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Summary. A new test is proposed comparing two multivariate distributions by using distances
between observations. Unlike earlier tests using interpoint distances, the new test statistic has
a known exact distribution and is exactly distribution free. The interpoint distances are used
to construct an optimal non-bipartite matching, i.e. a matching of the observations into disjoint
pairs to minimize the total distance within pairs.The cross-match statistic is the number of pairs
containing one observation from the first distribution and one from the second. Distributions
that are very different will exhibit few cross-matches.When comparing two discrete distributions
with finite support, the test is consistent against all alternatives. The test is applied to a study
of brain activation measured by functional magnetic resonance imaging during two linguistic
tasks, comparing brains that are impaired by arteriovenous abnormalities with normal controls.
A second exact distribution-free test is also discussed: it ranks the pairs and sums the ranks of
the cross-matched pairs.

Keywords: Combinatorial optimization; Distribution-free test; Non-bipartite matching;
Nonparametric test; Occupancy distribution; Rank test

1. Introduction: goal; notation; review

1.1. Goal and notation: an exact distribution-free permutation test for comparing
multivariate responses in two groups
There are N � 4 subjects consisting of n � 2 subjects of one type, say treated subjects, and
m = N − n � 2 subjects of a second type, say control subjects, and a multivariate response Yi

is recorded for each subject. The response Yi may be, but need not be, a vector of continuous
measurements, and, when it is a vector, the dimension of Yi may be greater than N. Indeed, Yi

may be of infinite dimension, i.e. a Yi may be a continuous curve, or a two- or three-dimensional
image, e.g. the result of medical imaging. Alternatively, each Yi may be a discrete sequence, such
as the sequence of amino-acids in a protein, or the sequence of bases in strands of deoxyribo-
nucleic acid; e.g. Durbin et al. (1999). There is some definition of a distance between two Yis.
The null hypothesis states that the distribution of Yi is the same for all subjects, both treated
and control.

Formally, there are N independent trials, i = 1, . . . , N, and on each trial i a coin is flipped
returning Zi = 1 for heads with probability π and Zi = 0 with probability 1 −π; if Zi = 1, then
Yi is drawn from a distribution F.·/, but if Zi = 0 then Yi is drawn from a distribution G.·/.
The null hypothesis asserts that the treated distribution F.·/ and the control distribution G.·/
are the same: F.·/=G.·/. Write Ỹ = .Y1, . . . , YN/ and Z= .Z1, . . . , ZN/. The number of treated
subjects, n = ΣN

i=1Zi, is ancillary, so the test will condition on n, eliminating π. If Yi were a
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scalar, then this yields the conventional, unidimensional two-sample problem. This notation
for a two-sample problem emphasizes that the subscript i carries no information, that the infor-
mation is in .Ỹ, Z/, and the notation is convenient in Section 3.4 where N →∞ under alternative
hypotheses, so that n increases. The same effect can be produced in empirical data simply by
assigning subscripts i at random to observations .Yi, Zi/, so the subscripts carry no information.
Outside Section 3.4, all distributions condition on n, but this will not appear explicitly in the
notation.

The goal is an exact distribution-free test, i.e., under the null hypothesis, the exact distribu-
tion of the test statistic should be a usable known distribution, and that known null distribution
may depend on the sample sizes .n, m/ but not on the unknown distribution F.·/ = G.·/. For
instance, in the case of a one-dimensional response with continuous distributions, the Wilcoxon
rank sum test, Mood’s median test, the Wald–Wolfowitz runs test, the Kolmogorov–Smirnov
test, Wilks’s (1962) ‘empty block’ test (page 446) and many other nonparametric tests are
exact and distribution free. Certain multivariate, exact, distribution-free two-sample tests were
discussed by Anderson (1966), section 4.

Given n, there are
(

N
n

)
possible values of Z, i.e. N-dimensional vectors z with binary co-

ordinates such that n=ΣN
i=1zi. Place these

(
N
n

)
possible z in a set Ω. Under the null hypothesis,

F.·/ and G.·/ are identical, so Pr.Z= z|Ỹ/= (
N
n

)−1
for each z ∈Ω.

The paper is organized as follows. Section 1.2 reviews the existing literature on multivariate
nonparametric tests using interpoint distances, and Section 1.3 reviews algorithms for construct-
ing an optimal, non-bipartite matching. Section 2 presents a motivating example involving brain
activation during linguistic tasks in impaired and normal brains; in particular, a minimum dis-
tance non-bipartite matching is constructed and the cross-match statistic is defined. Properties
of the cross-match statistic are developed in Section 3, including its exact distribution, its exact
distribution-free property, its moments, a large sample approximation to the null distribution
and some properties of the test under alternative hypotheses. The cross-match test is applied to
the example in Section 3.2 and compared with Friedman and Rafsky’s (1979) multivariate runs
test that uses a minimum spanning tree instead of a non-bipartite matching. In the univariate
case, a small simulation in Section 3.5 compares the power of the exact cross-match test with
the power of the exact Kolmogorov–Smirnov test. Some matches are better than others, and
perhaps better matches deserve more weight; therefore, in Section 4, the cross-match rank sum
statistic is introduced, which ranks the pairs in some way and sums the ranks of cross-matched
pairs.

