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Abstract

A foundational assumption in economics is that people are rational -- they choose optimal plans of action

given their predictions about future states of the world. In games of strategy this means that each players’

strategy should be optimal given his or her prediction of the opponents’ strategies. We demonstrate that

there is an inherent tension between rationality and prediction when players are uncertain about their

opponents’ payoff functions. Specifically, there are games in which it is impossible for perfectly rational

players to learn to predict the future behavior of their opponents (even approximately) no matter what

learning rule they use.  The reason is that, in trying to predict the next-period behavior of an opponent, a

rational player must take an action this period that the opponent can observe. This observation may cause

the opponent to alter his next-period behavior, thus invalidating the first player’s prediction. The resulting

feedback loop has the property that, in almost every time period, someone predicts that his opponent has a

non-negligible probability of choosing one action, when in fact the opponent is certain to choose a different

action. We conclude that there are strategic situations where it is impossible in principle for perfectly

rational agents to learn to predict the future behavior of other perfectly rational agents, based solely on their

observed actions.
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Rationality vs predictability

Economists often assume that people are rational: they maximize their expected payoffs given

their beliefs about future states of the world. This hypothesis plays a crucial role in game theory,

where each player is assumed to choose an optimal strategy given his belief about the strategies

of his opponents. In this setting, a belief amounts to a forecast or prediction of the opponents’

future behavior, that is, of the probability with which the opponents will take various actions. The

prediction is good if the forecasted probabilities are close to the actual probabilities. Together,

prediction and rationality justify the central solution concept of the theory. Namely, if each player

correctly predicts the opponents’ strategies, and if each chooses an optimal strategy given his

prediction, then the strategies form a Nash equilibrium of the repeated game.  But under what

circumstances will rational players actually learn to predict the behavior of others starting from out

of equilibrium conditions?

In this paper we show that there are very simple games of incomplete information such that players

almost never learn to predict their opponents’ behavior even approximately, and they almost never

come close to playing a Nash equilibrium. This impossibility result and its proof builds on the

existing literature on learning in repeated games, including Jordan (1991, 1993, 1995), Kalai and

Lehrer (1993), Lehrer and Smorodinsky (1997), Nachbar (1997, 1999, 2001), and Miller and

Sanchirico (1997). For other critiques of Bayesian learning in economic environments see Binmore

(1987, 1990, 1991) and Blume and Easley (1998). The novelty of the present contribution is to

demonstrate the incompatibility between rationality and prediction without placing any restrictions

on the players’ prior beliefs, their  learning rules, or the degree to which they are forward-looking.

An example

We begin by illustrating the problem in a concrete case. Consider two individuals, A and B, who

are playing the game of matching pennies. Simultaneously each turns a penny face up or face

down. If the pennies match (both are Heads or both are Tails), then B buys a prize for A; if they do

not match, A buys a prize for B. Assume first that the prize is one dollar, and that the utility of both

players is linear in money. Then the game has a unique Nash equilibrium in which each player

randomizes by choosing Heads (H) and Tails (T) with equal probability. If both adopt this strategy,

then each is optimizing given the strategy of the other. Moreover, although neither can predict the

realized action of the opponent in any given period, each can predict his strategy, namely, the
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probabilities with which the actions will be taken. In this case no tension exists between rationality

and prediction because the game has a unique equilibrium and the players know what it is.

Now change the situation by assuming that if both players choose Heads, then B buys an ice

cream cone for A, whereas if both choose Tails then B buys A a milk shake. Similarly, if A chooses

Heads and B chooses Tails then A buys B a coke, whereas if the opposite occurs then A buys B a

bag of chips. Assume that the game is played once each day, the players’ tastes do not change

from one day to the next, and they have a fixed positive utility for each of the prizes and also for

money. Unlike the previous situation, this is a game of incomplete information in which neither

player knows the other’s payoffs.

B’s action                                      B’s action

                                        H                     T                            H                           T

H      eat cone        buy coke               buy cone          drink coke

A’s action

T      buy chips     drink shake           eat chips            buy shake

                                         Outcomes for A                          Outcomes for B

For expositional simplicity assume first that the players are myopic, that is, they do not worry about

the effect of their actions on the future course of the game. Imagine that the following sequence of

actions has occurred over the first ten periods

Period   1    2    3    4    5     6    7    8    9   10  11

          A:   H   T    T    H   H     H   T    H    T   H    ?

