi (1959) and Najock and Heyde (1982), 
the investigation of minimal spanning trees has a strong geometric flavor. Also, 
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the successful analytical treatment of such Euclidean trees rests on articulating 
an approximate self-similarity between a subset of the tree and the whole tree. 
This method is closely related to subadditive techniques for Euclidean func- 
tionals, and the present application to the number of leaves also extends the 
domain of problems to which subadditive methods are effective. Earlier work 
with the type of subadditive method used here always seemed to deal with the 
lengths determined by optimality conditions. (See e.g. Beardwood et al. 
(1959), Steele (1981a,b), or Hochbaum and Steele (1982)). For some under- 
standing of the applications of minimal spanning trees in computer science, 
one can consult Bentley (1978), Chin (1978), Jung (1974), Kang (1977), 
Katajainen (1983), and Whitney (1972). For some examples of applications of 
minimal spanning trees in physical sciences and biology, one can consult 
Mallion (1975), Penny (1980), Romane (1977), and Wu (1977). 

Three main results will be proved here, but the following readily digested 
theorem motivates and underlies the whole development. 

Theorem 1. If Xi, 1 < i < oc, are independent and uniformly distributed 
on [0, 1]2, then for Ln, the number of leaves of the MST(Xi, X2, * * , Xn), we 
have with probability 1, 

(1.3) lim n-Ln =a> 0. 
n --o 

The exact value of the constant a is not known, but Monte Carlo simulation 
results suggest that a = 2/9 is a reasonable approximation. We will provide a 
proof that a > 0, but the only analytical bounds we can provide on a are very 
conservative. Further comments on the possibility that a exactly equals 2/9 are 
given in Section 6. 

The conclusion of Theorem 1 can be extended to arbitrary dimension and 
arbitrary vertex degree. Naturally, the associated constants depend upon the 
dimension d and on the vertex degree. 

Theorem 2. Let Xi, 1 < i < co, be independent and uniformly distributed 
on [0, 1]d, d - 2. If Vk,n = Vk(X, X2, * * Xn) denotes the number of vertices of 
degree k in the MST(X1, X2, * , Xn), then there are constants ak,d such that 
with probability 1 

(1.4) lim n -Vk,n = k,d 
n-- oO 

for all k. 

In the case of k = 1 and d = 2, one has V1,n = Ln and the constant a1,2 is 
simply a, the constant of Theorem 1. One should note also that for each 
dimension d there is an integer Dd such that Dd is the largest possible degree of 
any vertex of any minimal spanning tree in Rd so that ak, = 0 for k > Dd. It is 
easy to see that Dd < oo for any d, but only a few values of Dd are known 
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exactly. For proofs that D2= 6 and D3 = 13, one can consult Hilbert and 
Cohn-Vossen (1952), p. 47, or Rogers (1964). 

We are able to show a,d > 0 for all d _ 2; but, since even the determination 
of Dd is open for large d, it is unreasonable to expect any determination of ak,d 
for large k and d. 

The third theorem shows that one can relax the assumption that the Xi, 
1  i ' n, are uniformly distributed. Curiously, it does not seem possible to 
extend our results to completely arbitrary distributions. In particular, con- 
siderable mystery remains about the number of leaves of minimal spanning 
tree samples from a distribution with singular support. The difficulty of 
dealing with the contributions due to a singular component of the distribution 
of the Xi is peculiar to the problem of vertex degrees and has not arisen in the 
earlier work on subadditive Euclidean functionals. 

One interesting aspect of the limit theory of Vk,f for absolutely continuous 
random variables with compact support is that the limit of n -1 Vk, does not 
depend on the underlying distribution. In particular, we have the following 
result. 

Theorem 3. If X_, 1 < i< oc are i.i.d. with a density f in Rd, then with 
probability 1 

(1.5) lim n -Vk, = ak,d for all k 1, d 2. 
n -o 

Before digging into the proof of these results, it seems worth giving more 
details on application of Theorem 3 to the theory of non-parametric multivar- 
iate tests. In particular, we consider the work of Friedman and Rafsky (1979) 
which gives an elegant extension of the Wald-Wolfowitz runs test to multivar- 
iate samples by using the minimal spanning tree to suggest a proper analogue 
for the number of runs in a sequence. If one is given two samples of sizes n and 
m from two distributions F, and Fy in Rd, one can test Ho: F, = Fy by 
constructing the minimal spanning tree of the joint sample, removing all the 
edges of the tree which join observations from different samples, and letting R 
denote the resulting number of subtrees. Small values of R would lead to the 
rejection of Ho. The expectation of R does not depend on the degrees, and 
equals 1 + 2nm/(n + m) just as in the classical test of Wald and Wolfowitz. In 
the general case, Friedman and Rafsky found the variance of R conditionally 
on C, the number of edge pairs that share a common node. If we let di be the 
degree of the ith vertex of the MST of the joint sample, then since 2 ½In" di = 
n + m - 1 we have under Ho that 