1.2. Review of large sample tests based on interpoint distances
Several large sample tests have been proposed for the multidimensional problem by using

(
N
2

)
‘distances’ between the Yis, say a distance δij between the Yi and Yj, i < j, where δij � 0 with
equality if and only if Yi = Yj. Note carefully that δij is calculated from the Yis but does not
use the Zis.

In an early paper, Weiss (1959) drew the largest possible non-overlapping (open) spheres
around the responses of each treated subject and counted the number of control responses
within each sphere. In particular, he suggested using the number of spheres containing no con-
trols as a test statistic, describing the test as a multivariate analogue of the Wald–Wolfowitz
runs test, but he noted that the null distribution of this quantity is neither distribution free nor
known, and he left aspects of practical implementation undeveloped.

In a clever, interesting, paper, Friedman and Rafsky (1979) used distances δij to construct
a minimum spanning tree, then removed the edges that connect a treated subject to a control
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and used the resulting number of disjoint subtrees as a test statistic. Under the null hypothesis,
they computed the conditional expectation and variance of their test statistic given Ỹ and used
these in conjunction with a permutational central limit theorem to obtain a normal approxi-
mation. The null conditional variance depends on Ỹ through a structural feature of the tree,
namely the number C of edge pairs that share a common node; as a result, the null distribu-
tion of their statistic depends on the unknown distribution of Ỹ, so it is not distribution free.
Schilling (1986) and Henze (1988) used one or more nearest neighbours of each observation,
counting the number of times that the nearest neighbours come from the same group. Maa
et al. (1996) showed that, under mild conditions, two multivariate distributions differ if and
only if the distributions of interpoint distances differ within and between the distributions.
Henze and Penrose (1999) showed that the Friedman–Rafsky test is consistent against all alter-
natives.

The new procedure proposed in the current paper is similar in spirit to the several procedures
just described but, unlike these procedures, the new test statistic A1 in Section 3

(a) has a known, exact null distribution,
(b) this null distribution is exactly distribution free, i.e. the null distribution Pr.A1 �a/ does

not depend on the common unknown distribution F.·/=G.·/, and
(c) the conditional null distribution of A1 given Ỹ equals its unconditional null distribution,

Pr.A1 �a|Ỹ/=Pr.A1 �a/.

1.3. Review of optimal non-bipartite matching
The procedure of Friedman and Rafsky (1979) computed a minimum spanning tree from the dis-
tances δij. In contrast, the procedure proposed here computes a minimum distance non-bipartite
matching. Suppose first that N is even. Using the

(
N
2

)
distances δij, a minimum distance non-

bipartite matching divides the N subjects into I =N=2 non-overlapping pairs of two subjects in
such a way as to minimize the total of the N=2 distances within the N=2 pairs.

The minimum distance non-bipartite matching problem is a combinatorial optimization prob-
lem that can be solved quickly with a polynomial time algorithm. See Galil (1986) for a survey
and see Papadimitriou and Steiglitz (1982), section 11.3, for one text-book discussion. In par-
ticular, the number of arithmetic operations that are required to find an optimal non-bipartite
matching of N subjects is O.N3/; see Papadimitriou and Steiglitz (1982), page 266. For compar-
ison, if we multiply two N ×N matrices in the conventional way, the calculation also requires
O.N3/ arithmetic operations.

An implementation of optimal non-bipartite matching in C may be downloaded free from
http://elib.zib.de/pub/Packages/mathprog/matching/weighted/index.html.
That implementation maximizes a total benefit βij, rather than minimizing a total distance δij,
so to use that implementation we must define βij =maxb,c.δbc/−δij. An implementation in For-
tran was published by Derigs (1988). In statistics, optimal non-bipartite matching has been used
to match with doses (Lu et al., 2001), to match with two control groups (Lu and Rosenbaum,
2004), and to match before random assignment in experiments (Greevy et al., 2004).