                                                  B:   T   H    T    H    T     H   T    H   T    H    ?

The immediate problem for each player is to predict the intention of the opponent in period eleven,

and to choose an optimal response.  The opponent’s intention might be to play Heads for sure,

Tails for sure, or to randomize with probability p for Heads and 1 – p for Tails.  If the opponent’s

intention is to randomize, then obviously one cannot predict his realized action, but it does not

seem too much to ask that one predict the approximate probability with which he intends to play

each action. We claim, however, that this is essentially impossible.

To see why, let’s put ourselves in A’s shoes. The behavior of B suggests an alternating pattern,

perhaps leading us to predict that B will play T next period. Since we are rational, we will (given our
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prediction) play T for sure next period. But if B is a good predictor, then she must be able to predict

that, with high probability, we are in fact going to play T next period. This prediction by B leads her

to play H next period, thus falsifying our original prediction that she is about to play T.

The point is that if either side makes a prediction that leads them to play H or T for sure, the other

side must predict that they are going to do so with high probability, which means that they too will

choose H or T for sure. But there is no pair of predictions such that both are approximately correct

and the optimal responses are H or T for sure. It follows that, for both players to be good predictors

of the opponent’s next period behavior, at least one of them must be intending to play a mixed

strategy next period, and the other must predict this.

Suppose, for example, that player B intends to play a mixed strategy in period  eleven. Since B is

rational, she only plays a mixed strategy if she is exactly indifferent between playing H and T given

her predictions about A. (If there is a slight difference in payoff between the two actions, strict

rationality requires that the one with higher payoff be chosen exclusively.) Now B’s predictions

about A’s behavior in the eleventh period are based on the observed history of play in the first ten

periods. Let’s say that the particular history given above leads B to predict that A will play H with

probability .127. Since B intends to play mixed, it must be the case that B’s expected utility from
playing H or T are identical, given B’s utility function uB for the various outcomes. In other words, it

must be that

.127 uB(buy cone) + .873uB(eat chips) = .127uB(drink coke) + .873uB(buy shake).

But there is no reason to think that B’s utilities actually do satisfy this equation exactly.  More

precisely, let us suppose that B’s utility for each outcome could be any real number within a certain

interval, and that B’s actual utility (B’s type) is the result of a random draw from among these

possible values. (The draw occurs once and for all before the game begins.)  Following Jordan

(1993), we claim that the probability is zero that the above equation will be satisfied. The reason is

that there are only a finite number of distinct predictions that B could make at this point in time,

because B’s prediction can only be based on A’s (and B’s) previous observed behavior, together

with B’s initial beliefs.  Since this argument holds for every period, the probability is zero that B will

ever be indifferent. From this and the preceding argument it follows that, in any given period, one

or both players must be making a bad prediction. Moreover, they cannot be playing a Nash

equilibrium in any given period (or even close to a Nash equilibrium), because this would require

them to play mixed strategies, which means that both must be indifferent.



6

Jordan (1993) was the first to employ this kind of argument to show that myopic players effectively

cannot learn mixed equilibria no matter what their beliefs are.  Moreover, as we have just seen, the

same argument shows that at least one of them cannot learn to predict the behavior of the other.

The limitation of Jordan’s result is that it assumes players are completely myopic. Forward-looking

behavior allows for a richer repertoire of learning strategies, and more time to detect complex

patterns in the behavior of one’s opponent. Nevertheless, the incompatibility between rationality

and prediction continues to hold even in this case, as we shall show below.

A second closely related body of work is due to Nachbar (1997, 1999, 2001).  He was the first to

argue that there is a fundamental tension between prediction and rationality in the context of

Bayesian learning even when players are forward-looking.  Nachbar’s critique was prompted by an

earlier paper by Kalai and Lehrer (1993), which laid out conditions under which Bayesian rational

players would in fact be able to learn to predict the behavior of their opponents. Suppose that each

player begins the game with a prior belief over the possible repeated game strategies that his

opponents might use. Kalai and Lehrer show that, if these prior beliefs contain a “grain of truth,”

that is, they put positive probability (however small) on the actual repeated game strategies of the

opponents, then players learn to predict with probability one.