1 n+m 1 
(1.6) C=- E d,(d,-1)= 1-n-m+- k2Vn+mk. 

2 (1. 2 k 

Consequently, the results given here show that the conditional tests of 
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Friedman and Rafsky are asymptotically unconditional under Ho. The com- 
plete details of this fact would take us away from the main issues, still 
Equations (1.5) and (1.6) should make the claim credible. 

The proof of preceding theorems will be given in the next four sections. In 
Section 2 we collect some basic combinatorial observations. Section 3 pro- 
ceeds to obtain the behavior of the expectations EVk,n by using a Poisson 
embedding, subadditivity arguments, and the application of a Tauberian 
theorem. 

The fourth section uses the Efron-Stein inequality to obtain a good bound 
on the variances of Vk,n. Traditional Chebyshev and interpolation techniques 
are then used to complete the proof of Theorem 1 and Theorem 2. Section 5 
shows how a lemma due to Strassen (1965) can be used to extend Theorem 2 
first to densities with compact support, then to general densities. 

Section 6 collects the information which is available on the constants ak,d. 
The final section reviews some open problems and provides perspective on the 
way the asymptotic theory of vertex degrees fits into the theory of subadditive 
functionals and relates to the idea of fractals. 

2. Combinatorial observations 

The next four lemmas are free of any probability theory. They focus on the 
basic combinatorial geometry of minimal spanning trees. 

Lemma 2.1. If B is a subset of S = {xl,x2,..., *,}, and if e = {X, Xj} is an 
edge of MST(S) such that e c B, then e E MST(B). 

Proof. Since eEMST(S), there is a partition (A,AC) of S such that 
e nA #0, e nAC 0 and 

(2.1) lel = min{ e'l :e' nA a 05 ande' nAC }. 

(This is a traditional necessary and sufficient condition for an edge to be in a 
MST.) 

Since e c B, we see A n B and AC n B is a non-trival partition of B. Because 
of (2.1) the edge e will then satisfy 

(2.2) 1el _ min{ e'l: e' n n B 0 and e' nA n B 0}. 

By the cited necessary and sufficient condition for an edge to be in the minimal 
spanning tree of B, we see that (2.2) guarantees e E MST(B). 

One important consequence of Lemma 2.1 is that it shows that only a few of 
the elements of {x, x2, *-, xn} can have different degrees in the 
MST(x1, x2, , x,, xn + ) than they have in the smaller tree 
MST(xl, 2, *, xn). This is made quantitative as follows. 

Lemma 2.2. For any xi ERd, 1 _ i _ n + 1, if w denotes the number of 
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elements of {xl, x2, *, x, n }, which have different degrees in 
MST(xl, X2,. *, x,, Xn + ) and MST(x1, x2, * , xn), then w < 4Dd - 2. 

Proof. We apply Lemma 2.1 where 

B -= (1, X2,- , Xn) C {Xl, X2,' ',Xn+l} 
= S 

and observe that every edge of MST(S) which is not an edge of MST(B) must 
be incident to xn, 1. There are at most Dd such edges. 

Since MST(S) has n edges and MST(B) has n - 1 edges, we see therefore 
that there are at most 2D - 1 edges of MST(S) and MST(B) which are not 
common to both MST(S) and MST(B). Since the edges which fail to be in 
MST(S) or MST(B) are incident to at most 4Dd - 2 vertices, there are at most 
4Dd - 2 vertices which fail to have the same degree in MST(B) and MST(S). 

One way in which Lemma 2.2 will be used is expressed in the following 
corollary. 

Corollary. If {xl, x2,* * *, x} and {xl, x2, * *, x' } are any two finite sub- 
sets of Rd, and if h is the cardinality of the symmetric difference of these sets, 
then there are at most 2h(4D - 2) vertices which have different degrees in 
MST{x, x2, * ', x } and MST{x', x2, *·, x4 }. 