If N is odd, create a pseudosubject N + 1, with δi,N+1 = 0 for i= 1, . . . , N. Optimally match
the N + 1 subjects, and discard the one pair containing the pseudosubject. This results in a
matching with .N − 1/=2 pairs that minimizes the total distance between all matchings of the
original N subjects into .N −1/=2 pairs which discard one subject. Rather than having separate
notation for even and odd N, adopt the convention that, for odd N, all of the notation is adjusted
to refer to the N −1 remaining subjects in I = .N −1/=2 pairs, i.e. the notation always refers to
the case of even N, perhaps after discarding one subject in this way.
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2. Motivating example: functional magnetic resonance imaging of brain activity

2.1. Brain activity during language tasks in subjects with arteriovenous abnormalities
Language tasks typically engage the brain’s left hemisphere. What happens if the left hemi-
sphere is impaired? Using functional magnetic resonance imaging (FMRI), Lehéricy et al. (2002)
examined patients with arteriovenous malformations in the left hemisphere and normal con-
trols. All patients and controls were right handed. Subjects performed various language tasks,
including story listening and sentence repetition while undergoing FMRI. In the story listen-
ing task, subjects listened to a story. In the sentence repetition task, subjects listened to a
sentence and then repeated it to themselves mentally. On the basis of FMRI, a continuous
measure called the laterality index was computed, which measured the relative activation of
the left and right hemispheres during the tasks. For instance, the laterality index was 1 if all
the increased activation was on the left, −1 if all was on the right and 0 if the activation on
both sides was about the same. Specifically, the laterality index was .L − R/=.L + R/ where
L was the number of activated pixels in the left hemisphere’s temporal lobe and R was the
number activated in the right temporal lobe. See Lehéricy et al. (2002) for many details of this
calculation.

Table 1 displays their data. For instance, during listening to a story, control 5 had increased
activity only in the left temporal lobe but during sentence repetition had slightly more activation
on the right than on the left. In contrast, patient 18 had increased activity only on the right.
(Three patients had measurements both before and after embolization, a form of treatment, and
the pre-embolization values appear in Table 1. The FMRI failed to produce a laterality index
for three subjects, and they do not appear in Table 1.)

Table 1. Laterality index in the temporal lobe during story listening
and sentence repetition tasks, for patients P and healthy controls C†

Subject Group Laterality index for the following tasks:
identifier

Story Sentence Match Distance
listening repetition identifier

1 C 0.47 0.03 7 0.32
2 C 0.39 0.11 9 0.04
3 C 0.47 0.16 16 4.04
4 C 0.78 −0.10 5 0.23
5 C 1.00 −0.05 4 0.23
6 C 1.00 0.16 8 0.71
7 C 0.54 0.12 1 0.32
8 C 1.00 0.40 6 0.71
9 C 0.38 0.04 2 0.04

10 P 1.00 0.71 12 0.47
11 P 0.27 0.01 14 0.17
12 P 0.63 0.21 10 0.47
13 P 0.22 −0.18 18 0.58
14 P 0.00 −0.08 11 0.17
15 P −1.00 −0.35 17 0.06
16 P −0.42 0.26 3 4.04
17 P −1.00 −0.60 15 0.06
18 P −1.00 −1.00 13 0.58

†Source: Lehéricy et al. (2002).
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Is there a systematic difference between patients and controls? If there is, it is either quite
noisy or not of a simple form. For instance, patient 10 had more activation on the left than any
control, patients 15, 17 and 18 had more activation on the right than any control, patient 14 was
closer to balanced activation in the two hemispheres, .0, 0/, than any control, and patient 16
was unique in having more right activation with story listening (−0:42) and more left activation
with sentence repetition (0:26). The null hypothesis asserts that the distribution of laterality
indices is the same for patients and controls. Is the null hypothesis plausible?

2.2. Minimum distance pairing using Yi
A distance δij between Yi and Yj was defined as follows. The laterality indices for story listening
were ranked from 1 to 18 with average ranks for ties. The same was done for sentence repetition.
Each subject i now has two ranks, say Ri for the ranks of Yi. The two ranks exhibit a fairly strong
relationship: the Spearman rank correlation is 0.63. Then δij is defined to be the Mahalanobis
distance between the two ranks for i and the two ranks for j, i.e.

δij = .Ri −Rj/TS−1.Ri −Rj/

where S is the sample variance–covariance matrix of the ranks Ri. There are
(18

2

) = 153 dis-
tinct pairwise distances δij, i < j. The Mahalanobis distance takes appropriate account of the
correlation and, because the correlation is fairly high, the Mahalanobis distance judges things
quite differently from how the Euclidean distance would, i.e. the Mahalanobis distance that is
attached to Ri − Rj is constant on positively sloped ellipses centred at the origin, whereas the
Euclidean distance is constant on circles.

The N = 18 subjects were optimally paired into nine pairs to minimize the total of the nine
distances within pairs. The computations used the C algorithm that was mentioned in Section
1.3. The column ‘Match identifier’ in Table 1 gives the identity of the match for each subject.
For instance, subject 1 is paired with subject 7, and of course subject 7 is paired with subject 1.
The column ‘Distance’ in Table 1 gives the Mahalanobis distance.