As Nachbar points out, however, the grain of truth condition may be very difficult to satisfy in

practice. To illustrate, consider the preceding example and suppose that the players are perfectly

myopic. Then the unique equilibrium of the repeated game is for A to play Heads with some fixed

probability p* each period, and for B to play Heads with some fixed probability q* each period.

These values are not known to the players because p* depends on B’s payoffs whereas q*

depends on A’s payoffs. Can they be learned through Bayesian updating of a diffuse prior?

Suppose that each player begins with a belief that the other is playing an i.i.d. strategy with an

unknown parameter (the probability of playing Heads), where the beliefs have full support on the

interval [0, 1]. In any given period, the players will almost surely have updated beliefs that lead

them to play H or T with probability one in that period because the expected payoffs from Heads

and Tails are not exactly equal. However, their updated beliefs lead them to predict that their

opponent is almost surely going to play a mixed strategy next period. Thus their predictions are

almost certainly not close to their actual strategies. Furthermore, as the game proceeds, rationality

causes them to play H for sure in some periods and T for sure in others. Hence their actual

strategies are not i.i.d., and hence not in the support of their beliefs. More generally, Nachbar
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(1997, 1999, 2001) argues that in games like this it is difficult to identify any plausible family of

beliefs such that the players’ best response strategies are in the support of their beliefs.1

In this paper we are agnostic about whether or not the players are Bayesian, and what the

structure of their priors might be. Instead we show that no matter how players use the information

revealed by repeated play, they will fail to learn to predict the opponents’ behavior in some kinds of

games.

Before turning to a precise statement of our result, we should point out that it is prediction by the

players that is problematical; to an observer the average behavior of the players may exhibit

empirical regularities. For example, it could be that the cumulative frequency distribution of play

approaches a Nash equilibrium of the game. In fact this will be the case for fictitious play, in which

each player uses the empirical distribution of the opponent’s play up through a given period to

predict his next-period behavior, then chooses a best response given that prediction. In games like

matching pennies, this simple learning rule induces long-run average behavior that converges to

the mixed Nash equilibrium of the game (Miyasawa, 1961; Monderer and Shapley, 1996).  There

are other models in which players’ average behavior mimics Nash equilibrium from the observer’s

standpoint (Harsanyi, 1973; Fudenberg and Kreps, 1993); in fact Nash (1950) himself suggested

such an interpretation. But this does not imply that the individual players ever play Nash

equilibrium strategies, or that they learn to predict.

The learning model

We now describe our impossibility result in detail.  Consider an n-person game G with finite action

space X = Π Xi and utility functions ui: X → R.   We shall assume that the payoffs take the form

ui(x) = ui0(x) + ω i(x), where the ui0(x) are payoffs in a benchmark game G0, and the ω i(x) are i.i.d.

random variables drawn from a continuous density ν(ω) whose support is the interval Ιλ = [-λ/2,

λ/2].  The parameter λ > 0 is the range of uncertainty in the payoffs. We shall assume that the

distribution of payoffs is common knowledge, but the realized payoff ui(x) is known only to player i.

Errors are drawn once only before play begins, and the resulting one-shot game (called the ν-

perturbation of G0 ) is played infinitely often.

Each player takes an action once in each time period t = 1, 2,  3,  . . .. The outcome in period t is an

n-tuple of actions xt ∈ X, where xit is the action taken by i in period t. A state of the process at time t

                                                       
1 Another paper in the same general spirit is due to Miller and Sanchirico (1997).
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is a history of play up to t, that is, a sequence of outcomes ht = (x1, x2, . . ., xt).    Let h0  represent

the null history, Ht the set of all length-t histories, and H = ∪ Ht the set of all finite histories, i.e., the

set of all states. A realization of the process will be denoted by h, and the set of realizations (i.e.,

the set of infinite histories) by H
∞
.  Histories are publicly observed, that is, there is perfect

monitoring.