As given above, the proof of the corollary is immediate. With more thought, 
one can provide a bound of h (4Dd - 1), but the essential point is the linearity 
in h. 

Although we are concerned with the degrees of vertices, we will find it useful 
to have some information about the length of minimal spanning trees. 

Lemma 2.3. There is a constant cl such that for any xi E [0, 1 ]d, 1 i n, 
there exists an i and j, 1 _ i <j < n, such that 

(2.3) xi - xj < cln -. 

Proof. This is a consequence of a geometric pigeonhole argument. Suppose 
each of the points xi were the center of a ball of radius r. Such balls have 
volume odrd, where Od is the volume of the unit d-ball. If x, E [0, 1]d, then the 
ball centered at xi must cover at least 2 -dCdrd of [0, 1]d; so, if 

(2.4) n2 -dodr > 1, 

then two r-balls must intersect. Thus, if there are n points in [0, 1 ]d, we see that 
some pair of points must be within a distance of 2r if inequality (2.4) holds. In 
other words, if there are n points in [0, l]d, we see that some pair of points 
must be closer than 4a)- l/dn- lid, SO the lemma is established with c1 = 4ca) /d. 

One easy consequence of the preceding lemma is that the length of a 
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minimal spanning tree of n points in [0, 1]d cannot be too large. More 
precisely, one has the following result. 

Lemma 2.4. For any n points {xl, x2 * *, x,n C [0, 1]d, the minimal span- 
ning tree has total length majorized by c2n(d -)/ld 

Proof. Let m, be the maximum length of any minimal spanning tree of n 
points in [0, 1]d, and consider a set {x1, x2, * *, n + 1} of size n + 1 for which 
mn+l is attained. By Lemma 2.3 there are xi and xj, 1 < i <j < n + 1, such 
that Ixi-xjl cln- ld. Since joining xi to x, and forming the minimal 
spanning tree of {(x, x2,. -, i* * , x x +, * * , + 1} provides a spanning tree, we 
have 

(2.5) mn+l- mn + cln-l. 

By summing (2.5) and using the fact that ml = 0, we see 
n-I 

(2.6) mn, Cc E k-l/d < cld(d - l)-1n(d-)/d, 
k-= 1 

which establishes the lemma with c2 = 2c, 

3. Asymptotics of EVk,n 

Instead of working directly with uniformly distributed random variables in 
[0, 1 ]d, we will draw strength from the independence properties of the Poisson 
process in Rd. The first observation is that if we let 4(t) denote the expected 
number of vertices of degree k of the MST of the points of the Poisson process 
in [0, t]d, then by the usual formula for expectations in terms of conditional 
expectations, 

00 

(3.1) t(t)= ) (EVk,n)tdnexp(- td)/n! 
n=O 

where Vk,n are exactly as defined before, i.e., Vk,n is the number of vertices of 
degree k in the MST(Xi, X2,., Xn) where Xi are independent uniform 
random variables on [0, l]d. 

To obtain asymptotic information about 0(t), we will first get an approxi- 
mate recurrence relation for the function ((t). To aim toward that goal, we 
partition [0, t]d into M = md subcubes Qi of side t/m. We will let Q denote the 
points of the Poisson process which are in Qi. By Lemma 2.1 we see that if 
e EMST( U1 Q,) and e c Q', then e E MST(Qf). We therefore have the set 
inclusion 

(3.2) MST(U Q, c U MST(Q2) U D 
\ i-l / /i=l 
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where D is the set of all edges of MST( UM= 1 Q') which intersect two different 
subcubes Qi and Qj. 

We now move toward showing that the number of vertices of degree k 
in MST( UM=l Q') is majorized by the number of vertices of degree k in 
U M= MST(Q') plus a small error term. Since B = UM MST(Q;) has fewer 

edges than A = MST( UiM Q'), Equation (3.2) implies that the difference set 
of UM I MST(Q') and MST( Ui Q') contains at most 2 ID I edges, where 

ID I is the number of edges in D. This follows from the observations that 
A-B =D and IB-AI= B nAc = I BI- B nAl _ IAI- B nAl= 

DI. 
The number of vertices of degree k in MST( U,i I Q') is bounded by the 

number of vertices of degree k in U[i I MST(Q') plus 4 1 D I, since for a vertex 

degree to change, it must be incident to one of the edges in A AB, there are at 
most 2 ID I such edges, and each edge is incident to two vertices. Taking 
expectations and summarizing in terms of 0, we have 

(3.3) 4(t) _ mda(t/m) + 4E ID I. 