Fig. 1 and Table 2 describe the
(18

2

)= 153 pairwise Mahalanbois distances before matching
and the nine distances within the nine pairs. The median distance after matching is about a tenth
of the median distance before matching. With one exception, all the distances after matching
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Fig. 1. Distances before and after optimal matching
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Table 2. Five-number summaries of Mahalanobis
distances using ranks, for all 153 pairs before
matching and for nine matched pairs

Mahalanobis distances
for the following pairs:

All pairs Matched pairs

Median 2.97 0.32
Quartiles 1.06 6.35 0.17 0.58
Extremes 0.04 22.12 0.04 4.04

are below the lower quartile of the distances before matching. The one exception is the pairing
of control 3 with patient 16. As noted in Section 2.1, patient 16 exhibits a unique pattern, with
more right activation for story listening and more left activation for sentence repetition. Judged
using the Mahalanobis distance, patient 16 is not close to anyone else: the median distance
subject between 16 and the other 17 subjects is 8.12 and the minimum distance is δ3,16 = 4:04
with control 3. The two extremes in the box plot of all 153 distances are both with patient 16,
specifically δ4,16 =20:95 and δ5,16 =22:12 and, of the 8=153 distances δij �10, five are distances
between patient 16 and another subject.

2.3. Graphical motivation for the test
Fig. 2 is a scatterplot of the laterality index for sentence repetition against the laterality index for
story listening, with patients indicated by a triangle and controls indicated by a circle. Matched
subjects are connected by a line. Keep in mind that Fig. 2 depicts Euclidean distance between the
Yis, which is quite different from Mahalanobis distance between the ranks Ris, owing mostly
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Fig. 2. Laterality index for sentence repetition and story listening for patients .4/ and controls .�/, with the
optimal non-bipartite match
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to the fairly strong correlation. For instance, the longest line in Fig. 2, the line that begins in the
lower left-hand corner, connects patients 13 and 18 with δ13,18 = 0:58, which is only the third
largest distance among the nine pairs in Table 1 and is about half as large as the lower quartile
of the 153 distances in Table 2 before matching. The short vertical bar on the right-hand side
of Fig. 2 connects controls 6 and 8 with a distance between the ranks of δ6,8 =0:71>δ13,18. The
one segment with a negative slope, connecting a triangle in the upper left to a circle further
right, connects patient 16 to control 3 with the largest distance, δ3,16 =4:04.

If the Yis for patients are very different from the Yis for controls, then we expect relatively few
patients to be matched to controls, i.e. relatively few cross-matches. In Fig. 2, only one patient
is matched to a control. Because n=m=9, it was inevitable that at least one patient would be
matched to a control, so Fig. 2 exhibits the smallest possible number of cross-matches. Counting
cross-matches is the basis for the test.

3. The cross-match test

3.1. Exact null distribution
By the convention at the end of Section 1.3, there is an even number N of subjects. These sub-
jects are optimally matched into I = N=2 non-overlapping pairs, using distances δij that were
computed from the responses Ỹ alone, without using the group indicators Z. Moreover, as
discussed in Section 1.1, under the null hypothesis, Pr.Z= z|Ỹ/= (

N
n

)−1
for each z ∈Ω.

Let Ak be the number of pairs with exactly k treated subjects, k =0, 1, 2. In Table 1 and Fig. 2,
A0 =4, A1 =1 and A2 =4. Because A0 +A1 +A2 = I and A1 +2A2 =n, it follows that A1 deter-
mines A2 = .n−A1/=2 and A0 =I − .n+A1/ =2. Also, if n and m are both even, then A1 can take
even values from 0 to min.m, n/, whereas, if n and m are both odd, then A1 can take odd values
from 1 to min.m, n/. The null hypothesis of no effect is tested by using A1. If a0 �0, a1 �0 and
a2 � 0 with a0 + a1 + a2 = I and a1 + 2a2 = n, then there are 2a1 I!=a0! a1! a2! treatment assign-
ments z ∈Ω in which exactly a1 pairs contain one treated subject and one control, and under
the null hypothesis these each have probability

(
N
n

)−1
, so the null distribution of A1 is given by

Pr.A1 =a1|Ỹ/= 2a1 I!(
N

n

)
a0! a1! a2!

=πa1 , .1/

say. Distribution (1) is a very special case of a restricted occupancy distribution; see Johnson
et al. (1997), section 4.3, pages 186–187. Because distribution (1) depends on .m, n/ but not on
Ỹ, it follows that

Pr.A1 =a1|Ỹ/=Pr.A1 =a1/: .2/

Now equation (2) says that A1 is distribution free under the null hypothesis, and distribution (1)
gives the exact distribution. The null hypothesis is rejected if A1 is small.

3.2. Example, continued: functional magnetic resonance imaging of brain activity
In the example, n = m = 9, N = n + m = 18 and there is one cross-match, A1 = 1. Table 3 gives
the distribution (1) of A1 under the null hypothesis that the distribution of Yi is the same for
patients and controls. Each row is a possible occupancy distribution .A0, A1, A2/ for the types
of pair, together with its probability. For Fig. 2, the significance level is Pr.A1 �1/=0:0259, so
the null hypothesis is not plausible.