The discounted payoff to player i from a realization h = (x1, x2, . . ., xt , . . .  ) is

                                                                     ∞
                                            Ui(h) = (1 - δi) ∑  δit-1ui (xt),                                              (1)
                                                                    t = 1

where δi is i’s discount factor, 0  ≤ δi < 1. (If δi  = 0, Ui(h) = ui(x1).)  Let ∆i denote the set of

probability distributions over Xi.  Let ∆ = Πj∆i  denote the product set of mixtures, and let

∆-i = Πj≠ i ∆j be the product set of mixtures by i's opponents. A behavioral strategy for player i

specifies a conditional probability distribution over i's actions in each period, conditioned on the

state in the previous period. Thus we can represent i's strategy by a function qti = gi (ht-1) ∈ ∆i,

where qti(xi) is the probability that i plays xi in period t given that ht-1 is the state in period t – 1. This

is of course a function of i’s realized utility function ui, but we shall not write this dependence

explicitly.

A prior belief of player i is a probability distribution over all possible combinations of the opponents’

strategies. We can decompose any such belief into one-step-ahead forecasts of the opponents'

behavior conditional on each possible state.  Thus, if ht-1 is the state at time t - 1, i's forecast about

the behavior of her opponents in period t can be represented by a probability distribution

pt-i = fi(ht-1) ∈ ∆-i, where pt-i(x-i) is the probability that i assigns to the others playing the combination

x-i in period t. The function fi: H → ∆-i will be called i's forecasting function.   Given any vector of

forecasting functions f = (f1, f2, . . ., fn), there exists a set of prior beliefs such that the fi describe the

one-step-ahead forecasts of players with these beliefs (see Kalai and Lehrer, 1993).

Consider the situation just after the players have been informed privately of their realized payoff

functions ui.  Because of the independence of the draws among players, no one knows anything

he did not already know about the others' payoffs, and this fact is common knowledge. This has an

implication for the forecasting functions.  Namely, at the beginning of each period t, i knows that j's

information consists solely of the publicly observed history ht-1 and j's own payoff function uj. Player

j's behavior cannot be conditioned on information that j does not have (namely u-j), and player i's

forecast of j's behavior cannot be conditioned on information that i does not have (namely, u-i).



9

Thus i's forecast (fi(ht-1))j about j's behavior in each period t does not depend on the realization of
the values uk for every k, including k = i, j. It follows that the functions fi do not depend on the

realized payoff functions ui(x), though they may depend on ν. Another way of saying this is that the

beliefs must be consistent with the players' a priori knowledge of the information structure.

Following Jordan (1993), we shall say that a learning process is a pair (f, g) =  (f1, . .. , fn; g1, . .., gn)

where fi: H → ∆-i and gi: H → ∆i for each player i. Given a realization of the process h, we shall

denote player i's forecast in period t by pt-i(h) = fti(ht-1), and i's behavioral strategy in period t by

qti(h) = gi(ht-1).

The pair (fi, gi) induces a probability measure on the set of all realizations H
∞
.  Similarly, for every

state ht-1, fi and gi induce a conditional probability distribution on all continuations of ht-1. Denote this

conditional distribution by µi(fi, gi |ht-1).  We say that individual i is rational if, for every ht-1, i's

conditional strategy gi(.|ht-1) optimizes i's expected utility from time t on, given i's conditional

forecast fi(.|ht-1). (This is also known as sequential rationality.) Specifically, for every alternative

choice of strategy gi(.|ht-1),

                           ∫ Ui(h) dµi(fi, gi | ht-1) ≥   ∫ Ui(h) dµi (fi, g'i|ht-1).                       (2)

Prediction

Intuitively, player i "learns to predict" the behavior of his opponent(s) if i's forecast of their next-

period behavior becomes closer and closer to their actual next-period strategies.  This idea may be

formalized as follows. Consider a learning process (f, g), and let µ(g) denote the probability

measure induced on H
∞
 by the strategies g = (g1, g2, . . , gn). We say that player i learns to predict if

the mean-square error of i's next-period predictions goes to zero over almost all histories of play.

In other words, for µ(g)-almost all realizations h,

                                                 T

                                     lim      ∑ (| pt-i(h) – qt-i(h)|)2/T = 0.                                       (3)
                                     T→∞       t =1

Similarly, we shall say that player i never learns to predict if the subset of histories for which (3)

holds has µ-measure zero.  Note that condition (3) permits players to make bad forecasts from

time to time, provided they do not occur too often.
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An impossibility theorem

We now demonstrate a class of repeated games such that, with probability one, some player never

learns to predict his opponent’s behavior, and this holds for all prior beliefs. Since our result holds

for all beliefs, it must hold for beliefs that are in some sense best possible. A reasonable candidate

for “best possible beliefs” are rational expectations beliefs. These have the property that, at every

point in time, each player’s prediction of his opponent’s future behavior is correctly conditioned on

the posterior distribution of payoff-types revealed by play so far. These posterior distributions

converge to the set of Nash equilibria of the game (Jordan, 1993; see also Nyarko, 1998).