For us this will be an important inequality, but for it to be effective we need a 
bound on E I D I. We fix a real parameter 0 < A < t and consider the decompo- 
sition Qi = Ai U Bi, where Bi is the set of all points within A/m of the boundary 
of Q, and Ai = Bc. We note that UiM Bi has volume equal to p = td - 

md(tlm - 2A/m)d = td - (t - 2A)d, and, hence, the expected number of 

points of the Poisson process in UiM 1 Bi is also p. Further, we note that if if j, 
then for any x EAi and y EAj we have I x - y I 2Am -. 

The relations for bounding E I D I are now all in place. Any edge in D must 
either have at least one vertex in Um I Bi or else have length at least 2Am - in 
order to span the distance between two distinct A,'s. 

By N(x) we denote the number of edges of MST( UiM Q') of length at least 
x, and we note that xN(x) is bounded by the total length of the 

MST( UiM Q'). By Lemma 2.4 we see the expected length ofMST( Ui I Q') is 
bounded by c2EZ(d- )/d, where Z is a Poisson random variable with mean td. By 
Jensen's inequality EZ(d- )/d is majorized by td- , so we have 

(3.4) EN(x) < C2td- 1X - . 

We let T denote the set of points of the Poisson process which are in 
U iMf Bi, and note that every edge of D must either meet T or have length at 
least 2A./m. Since no vertex of a minimal spanning tree meets more than Dd 
vertices, we have a basic bound on E I D I, 

EID I DdE ITI + EN(2A/m) Ddmdt(t/m)d -(t/m - 2A/m)d} 

+ C2td- (2A) -lm. 

Now, by simply letting A = 1, we see there is a constant c3 such that 
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(3.5) E IDI I c3td- m for all t > 1. 

Here we should note that there are choices of i which lead to sharper 
inequalities than (3.4), e.g. A = td/2m 12, but inequality (3.5) is quite simple and 
sharp enough. Combining the bound (3.5) with (3.3), we see that for all integers 
m > 1 and real t > 1, we have for c4 = 4c3 that 

(3.6) +(t)  mda(t/m) + c4td-m. 

A key step in obtaining the asymptotics of EVk,n will be to show that any 
continuous function satisfying (3.6) must satisfy the asymptotic relationship 

(3.7) +(t) - ytd 

for some constant y. 
We now prove the relation (3.7). If we let V(t) = (t)t-d, then (3.6) is 

equivalent to 

(3.8) VM(mt) _ /(t) + c4t-. 

Just by setting t = 2 and letting m - oo, we see 

(3.9) 0 < y = lim inf y(t) < (2) + c4 < o. 
t - oo 

Now, for any e > 0 we can find an open interval (a, b) such that /(t) < y + e 
for all t E(a, b), and we can also choose the value a sufficiently large so that 
c4a- 1< e. By (3.8) this means 

(3.10) W(mt) y + 2e 

for all positive integers m and all t E (a, b). If we let Im = (ma, mb), we see that 
(3.10) says y/(t) < y + 2e for all t E Im. Now, since Im + and Im intersect for all 
m such that (m + 1)a < mb, we see U'=I Im contains the infinite interval 
[to, oo), with to= ara(b -a)-'l, so 

(3.11) /(t) < y + 2e for all t > to. 

Since y was defined as the limit infimum of V/, the fact that e > 0 was arbitrary 
in inequality (3.11) says that limto y/(t) = y. 

The asymptotic behavior of EVk,n can be extracted from (3.7) by means of a 
Tauberian argument. An easy Tauberian theorem to apply is the following. 

Lemma 3.1 (Schmidt's Borel-Tauber theorem). Iff is any real function 
defined on the integers and satisfying the Tauberian condition 

(3.12) lim lim inf min { f(m) - f(n)} > 0 
e-0+ n - oo n n m n +en 

then the limiting relationship 
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(3.13) E exp( - A)Anf(n)/n! c as A 
n=O 

implies 

f(n)- c asn- xc. 

Here, of course, the notation limeo + g(e) means the limit ofg(e) as e - 0 for 
e>0. This result due to Schmidt (1925) can be found with a modern 
probabilistic proof in Bingham (1981), cf. Corollary to Theorem 3a, p. 224. 