The cross-match test may be compared with the multivariate runs test that was proposed by
Friedman and Rafsky (1979), and the formulae in this paragraph are from them. Fig. 3 shows the
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Table 3. Exact null distribution of the number
of cross-matches, nDmD9†

A0 A1 A2 Pr(A1 =k) Pr(A1 � k)

4 1 4 0.0259 0.0259
3 3 3 0.2764 0.3023
2 5 2 0.4976 0.7999
1 7 1 0.1896 0.9895
0 9 0 0.0105 1.0000

†Rows are possible occupancy distributions and
their probabilities.

-1.2 -0.7 -0.2 0.3 0.8

Story Listening

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

S
en

te
nc

e 
R

ep
et

iti
on

Fig. 3. Laterality index for sentence repetition and story listening for patients .4/ and controls .�/, with the
minimum spanning tree

laterality indices together with a minimum spanning tree computed by using Kruskal’s algorithm
applied to the same set of distances δij. If edges connecting a patient to a control are removed,
there are R=7 subtrees. Under the null hypothesis, E.R/=2mn=N +1=2×9×9=18+1=10.
The variance of R given Ỹ depends on Ỹ through the number C of pairs of edges in the tree that
share a common node. Hence, the null distribution of R depends on the unknown common dis-
tribution F =G. In Fig. 3, the number of edges that share a common node is C =8+4×3=20,
as there are eight pairs of edges that share one node, and four triples of edges that share a
node. Friedman and Rafsky refer {R − E.R/}=

√
var.R|C/ = .7 − 10/=

√
4:094 =−1:483 to the

normal distribution, where
√

var.R|C/ is defined by their expression (14). By this measure, the
null hypothesis would be judged to be marginally plausible.

3.3. Moments; normal approximation
The null expectation and variance of the test statistic A1 have simple forms given by proposition
1 below. Renumber the N subjects after pairing them so that Y2i−1 is paired to Y2i for i=1, . . . , I.
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Write Bi =Z2i−1 +Z2i −2Z2i−1Z2i, so that Bi =1 if pair i contains one treated subject and one
control and Bi = 0 otherwise, and A1 =ΣI

i=1Bi. The moments of the Bi are given in lemma 1
below; they are used in the proof of proposition 2 and again in Section 4.

Lemma 1. Under the null hypothesis with Pr.Z|Ỹ/= (
N
n

)−1
,

E.Bi/= 2nm

N.N −1/
=θ,

say,

var.Bi/=θ.1−θ/,

E.BiBj/= 4n.n−1/m.m−1/

N.N −1/ .N −2/ .N −3/
=γ,

say, for i �= j, and

cov.Bi, Bj/=γ −θ2

for i �= j.

Proof. Write

ζk = n.n−1/.n−2/ . . . .n−k +1/

N.N −1/.N −2/ . . . .N −k +1/
,

e.g. ζ1 =n=N and ζ2 =n.n−1/=N.N −1/, and note that the product of k distinct Zs has expec-
tation ζk. Hence, E.Bi/=2.ζ1 − ζ2/=θ, say, so var.Bi/=θ.1−θ/: Also, for i �= j,

E.BiBj/=E{.Z2i−1 +Z2i −2Z2i−1Z2i/.Z2j−1 +Z2j −2Z2j−1Z2j/}
=4ζ2 −8ζ3 +4ζ4 =γ,

so cov.Bi, Bj/=γ −θ2.

Proposition 1. Under the null hypothesis with Pr.Z|Ỹ/=(
N
n

)−1
, the expectation and variance

of A1 are

E.A1/= nm

N −1
, .3/

var.A1/= 2n.n−1/m.m−1/

.N −3/ .N −1/2 : .4/

Proof. Because A1 =ΣI
i=1Bi, it follows that E.A1/= Iθ where I =N=2, and

var.A1/= Iθ.1−θ/+ I.I −1/.γ −θ2/= 2n.n−1/m.m−1/

.N −3/ .N −1/2 :

Proposition 2. Under the null hypothesis, the conditional distribution of A1 given n in distri-
bution (1) converges weakly to the normal distribution for n=N →π:

A1 −E.A1/√
var.A1/

D→N.0, 1/: .5/

Proof. From the structure that was assumed in Section 1.1, before conditioning on n, the
Zs are independent and identically distributed binary random variables which equal 1 with
probability π, and under the null hypothesis they are independent of Ỹ. Write Ti =Z2i−1 +Z2i,
so n = ΣI

i=1Ti, and A1 = ΣI
i=1Bi, where the bivariate .Ti, Bi/ are independent and identically
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distributed before conditioning on n. Also, distribution (1) is the conditional distribution of
A1 given n. The multivariate central limit theorem (e.g. Rao (1973), section 2c.5(i) and section
2c.5(iv)) then implies that the unconditional joint distribution of .n, A1/ converges weakly to a
bivariate normal distribution. Using this, theorem 2 of Holst (1979) implies that the conditional
distribution of A1 given n converges to the normal distribution.