However, this does not imply that the posteriors lead to predictions that are close to being correct

for a given opponent. Our result shows, in fact, that these rational expectations predictions are not

close to being correct for almost all opponents.

This still leaves open the possibility that for some combinations of beliefs the players’ strategies

converge to Nash equilibrium even though their predictions do not. In a repeated game

convergence to equilibrium can be given a variety of interpretations; we shall show that the

process fails to converge to equilibrium in almost any reasonable sense. Let QN be the set of all

one-period strategy tuples  q ∈ ∆ such that q occurs in some time period in some Nash equilibrium

of the repeated game. For every q ∈ ∆ let d(q, QN) be the minimum Euclidean distance between q

and the compact set QN.  Given a learning process (f, g) and a specific history h, if the behavioral

strategies come close to Nash equilibrium on h then at a minimum we would expect the following

condition to hold,
                                                                                                           T

                                                        lim     [∑ d(qt(h), QN)2]/T = 0.                                      (4)
                                                                                        T→∞        t=1

This implies that, for every ε > 0, play is within ε of some Nash equilibrium at each point in time

except possibly for a sparse set of times. We shall show that the process fails to come close to

Nash in the sense that condition (4) fails to hold for almost all histories h.

Theorem.  Let ν be a continuous density on [-λ/2, λ/2], and let G be a ν-perturbation of a finite,

zero-sum, two-person game G0, all of whose Nash equilibria have full support. Assume that the

players are perfectly rational, have arbitrary discount factors less than unity, and that each updates

his predictions of the opponents’ future behavior by a learning rule that is based solely on

observable actions. If λ is sufficiently small, then for ν-almost all payoff realizations, the probability

is one that someone never learns to predict and that play fails to come close to Nash.
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We remark that the set of games for which this impossibility result holds is actually much larger

than the one stated in the theorem. Consider, for example, any two-person game G with strategy

space Y1 x Y2, such that |Yi| ≥  2,  all Nash equilibria have full support on Y1 x Y2, and every action

not in Yi  is strictly dominated by some action in Yi.  Then the theorem holds for perturbed versions

of this game.  Next let us extend G to an n-person game G* by adjoining n - 2 players as follows:

each new player has a strictly dominant action, and G* is the two-person subgame that results

when they play these actions. It follows that, for any finite action space X = Π Xi, there exists an n-

person game G* on X such that when the payoffs of G* are perturbed by small i.i.d random errors,

good prediction fails to occur with probability one.

Now consider any n-person game G on the finite strategy space X = ΠXi.  Suppose that we perturb

the payoffs of G by i.i.d. random errors drawn from a normal distribution, or in fact any distribution

with a continuous density whose support is the whole real line. With positive probability the payoffs

of the realized game will be close to the game G* constructed above. Thus as a corollary we obtain

the following.

Corollary. Let G be any finite n-person game whose payoffs are perturbed once by i.i.d normally

distributed random errors. Assume that the players are perfectly rational, have arbitrary discount

factors less than unity, and that each updates his predictions of the opponents’ future behavior by

a learning rule that is based solely on observable actions. For almost all payoff realizations, there

is a positive probability that someone never learns to predict and that play fails to come close to

Nash.

Proof of the theorem

Since the proof is somewhat involved, we shall first explain why the argument given in the

introduction for myopic players does not extend easily to the general case. One difficulty is that

patient players might interact through conditional strategies that involve no randomization, and

these might be predictable at least some of the time. Eliminating this case requires a delicate

probabilistic argument. The second difficulty is that, even when players randomize and are

therefore indifferent among alternative strategies, this does not imply that the stage-game payoffs

are solutions of a linear equation. Rather, they are the roots of a nonlinear function, and we must

show that the roots of this function constitute a set of measure zero.
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To increase the transparency of the proof, we shall give it for the game of matching pennies. It

generalizes readily to any finite, zero-sum, two-person game whose stage-game Nash equilibria

are all strictly interior in the space of mixed strategies.  Fix a continuous density ν whose support is

[-λ/2, λ/2]. To be concrete, we may think of ν as the uniform distribution. The perturbed game has

payoff matrix
                                                        1                                2

                                 1       1 + ω11, -1 + ω'11      -1 + ω12, 1 + ω'12

                                 2       -1 + ω21,  1 + ω'21      1 + ω22, -1 + ω'22

where ωij, ω'ij are i.i.d. random variables distributed according to ν.