The asymptotic relationship 0(t) - ytd as t - oc can now be pressed to yield 
information about EVk,n as n - cx. In particular, we have the following result. 

Lemma 3.2. There are constants ak,d depending only on k and d such that 

(3.14) EVk,ln - ak,dn as n -co. 

Proof. If we let x = td in Equation (3.7) and multiply by ex, we have 

xn 

(3.15) E EVk,n- yxe. 
no n 

Integration of an asymptotic series preserves that relation, so integrating (3.15) 
and dividing by xex gives 

Xn 
(3.16) e-x EVk, . 

n=o (n + 1)! 

By taking f(n)= (n + 1)-'EVk,,, we will be able to complete the proof of 

(3.14) by verifying the hypothesis of Lemma 3.1 given by (3.12). If n < m 
n + en /2, we have by Lemma 2.2 that 

I Vk,m - Vk,n I 4Dden 12 

so, we also have 

f(m) - f(n) = (m + 1)- EVk,m - (n + 1)-1EVkn 

_ (n + enl/2 + 1)- l{EVk,n - 4Dden12} _ (n + 1)- EVk,n 

(3.17) = --E(Vk, n)(n + Enl/2 + 1)- (n + 1)-en 1/2 

-4Dden'2(n + en1/2 + 1)-1. 

Since EVk£, < n, the last expression in (3.11) shows without effort that 

lim inf min /2 f(m) - f(n)} > 0, 
n-x n m _n+en 

establishing (3.12). Finally, we can invoke Lemma 3.1, and thus complete the 
proof of the relation (3.14) with ak,d = y. 
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4. Almost sure behavior 

Now that we know EVk,n - ak,dn, we can obtain the almost sure relation 

Vk,n a ak,dn by obtaining information about the variance of Vk,n and then using 
Borel-Cantelli and interpolation arguments. First we recall as a lemma the 
inequality of Efron and Stein (1981), which essentially says that Tukey's 
jackknife estimate of variance is conservative. 

Lemma 4.1. If h is any symmetric funcion of n - 1 variables and we set 
hi = h(X,, X2, · · Xi-, Xi+ 1, * * Xn) and h = n-l zin2 hi, then 

n 
(4.1) Var{h(Xl, X2, - , Xn - )} < E (hi - fi)2. 

i=l 

The Efron-Stein inequality makes light work of bounding Var Vk,n. 

Lemma 4.2. There is a constant bd such that for all n > 1, 

(4.2) Var Vk,n bdn. 

Proof. If we let h denote the number of vertices of degree k in the minimal 
spanning tree of {X,, X2, .., Xn-}), then h is certainly symmetric. We also 
note that to replace h in 2, 1 (hi - h)2 by Vk,n will only make the sum larger, so 

n 

(4.3) Var Vk,n-1< E < (h - Vk,n)2. 
i=l 

Now by Lemma 2.2, hi - Vk,n I < 4Dd, so (4.3) implies 

Var Vk,n_I n 16D3, 

and this inequality implies (4.2) with bd = 32d2. 
We now have all the tools needed to complete the proof of Theorem 2 (and 

to obtain Theorem 1 as a corollary). By Lemma 4.2 we see that for mn = n2, we 
have for any e > 0 

x 00 

'P(Imn Vk,mn --ak,dl > e)< E (emn) (bdmn)< oo; 
n=l n=1 

so, by the Borel-Cantelli lemma, we have proved that Vk,mn mnak,d with 
probability 1. Now for any mn m < m n+, we have m - mn< 3n < 3ml/2 
whence by Lemma 2.2 we have 

m-lVk, - mn Vk,mn I = (m-l- mn)Vk,m + mn'(Vk,m - Vk,m)l 

m(m - 3m"/2)-- -1 + (m - 3m/2)- 14Dd(3m"2). 

Letting m - oc and using the fact that Vk,m, mnak,d therefore implies that 
Vk,m - m ak,d holds with probability 1. This completes the proof of Theorem 2. 
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5. Extension to general densities 

The proof of Theorem 2 depended heavily on the assumption that the points 
were uniformly distributed. In this section we will extend the result to arbitrary 
densities of Rd. 

