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The maximum correlation coefficient between partial sums of independent and identically distributed 
random variables with finite second moment equals the classical (Pearson) correlation coefficient 
between the sums, and thus does not depend on the distribution of the random variables. This result is 
proved, and relations between the linearity of regression of each of two random variables on the other 
and the maximum correlation coefficient are discussed. 
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1. Introduction 

Let X1, X2 be random elements defined on a probability space (t, , P) taking values 
in (1, /1), (W2, 32), respectively. The map Xi: (X,4, 

•A) 
=- (ji, fii) generates the 

subalgebra 4zi = X7I1 (6?i) of ~A, i = 1, 2. Denote by Pi the restriction of the measure P on 
Ai, i = 1, 2. Let L2 = L2(P) be the Hilbert space of A-measurable functions p with finite 

El 9o2 = f lI(x)12dP and inner product (9pl, 92) = E(19p2), and let L2 = L2(Pi) be the 
Hilbert space of Ai-measurable functions with finite E1pI2 and the same inner product. 
Plainly, Li is a (closed) subspace of L2, i = 1, 2. 

The maximum correlation coefficient (or maximum correlation for short) between X1 and 
X2, introduced in Gebelein (1941), is 

R(X1, X2) = sup p(Cp(XI), 9p2(X2)), (1) 

the supremum being taken over all (non-constant) 91 E Li, 92 E L2. As usual,, p(,, y) 
denotes the classical (Pearson) correlation between random variables ? and Y. The maximum 
correlation R(X1, X2) vanishes if and only if Xi and X2 are independent or, equivalently, if 
and only if the subspaces and L and L are orthogonal. In general, R(X5, X 2) is the cosine of the 
angle between L• and L2, 

R(Xi, X2) = cos(L , Li). 
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Cziki and Fisher (1963) studied the maximum correlation as a geometric characteristic. 
The following observation is due to R6nyi (1959). If 

R(X1, X2) = P((pl, P92) = R, (2) 

say, for some qpi with 
E(0i) 

= 0, E(p2) = 1, i = 1, 2, then necessarily 

E(q~i JX2)= Rq92, E(q21XI) = R(pi. (3) 

Renyi (1959) also gives sufficient conditions on (Xi, X2) for (2) to hold with 91, P92 

satisfying (3) for some R > 0. 
Based on (3), Breiman and Friedman (1985) suggested an alternating conditional 

expectations algorithm for finding pli, ,92 such that P(P91, P2) is maximized. They also 
showed how the maximizing P91, ,P2 can be estimated from observations of (X1, X2). If 
(X1, X2) is a bivariate Gaussian random vector with p(X1, X2) = p, then it has long been 
known that 

R(X1, X2) = pl. (4) 

There are several proofs of (4); see, for example, Lancaster (1957). 
Now let Y1, Y2 ... be independent and identically distributed (non-degenerate, i.e. with 

distribution not concentrated at a point) random variables with var(Yi)< 00. Set Sk = 

Y1 + ... + Yk. We prove in Section 2 that, for m r n, 

R(Sm, SO)= p(Sm, SO) = r-n, (5) 
and thus R(Sm, S,) does not depend on the distribution of Yi. To the best of the authors' 
knowledge, this result is new. It is a little unexpected given that R(Sm, S,) is a very nonlinear 
characteristic of the sums. The special case of (5) with m = 1, n = 2 was known to Samuel 
Karlin. His advice on approaching the general case was most apposite. 

It is not known if (5) holds when var(Yi) = oc. Our arguments only tell us that it is 
always true that 

R(Sm, S,) rm/n, m < n. 

The normalized sums 

Sm - E(Sm) Sn - E(Sn) 
Sm- , Sn = 

Vvar(Sm) 'var(Sn) 

satisfy condition (3) with R = rm/n. However, the sufficient conditions in R6nyi (1959) for 

(3) to imply (2) are not satisfied for Sm, Sn constructed from arbitrary Y1,..., Yn with 

var(Yi) oo. Our proof is based on the Efron-Stein (Efron and Stein, 1981) decomposition. 
In Section 3, random vectors (X1, X2) with 

E(X1IX2) = aX2, E(X2 IX) = bXi (6) 

are considered, for some constants a, b. Condition (6) is easily seen to be necessary for 

R(XI, X2)= Ip(Xi, X2)I (7) 
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to hold. Indeed, assuming (without loss of generality) that E(X1) = E(X2) = 0, setting Ai = 

{cXi, c E R}, i = 1, 2, and denoting by E(-JA) the projection operator into the subspace A, 
(6) is equivalent to 

E(Xi IL) = E(X IA2), E(X21IL) = E(X2IAi). (8) 

If the first relation in (8) does not hold then 

cos(A1, L2) > cos(A1, A2) 

and a fortiori 

R(XI, X2) = cos(L2, L2) > cos(AI, A2) = p(Xi, X2)I. 
Remarks in Sarmanov (1958a; 1958b) can be interpreted as saying that (6) is sufficient for 
(7) - this is the interpretation of Szekely and Gupta (1998). We show in Section 3 that (6) is 
only necessary for (7). 