3.4. Theoretical motivation for the test
This section provides some theoretical motivation for the cross-match test under alternative
hypotheses in which F.·/ �=G.·/. In the current section, N →∞, so n→∞ also. Therefore, in
the current section only, probability distributions are generated by the process in Section 1.1,
but they are unconditional; unlike other sections, probabilities are not conditional given fixed n.

Suppose that Y takes only V values yv, v = 1, . . . , V , with Pr.Y =yv|Z = 1/ = fv and
Pr.Y =yv|Z = 0/ = gv. Consider what happens as N → ∞ with V fixed. If there are an even
number, say Nv, of subjects with Y = yv, then they can all be exactly paired to one another
with a total distance of 0, but, if Nv is odd, then Nv − 1 subjects with Y = yv can be paired to
one another, and the remaining one subject must be mismatched to someone with a different
value of Y. This means that at most V of the N =ΣNv subjects are mismatched for Y, where
V=N → 0 as N → ∞. The large sample behaviour of the statistic A1 is not affected by these
V mismatched pairs, so they are ignored throughout this section. Suppose that there are nv

treated subjects and mv controls with Y = yv. Then E.nv/ = Nπfv, and E.mv/ = N.1 − π/gv

and E.Nv/ = Nπfv + N.1 − π/gv, and by the law of large numbers applied to the multino-
mial distribution the proportions converge in probability to their expectations, nv=N →πfv,
mv=N → .1−π/ gv and Nv=N →πfv + .1−π/ gv. When a group of subjects has identical Ys,
among these identical Ys, the algorithm returns a random pairing. (More precisely, the algo-
rithm returns a pairing that is a deterministic function of the Yis and their input order i, but the
input order is random; see Section 1.1.) Hence, using equation (3) in proposition 1, as N →∞,
we expect approximately

mvnv

Nv −1
:= N2π .1−π/ fvgv

Nπfv +N.1−π/gv

=N
π .1−π/ fvgv

πfv + .1−π/ gv
.6/

cross-matches among the expected Nπfv + N.1 −π/gv subjects with Y = yv. The expectation
of A1 under the alternative hypothesis is approximately the sum of approximation (6) over v,
say Nµ, whereas the null expectation of A1 is given by equation (3), or mn=.N − 1/, which
tends to Nπ.1 −π/. These alternative and null expectations are related by Milne’s inequality
(specifically, inequality 67 of Hardy et al. (1952), section 2, page 61) which yields

µ=
V∑

v=1

π .1−π/ fvgv

πfv + .1−π/ gv

�
∑

πfv

∑
.1−π/ gv∑{πfv + .1−π/ gv} =π .1−π/ ,

with strict inequality unless fv = gv for v = 1, . . . , V . (Milne’s inequality can be derived as a
special case of a subtle refinement of the Cauchy inequality; see Daykin et al. (1969).) If fv �=gv

for some v, then

A1=N
P→µ<π.1−π/
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whereas

mn=N.N −1/
P→π.1−π/,

so the standardized deviate on the left in expression (5) tends to −∞, and the significance level
based on A1 tends to 0.

Essentially the quantity µ also plays a central role in the limiting behaviour of the Friedman–
Rafsky runs statistic, and it is a member of the family of measures of distributional separation
that was proposed by Györfi and Nemetz; see Henze and Penrose (1999), theorem 2.

In short, the cross-match test is a consistent test for comparing any two discrete distributions
with finitely many mass points. Any two distributions may be approximated arbitrarily closely
by two discrete distributions with finitely many mass points, and the cross-match test can con-
sistently distinguish the two approximations. This is motivation, admittedly informal, for use
of the cross-match test.

3.5. A small simulation
In both univariate and multivariate situations, we would not and should not use an omnibus
test to detect expected changes in location or scale. The power of the exact cross-match test will
be compared with that of the exact Kolmogorov–Smirnov two-sample test when comparing two
distributions with the same expectation and variance, but with differing tendencies to clump at
certain spots. Let K �2 be an integer and σ be a real number, 0�σ �1. The standard hot spot
distribution H.K, σ/ is an equal mixture of K equally spaced normal distributions, N.µk, σ2/

with

µk =θ

(
k − K +1

2

)
,

and

θ2 = 12.1−σ2/

K2 −1
,

so the distribution has expectation 0 and variance 1 and is symmetric about zero. To see that
this definition of θ yields variance 1, recall that

1
K

K∑
k=1

(
k − K +1

2

)2

= K2 −1
12

,

e.g. Lehmann (1998), expression A.13, page 329. If σ = 1 then θ = 0 and H.K, 1/ is just the
standard normal distribution for every K. If σ =0 then H .K, 0/ attaches equal probability 1=K

to K equally spaced real numbers. Because H.K, σ/ has mean 0 and variance 1 and is symmetric
about zero for every K and σ, tests that are sensitive to location and scale differences are of little
use in distinguishing between these distributions. Fig. 4 contrasts the cumulative distributions
of N.0, 1/ and H.3, 1=5/; they are quite different. In Tables 4 and 5, one sample will be drawn
from the standard normal distribution, say F.·/, and the other will be drawn from a standard
hot spot distribution, say G.·/, with parameters K and σ. When σ =1, the simulation estimates
the size of the test, which we know exactly from theory, whereas when σ < 1 the simulation
estimates the power. Various other sampling situations are considered in Table 6.