We first treat the case of densities with bounded support, and we begin by 
constructing a family of densities { f}, which we will call the family of blocked 
densities. From the construction of the family of blocked densities, we will see 
that, under the L - norm, it will be dense in the set of all densities on the unit 
cube [0, 1]d. We first partition the cube into md cubical cells {Q()}, each cell of 
edge length m -. Now, within each cell Qi, we define a centered subcell Qi 
consisting of all points of Qi which are further than 6 from every face of Qi 
where 6 is a constant satisfying m - > 26 > 0. If for some m, 6, and fl, we have 
(1)f is constant and bounded below by f > 0 on each Qi, 1 _ i _ md, and (2)f 
is 0 on U1 <i md { Qi n Qc, we sayfis a blocked density with parameters m, 6, 
and f. 

Lemma 5.1. If X, . *, X, are i.i.d. with a blocked density, then with 
probability 1 we have 

(5.1) lim n - Vk,n = ak,d. 
n - x 

Before beginning the proof of Lemma 5.1, it will be useful to collect a few 
geometric facts. First, if Q and Q' are subcubes of [0, 1]d which have edge 
length r and which share a common face, then the Pythagorean theorem shows 
that any two points of Q and Q' are at most a distance apart of r(d + 3)1/2. 
Second, if a cube like [0, 1]d is divided into sd labeled subcells Ci of edge s1, 

then there is a permutation a: { 1, 2, * * , d) - { 1, 2, * , sd} such that for all 
1 < i < sd, the cells Ca(i) and C(i, + ) share a common face. Third, if we define a 

graph G = (V, E) by taking a vertex set V = {y,, Y2, , Y, } and edge set 
E = {e = i, yj} : y, - y I <c}, and if G is connected, then the 

MST(y,, Y2, * , Yn) is a subgraph of G. 
We can now begin the proof of Lemma 5.1. The first observation is a 

structural one which can be given as follows: there is a random integer - such 
that 

(1) T < x with probability 1, and 
(2) for all n _ r, the MST(X,, X2 ... , X) is composed of the union of 

MST({X,, X2,... , X)} n Q,) over 1  i ' md, together with exactly md - 1 
edges which join elements of {X,, X2,. *, X } that are in different cells Q1. 

To prove the existence of z we decompose each Qi into kd subcells where k is 
an integer satisfying k-'m-'(d + 3)/2 < 6. We then define T to be the least 
value of n such that for all 1 i _ md, each of the kd subcells of Qi is occupied 
by at least one element of (X1, X2, * , X ). Standard multinomial bounds 
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(and the fact that fp > 0) are enough to show Er < oc, so T is certainly finite 
with probability 1. 

To verify the second property required of r, we consider the graph G = 
(V, E) defined by V= {Xl, X2, *, X) }and E = {e = {xi, xj}:x -xj <6). 
By the relation between k and S, there will be an edge of E between any two X 's 
in the same subcells or in two subcells which share a face. By the definition of z 
and applying the second and third geometrical facts, we see that the union of 
MST({X1, X2,* , Xn} n Q), 1I i -< md, is a subgraph of G. Since G has no 
edges which meet two different Qi, we see that an algorithmic construction of 
MST(Xi, X2, . * , Xn) for n _ T will first construct complete minimal spanning 
trees on each of the point sets {X X, *, X2, , } n Qi. Since at the time of 
completion of these md trees there are md connected components in the forest 
which is created by the edges-ordered algorithm, we see there are md - 1 edges 
greater than 6 in MST(X, X2,. *, Xn). Since for the md sets, Qi n 
{Xl, X2,. · , Xn } to be joined in a tree requires at least md - 1 edges which hit 
two different Qi's, we see that for n > T there are exctly md - 1 edges of 
MST(Xi, X2,. * ,Xn) which join two distinct Q, n (X, X2, * , Xn }. We have 
thus verified the second required property of T. 

We now have all of the tools needed to complete the proof of Lemma 5.1. If 
we let A denote the set of edges of MST(Xi, X2, * *, Xn) which intersect two 
Qi's, then for n > r we have I A I = md - 1. The number of vertices which have 
different degrees in the tree MST(Xi, X2,. * , Xn) than in the forest F defined 
by 

md 

(5.2) F = U MST(Qi n {X, X2,...·,Xn}) 
i=l 

is therefore at most 2(md - 1). Now, if hi denotes the value off on Qi, then 

Nl = I Qi n {XX, X2, . , Xn} l - nhi(1 - 2)dm-d, 

and we have by Theorem 2 and the law of large numbers that with probability 
1, the numbers of vertices of degree k in F is asymptotic to 

md md pt 

ak,Ni = ak,d Ni ak,dn Jf(x)dx. 
i=1 i=1 

This completes the proof of Lemma 5.1. 