2. Maximum correlation between sums of independent and 
identically distributed random variables 

Our main tool is an expansion of the analysis of variance type due to Efron and Stein. 

Lemma 1. Let Y1, ..., Yk be independent and identically distributed random variables. For 
any symmetric function h(Y1, ..., Yk) with E(h) = 0, E(h2)< 00, the following expansion 
holds: 

h(YI,..., Yk) = 
hi(Yil,)+ hz(Yil, Yi) 

l<il<k l il < i2-k 

+ 
h3(Yil, Yi2, Yi3) +... + hk(X1, X2, ..., Xk), (9) 

l<il < i2 < 
i3. 

k 

where, for all j = 1,..., I and 1 = 1,..., k, 

E(hi(Yil, 
..., Yi,)l{Yi,, ..., Yi,}\Yi,) = 0. (10) 

Proof See Efron and Stein (1981). E] 

The orthogonality property (10) implies that the (symmetric zero-mean) function 

h(Y, ..., Y) = E{h(Yi, ..., Yk)IY1, * 
.., YT 

can be decomposed in the form of (9) and with the same functions hi, ..., hi as in (9) but 
with their arguments running over the set (Y1, ..., YI): 
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h(Y, ..., Y1) = 
hI(Yi,)+ h2(Yj, Yi2) +... + hi(X1, ..., XI). (11) 

lsil l l il< i2d1 

For j > 1, 

E{hj(Yi,, 
..., Yij)Yi, ..., Y1} = 0 

since among Yi,,..., Yi, there is at least one random variable different from all Y1, ..., Y1. 
In calculating E{h(Yi, ..., Yk)}2 using (9), all the cross product terms vanish, since if r< q 
then 

E{hr(Yi5, ..., Yir)hq(Yj,, 
..., Yjq)} = 

E{hr(Yi,, 
..., Yir)E(hq(Yj,, ..., Yjq) Yi,, ..., Yi,)} = 0 

(among Y,, ..., Yjq there is at least one random variable different from all 
Yil, ..., Yi,) 

The same holds for E{h(Y1, ..., Y)}z2 
Having made these remarks, we can state the next lemma. 

Lemma 2. Let Yi, Y2, ... be independent and identically distributed random variables, 
Sk = Y1 + 

--= 
Yk. If E{h(Sk)}2 < 00 then, for 1 < k, 

E{E(h(Sk)ISI)}2 < (l/k)E{h(Sk)}2 + (1 - 1/k){E(h(Sk))}2. (12) 

Proof Inequality (12) is a special case of the following inequality holding for any symmetric 
function h(Y1, ..., Yk) with E(h2)< Ko: 

E{E(h(Y1, .. ..,Yk) 
, Y 2 }< (l/k)E{h(Y1, ..., Yk)}2 + (1 - l/k){E(h(Y1,..., Yk))2. 

(13) 

Indeed, h(Sk)= h(Y +... + Yk) is symmetric in Y1,..., Yk. Furthermore, if $, y are 

independent random elements then, for any functions g(?), h(g(?), r) with Elhi < 00, 

E{h(g(?), r)l~) = E{ h(g(?), y)jg(?)}, 

whence, for 1 < k, 

E{h(Sk)IY, ..., Y1} = E{h(St + Y1+1 + ... + Yk)Y1, ..., Y1 

= 
E{h(St + Y+1 + ... + Yk)ISl} = 

E{h(Sk)ISi}. 

Thus, (12) follows from (13). 
In proving (13), one may always assume E{h(Xi, ...,Xk)} = 0; then E{h(XI,..., 

XI)} = 0. By virtue of Lemma 1, 

E{h(Y1, ..., Yk)}2 
k 

E(h+2)+ 
k 

E(h2)+ ... + k E(h(14) 

and 

E{ ( .= 
E(h) + lE(hZ) + 

+ 

+ 
)E(h ). (15) 
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Noting that, for 1 < r < l < k, 

(r k r! r! r 

whence 

E{h(Y, ..., Y)}2 (l/k) 
k 

E(h2) + + E(h 2) 
''"') 1 

1 
)l 

(1/k) kE(h 2) 
+' T 

E(h2) 

+ lk1 
E(h+)+. ..+ 

kE 

= (l/k)E{h(Y, ..., Yk)2, 

which is exactly (13). O 

We now state and prove our main result. 