With a scalar Yi and m + n even, the cross-match test takes a simple form, provided that
distances between Ys are defined to be the absolute values of their differences. Then the opti-
mal non-bipartite matching pairs adjacent order statistics from the combined sample, Y.2l−1/

paired with Y.2l/ for l=1, . . . , .m+n/=2. The cross-match statistic is the number of pairs which
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Fig. 4. Cumulative distributions for N.0, 1/ and H.3, 1=5/

Table 4. Simulation results comparing the cross-match
test with the Kolmogorov–Smirnov test, for sample size
nDmD18, comparing the standard normal with the stan-
dard hot spot distribution

K σ Probabilities of rejection
for the following tests:

Kolmogorov–Smirnov Cross-match

Level of test
Exact 1.0 0.0207 0.0194
Simulated 1.0 0.0192 0.0196

Power of test
5 0.05 0.04 0.22
3 0.1 0.06 0.36
3 0.05 0.08 0.64
2 0.05 0.29 0.91
2 0.2 0.16 0.30

contain one observation from F.·/ and one from G.·/, rejecting equality of F.·/ and G.·/ if there
are few such pairs. Each situation was sampled independently 5000 times, so a proportion of
successes has standard error less than or equal to 1=

√
.4×5000/=0:0071.

A minor issue with any exact permutation test, including the Kolmogorov–Smirnov test and
the cross-match test, is that discreteness typically creates a small gap between the nominal level
of the test and the actual size of the test, so a 0.05-level test may reject true hypotheses slightly
less than 5% of the time. To prevent this from materially favouring either statistic over the other,
I selected two samples sizes, namely m=n=18 and m=n=50, for which the actual size of the
two tests is nearly the same for nominal level 0.05.
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Table 5. Simulation results comparing the cross-match
test with the Kolmogorov–Smirnov test, for sample size nD
m D 50, comparing the standard normal with the standard
hot spot distribution

K σ Probabilities of rejection
for the following tests:

Kolmogorov–Smirnov Cross-match

Level of test
Exact 1.0 0.0392 0.0372
Simulated 1.0 0.0332 0.0374

Power of test
5 0.1 0.11 0.57
2 0.2 0.70 0.89
3 0.2 0.16 0.46
5 0.05 0.16 0.98

10 0.05 0.07 0.41

Table 6. Simulation results comparing the cross-match test with the Kolmogorov–
Smirnov test, for sample size nDmD50

F G Probabilities of rejection
for the following tests:

Kolmogorov–Smirnov Cross-match

N.0, 1/ t with 1 degree of freedom 0.11 0.19
N.0, 1/ t with 2 degrees of freedom 0.04 0.08
N.0, 1/ N. 1

2 , 1/ 0.51 0.08
N.0, 1/ N.1, 1/ 0.98 0.37
N.0, 1/ N.0, 2/ 0.36 0.25
N.0, 1/ C0:25.0, 100/ 0.09 0.19
N.0, 1/ C0:5.2, 20/ 0.67 0.60
N.0, 1/ C0:25.10, 1000/ 0.09 0.19
N.0, 1/ C0:5.10, 1000/ 0.78 0.71
E−1 N.0, 1/ 0.22 0.24
E−1 −E+1 0.69 0.74
H.2, 0:5/ H.5, 0:1/ 0.07 0.51
H .2, 0:1/ H .3, 0:5/ 0.77 0.99
H .2, 0:8/ H .2, 0:2/ 0.66 0.87

Table 4 displays results for m=n=18, specifically the exact and simulated sizes of the two tests
and the simulated power for several values of K and σ. For this sample size, the exact 0.05-level
Kolmogorov–Smirnov two-sample test rejects for J �9 and has size 0.0207; see Hollander and
Wolfe (1999), section 5.4. Also, for this sample size, the 0.05-level exact cross-match test rejects
for A1 �4 and has size 0.0194. The simulated sizes of the two tests are close to the exact sizes. In
the cases that are considered in Table 4, the estimated power is higher for the cross-match test.

For n=m=50, the exact 0.05-level Kolmogorov–Smirnov two-sample test rejects for J �14
and has size 0.0392 (Drion (1952), Table 1), whereas the exact 0.05-level cross-match test rejects
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for A1 � 18 and has size 0.0372. In Table 5, the exact and simulated sizes of the two tests are
close. Again, the power is higher for the cross-match test.