To move from the class of blocked densities which are treated by Lemma 5.1 
to the general densities of Lemma 5.2, we use a lemma from Strassen (1965). 

Lemma 5.2 (Strassen). Suppose ,l and g2 are probability measures on a 
bounded subset of Rd satisfying gl(A ) _ 2(A ) + e for some e > 0 and all closed 
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A. Then there is a probability measure v on Rd X Rd satisfying v(A, Rd) = 

lI(A), v(Rd, A) = 2(A), and v(B) _ e where B = {(x, x'): x = x'}. 

To complete the proof of Theorem 3, we choose an e > 0 and letf' denote a 
blocked density such that II f' - f 1 l -<e. Let Ml be the measure with densityf 
and g2 be the measure with densityf', and define an independent sequence of 
random vectors {(Xi, X')} with distribution given by v from Strassen's lemma. 
By the law of large numbers, we then have with probability 1 that 

n 

lim sup n- ~ 
I(Xi 0 X) _ e. 

n--x i=1 

If we let V,,n denote the number of vertices of degree k in the 
MST{XA, X, * * , Xn }, we then have by the corollary to Lemma 2.2 that 

lim sup n 
- 

Vk n - Vk, I '8Dde. 
n- x 

By Lemma 4.1, we have already seen that with probability 1 Vk, nak,d; so, 

by the arbitrariness of e > 0, we also have with probability 1 that Vk, , nak,d 
since there was nothing special about [0, 1]d except its boundedness. The proof 
of Theorem 3 is thus complete in the case of random variables with compact 
support. 

In fact, there is almost nothing left to show that Theorem 3 holds for 
arbitrary densities on Rd. Iff is any given density, then there is a densityf' 
which has compact support and such that 1 f' - f I, < e. We can then argue 
exactly as before in the passage from blocked densities on [0, 1]d to general 
densities on [0, 1]d; one just uses Strassen's Lemma and Lemma 2.2. 

6. Information on the constants ak,d 

The first task is to show that the constant a of Theorem 1 is strictly positive. 
It will be clear from the proof that for all d > 2, we also have al,d > 0. 

Because of the relation ¢(t) ytd given by (3.7) and the identification 
7 = ak,d made in Lemma 3.2, it will suffice to prove (in d = 2) that if Lt denotes 
the number of leaves of the minimal spanning tree Mt of the points of the 
uniform Poisson process on [0, t], then there is a constant a0 such that a0 > 0 
and 

(6.1) ELt > aot2 

for all sufficiently large t. 
To prove (6. 1) we will show that for any square S of area 1, there is a positive 

probability p that S contains a leaf of Mt. Since [0, t]2 contains at least ltJ2 such 
disjoint squares, we would then have 
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(6.2) EL, > pitJ2, 

and (6.2) is sufficient to show (6.1). 
We may as well consider S = [0, ]2 and partition S into m2 subcells, which 

we label as Qi, 1 - i - m, 1 j - m, where we use the natural lattice point 
labels. When m is odd, S has a unique center cell Qk 1k+ 1, if m = 2k + 1, and 
there are 4m - 4 boundary cells Qi which share a face with S. We now let q be 
the probability that the center cell and all boundary cells have exactly one 
point of the Poisson process, but all of the other subcells of S are empty. 
Geometrical arguments which are now quite familiar give us that the point in 
the center cell must have degree 1 if m _ 7. This gives us that p > q > 0, so 
(6.1) is established. 

Since the bounds on a which are provided by constructions like the one just 
given are so intrinsically crude, we do not pursue the numerical evaluation of 
q. 

It seems hopeless to find an analytic approach that will determine the values 
of ak,d. Consequently, we have performed some limited computer simulations 
for d = 2 in an effort to begin to understand the behavior of the ak,2. In Table 1 
we report the results. The size of the simulated tree is denoted by n, and for 
each n 2k, 4 < k < 16, 20 MST were simulated. In our estimates for ak,2, the 

aj were taken to be the average fraction of observed vertices of degree j, 
1 j 5. 