Theorem 1. Let Y1, Y2, ... be independent and identically distributed non-degenerate 
random variables with E(Y2) < oo, Sk = YI + ... + Yk. The maximum correlation between 
Sm and Sn equals the (Pearson) correlation, and thus does not depend on the distribution of 
Yi: 

R(Sm, Sn) 
= p(Sm, Sn) 

= -m/n, m < n. (16) 

Proof Take q(i(Sm), 92(Sn) such that 

E{(p1i(Sm)} 
= 

E{(P92(Sn)} 
= 0, E{(p91(Sm)}2 < 00, E{(92(Sn)}2 < oO. (17) 

Then 

E{ (p(Sm)(92(Sn)} 
= E { (p (Sm)E((92(Sn)ISm)}, 

and, by the Cauchy-Schwarz inequality, 

IE{(ql(Sm)(P2(Sn)} 2 
E{(pq,(Sm)}2E{E((P2(Sn)lSm)}2 (18) 

< (m/n)E{pi (Sm)}2E{(P2(Sn)}2, 

the second inequality in (18) being due to (12). 
Since (18) holds for any pl1(Sm), (p2(Sn) subject to (17), 

R2(Sm, 
S.) 

< m/n. (19) 

On the other hand, 
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SE{(Sm - E(Sm))(Sn - E(Sn))} m 
p(Sm, S,) 

/var(Sm)var(Sn) Vn 

so that 

R(Sm, Sn) > rm/n. (20) 

The last two inequalities imply (16). O 

The above arguments also prove that, when E(Y2) = 00, R(Sm, Sn)O /m/n. 

3. Linear regression and maximum correlation 

We start with a simple example of non-degenerate random variables X1, X2 with 

E(XIIX2) = E(X2 XI) = 0 

and 

R(Xi, X2) > p(Xi, X2)I = 0. 
Let U1, U2, W be independent random variables with 

P(Ui = -1) = P(Ui = 1) = 1, i = 1, 2, O < var(W) < oo. 

Set X1 = U1 W, X2 = U2 W. Since 

E(X1IU2, W)= E(UI WIU2, W) = WE(Ui) = 0, 
then E(X1 1X2) = 0 and, similarly, E(X2 X1) = 0, whence 

p(X1, X2) = 0. 

However, 
P(Xl 

= X2) = 1, and thus 

R(X1,X2) = 1. 

This example was constructed in response to a question asked by Sid Browne of Columbia 
University. 

A random vector (U1, U2,..., Un) has spherically symmetric distribution if 

f(t1, t2, ..., tn) = 
E{expi(tlU1 + t2U2 + ... + 

tnUn)} =g(t + t +...+ t ), 

for all t1, t2, ..., tn E R0. The analytical and statistical properties of spherically symmetric 
(and, more generally, elliptically contoured) distributions have been studied by many authors 
- see Fang et al. (1990), Gupta and Varga (1993) and references therein. 

Assume that the covariance matrix B of U1, U2, ..., Un exists. If 

Xi = al U1 + a2 U2+ ... + a Un, X2 = bl U1 + b2 U2 + ... + bn Un (21) 

are linear forms in U1, U2, ..., Un with non-random coefficients, then 

E(XIX2) 
--iX2, 

E(X2 IX1) = 2Xi (22) 
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for some A1, A2 (see Eaton 1986), This means that for uncorrelated X1, X2, 

E(X1IX2) = E(X2IX1) = 0. 

If for all linear forms (21) 

R(X1, X2)= Ip(Xi, X2)I, 
then for all uncorrelated forms X1, X2 

R(X1, X2) = 0, 

i.e., 

uncorrelatedness of X1, X2 implies their independence. (23) 

Vershik (1964) showed that if rank B > 2 then (23) is equivalent to the random vector 
(U1, U2, ..., Un) being Gaussian. 

Thus, for any non-Gaussian vector (U1, U2, ..., Un) with spherically symmetric 
distribution and covariance matrix of rank > 2, there exists a pair of linear forms (21) 
with (22) such that 

R(X1, X2)> Ip(Xi, X2)I. 
Note in passing that for bivariate vectors (U1, U2) Vershik's result can be slightly modified. 
According to this modification, if (U1, U2) is an arbitrary non-degenerate random vector 
(with no moment assumption a priori) such that, for any X1 = al U1 + a2 U2, there exists a 
non-trivial form X2 = bl U1 + b2 U2 (i.e., with b + b >0) independent of X1, then (U1, U2) 
is Gaussian. 

To prove this, take a pair of independent forms X1, X2. Plainly they are linearly 
independent, and thus any linear form in U1, U2 is a linear combination of X1, X2. Now 
take X- = ajX1 + a'X2 with aja= , 0 and find X2 = biX1 + b$X2 independent of X'. 
Independence of (i) X1 and X2 and of (ii) Xi and X2 results in b' b' 

- 
0. By virtue of the 

Bernstein-Kac theorem (a very special case of the Darmois-Skitovich theorem; see, for 
example, Kagan et al., 1973, Chapter 3), X1 is Gaussian (as is X2). Since X1 is arbitrary, 
the Crambr-Wold principle implies that (U1, U2) is a Gaussian vector. 
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