Finally, Table 6 compares the Kolmogorov–Smirnov test and the cross-match test for a variety
of pairs of distributions. In Table 6, the distributions are as follows:

(a) t signifies a t-distribution,
(b) E signifies a standard exponential random variable so E−1 and −E+1 both have expec-

tation 0 and variance 1,
(c) Cι.ς, η/ is a contaminated normal distribution formed as a mixture of the standard normal

distribution with probability 1− ι and the N.ς, η/ distribution with probability ι and
(d) H.K, σ/ is the standard hot spot distribution with K components having standard devi-

ation σ.

Notable in Table 6 is the very poor relative performance of the cross-match test for a shift in
location, and its good relative performance when the two distributions are similarly located and
dispersed.

4. An extension: the cross-match rank sum

The cross-match test A1 gives each of the I pairs equal weight. In contrast, the cross-match rank
sum statistic Q, defined in the current section, will assign ranks, 1, . . . , I, to the I pairs by using
Ỹ or the δij computed from Ỹ without reference to Z; then Q is the sum of the ranks of the A1
cross-matched pairs. Unlike Wilcoxon’s rank sum, the number A1 of ranks that are added to
form Q is a random variable. The null hypothesis F.·/=G.·/ is rejected for sufficiently small Q.
In a related though different context, Schilling (1986), section 4, proposed weighted tests based
on neighbours.

The null distribution of Q is not affected by the specific rule that is used to assign ranks to
pairs, provided that the rule uses the information in Ỹ or δij without reference to Z. Many
ranking rules are possible, perhaps with a view to particular alternative hypotheses.

Let a be a fixed integer, 0 � a � I, and let Wa be the sum of a numbers selected at random
without replacement from {1, 2, . . . , I}, so Wa has the null distribution of Wilcoxon’s rank
sum test comparing a subjects in one group with I − a subjects in another. The probabilities
λak = Pr.Wa = k/ for Wilcoxon’s rank sum statistic may be computed by using the recursion
formula that was given by Hájek et al. (1999), section 5.3.1. The null distribution of Q is the
distribution of WA1 , where A1 has distribution (1), i.e.

Pr.Q=k/=∑
a

πaλak:

For instance, in the example, with n = m = 9, the cross-match statistic A1 takes values 1, 3,
5, 7 and 9 with the probabilities πa that are given in Table 3. The 5% point of the distribution
of Q is Pr.Q� 9/= 0:0489. To see this, note that π1 = 0:0259 from Table 3, and λ1,k = 1=9 for
k = 1, 2, . . . , 9; also, π3 = 0:2764 from Table 3, and λ3,k = (9

3

)−1 = 0:0119 for k = 6, 7, because
6 = 1 + 2 + 3 and 7 = 1 + 2 + 4, and λ3,8 = 2

(9
3

)−1
, because 8 = 1 + 2 + 5 and 8 = 1 + 3 + 4, and

λ3,9 =3
(9

3

)−1
, so

Pr.Q�9/=π1 ×9× 1
9

+π3 ×7×
(

9
3

)−1

=0:0259+0:2764×0:0833=0:0489:

One might reason that a cross-match, 1=Bi =Z2i−1 +Z2i −2Z2i−1Z2i, in pair i is indicative
of distributional overlap only if the distance in pair i, namely δ2i−1, 2i, is small, so one might rank
the I = 9 pair distances in Table 1 from largest to smallest, i.e. rank the largest distance 1, the
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second largest distance 2, etc. In this case, A1 =1 and Q=1, and the one-sided significance level
is Pr.Q � 1/ =π1 × 1

9 = 0:00288, as opposed to Pr.A1 � 1/ = 0:0259 in Section 3.2. In words,
not only is there only A1 =1 cross-match in Fig. 2, but also that one cross-match reaches across
the largest distance, Q= 1, so it provides even stronger evidence of limited overlap of the two
distributions for patients and controls.

The null distribution of Q is the distribution of ΣI
i=1iBi. Using ΣI

i=1i=I.I +1/=2 and ΣI
i=1i2 =

I.I +1/.2I +1/=6 (e.g. Lehmann (1998), page 51), together with lemma 1, yields

E.Q/=θ
I .I +1/

2

and

var.Q/=θ.1−θ/
I.I +1/.2I +1/

6
+ .γ −θ2/

I.I +1/.3I +2/.I −1/

12
:

5. Discussion

The cross-match statistic is useful when it is natural to think of responses Yi in terms of sim-
ilarity, adjacency or distance, and when very general alternative hypotheses are of interest. In
contrast, the cross-match statistic is not suited to problems in which the multivariate responses
Yi are partially ordered, and the alternatives of interest are also partially ordered, as would be
true for detecting a positive shift in location for every co-ordinate of Yi. A multivariate rank
test for partially ordered responses was discussed in Rosenbaum (1991).
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