TABLE 1 

Monte Carlo estimate of frequencies 

Sample size Vertex degrees 

n al a2 &3 &4 &5 

16 0.303 0.528 0.159 0.009 0.000 
32 0.266 0.542 0.181 0.011 0.000 
64 0.243 0.555 0.191 0.010 0.000 

128 0.223 0.575 0.197 0.005 0.000 
256 0.226 0.561 0.206 0.006 0.000 
512 0.223 0.564 0.208 0.006 0.000 

1024 0.224 0.562 0.205 0.009 0.000 
2048 0.223 0.563 0.207 0.007 0.000 
4096 0.221 0.566 0.206 0.007 0.000 
8192 0.221 0.565 0.206 0.008 0.000 

16384 0.221 0.566 0.206 0.007 0.000 
32768 0.221 0.566 0.206 0.007 0.000 
65536 0.221 0.566 0.206 0.007 0.000 

A vertex of degree 5 is obviously very rare. Still, they have been observed in 
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trees of 8K and 16K vertices. Another point to be made by the simulation is 
that vertex frequencies seem to change very little once n is as big as 100. 

Probably the most intriguing speculation to emerge out of the Monte Carlo 
estimates is that a = al,2 (the proportion of leaves) is decently approximated by 
2/9. The simulations do not strongly support the possibility that a exactly 
equals 2/9; but, in this connection, it is still interesting to note that Prodinger 
(1986) established that, if h(d denotes the expected height of the dth highest 
leaf of a random planted plane tree, then for all e > 0, 

(6.3) hd = V7rn -1 - I3 
2 

( \ + O( +). 
2 3s=1 9 S 

We see no way to connect the two models, but the coincidental appearance of 
the unusual fraction 2/9 seems remarkable enough to mention. 

Some caution should be given concerning any conjecture that a = 2/9. In 
fact, before careful simulations were done, we felt the hypothesis a= 0 was 
reasonable. This speculation arose because we erroneously thought that leaves 
had to be near the edge of the point cloud, not in the middle. This false start 
made clear for us that simulation and analogy are not always trustworthy 
guides in this area. 

Roberts (1968), (1969) give some simulation results which are related to 
those we have done. In particular, Roberts (1968) gives results concerning the 
average length of a branch of the MST when the data are sampled uniformly 
from the unit sphere in two and three dimensions. The results of Roberts 
(1969) give interesting information concerning the probability that a point of a 
Poisson process is the nearest neighbor of n other points. 

7. Concluding remarks 

As the last section reveals, there are many open issues concerning the 
constants ak,d. Progress on these problems would be very interesting, but such 
progress is not likely to be forthcoming. For that reason, we focus here on the 
interesting analytical problems which remain concerning Vk,n in view of the 
relative completeness of our analysis assuming the X, are absolutely conti- 
nuous random variables. 

In the first place, we should acknowledge that we have treated a result like 
the strong law of large numbers, yet we have no knowledge concerning a 
possible central limit theorem. This is an inversion of traditional develop- 
ments, but there seems to be serious difficulty in developing a central limit 
theory for non-linear functionals like our Vk,n. 

A second mystery concerns the behavior of Vk, for singular measures. To be 
specific, suppose Xi') = Jt 1 3 - and Xi2 = j= 1i 3-j, where i, and 
are identically distributed, jointly independent sequences such that 
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P(Q,j = 0) = P(r,j = 2) = ½. Now, taking X, = (Xl), 2)), we see the X, are 

independent, identically distributed random variables in the singular support 
in [0, 1]2. For of the subadditive Euclidean functions as defined in Steele 
( 198 la), such as the length of the shortest tour of the points {Xi, X2,.* * , Xn } or 
the length of the minimal matching of {(X, X2,. * , X }, we have no trouble 
dealing with singular random variables or random variables with a singular 
part. For those functionals, the singular part makes no contribution. 

The issue with the Vk, functional is quite distinct. We suspect that for the Xi, 
1 i < oc, defined above, one has Vk,n - ckn for some Ck > 0. This is in rather 

surprising contrast to the other parts of the theory of subadditive functionals. 
There is also an interesting second layer of subtlety which rests on the fact 
there is no reason to suppose that ck equals the ak2 of the absolutely continuous 
case. 

The question of the number of leaves of a minimal spanning tree of a 
random sample from a singular distribution might well have a close relation to 
the fractal nature of the support. If that connection is born out, it will provide 
yet another instance where self-similarity (or approximate self-similarity) ties 
into fractal geometry. For several examples of more traditional probability 
theory which mixes the elements of self-similarity, fractals, and singular 
measures, one can consult the interesting paper of Hughes et al. (1982). For 
much interesting speculation, the classic source is, of course, Mandelbrot 
(1977). 
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