Fix two rational players, 1 and 2, with discount factors 0 ≤ δ1 ≤ δ2 < 1.   Let their beliefs be f1, f2,

and let their strategies be g1(.|A), g2(.|B), where A and B are the realized values of the players'

payoff matrices.  The functions f1, f2, g1, g2 will be fixed throughout the proof. All probability

statements will be conditional on them without writing this dependence explicitly. Let H(A, B) be the

set of all histories h such that good prediction (3) holds when the realized payoffs are (A, B). Let P

be the set of pairs (A, B) such that good prediction holds with positive probability, that is,

µ(H(A, B)) > 0. First we shall show that ν(P) = 0, that is, there are almost no payoff realizations

(A, B) such that both players learn to predict with positive probability. In the second part of the

proof we shall show that for almost all (A, B) the process fails to come close to Nash.

Lemma 1. For every positive integer m, every 0 < ε' ≤ ε < 1, and every (A, B) ∈ P, there exists a

time T, possibly depending on m, ε, ε', A, B, such that, with µ-probability at least 1 - ε', each player

forecasts the other's next-period strategy within ε in each of the periods T + 1, . . . , T + m.

Proof.  Let (A, B) ∈ P and suppose there were no such time T.  Then for every time T the µ-

probability would be greater than ε' > 0 that at least one player misforecasts the opponent’s

behavior by more than ε in one or more of the periods T + 1, .  . . , T + m. This would imply that

condition (3) is violated for almost all histories, that is, µ(H(A, B)) = 0, which contradicts our

assumption that (A, B) ∈ P.

Lemma 2. For each (A, B) ∈ P there exists a time T and a history hT, possibly depending on A, B,

such that, conditional on hT, each player’s expected future payoffs, discounted to T + 1, are

bounded above by cλ for some positive number c that depends only on the discount rates.
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Proof.  Given a small λ > 0, choose m ≥ 1 such that δ2m ≤ λ and 0 < ε' ≤ ε ≤ λ/m4mem.   As

guaranteed by Lemma 1, let hT be a history such that the µ-probability is at least 1 - ε‘ that each

player forecasts the other's next-period strategy within ε in each of the periods T + 1, . . . , T + m.

Let α*Τ+1 and β*T+1 be the payoffs that players 1 and 2 expect to get from period T + 1 on,

discounted to period T + 1. We shall exhibit a positive constant c, depending only on the discount

factors, such that α*T+1, β*T+1 ≤ cλ. Note first that each player has the option of playing fifty-fifty in

each period from T + 1 on, which has expected discounted payoff at least – λ/2. Since each

player’s strategy is optimal, it follows that α*T+1, β*T+1 ≥ – λ/2.

For each j, 1 ≤  j ≤  m, let αT+j be the player 1’s expected  undiscounted payoff in period T + j as

forecast by player 1 at the end of period T.  Define  βT+j similarly for player 2. Let Hj,hT  be the set of

all continuations of hT to time T + j – 1.  Let φ1(hT+j-1) denote player 1’s probability assessment of

hT+j-1 ∈ Hj,hT and similarly define φ2(hT+j-1)  for player 2. The true probability is µ0(hT+j-1), where µ0 is

µ conditional on hT. The set of continuations on which someone makes a bad forecast have µ0-

probability at most ε'. On the remaining good continuations, each player errs by at most ε in

forecasting his opponent’s stage-game behavior in each of j stages.  Hence for every good

continuation hT+j-1, |φi(hT+j-1) - µ0(hT+j-1)|≤ (1 + ε)j -1 ≤ (jε)ejε. 

Each player’s forecasted payoff in period T + j cannot differ from the actual payoff in period T + j by

more than 2 + λ no matter how bad the forecast is. There are 4j continuations to period T + j,

including good and bad. Over all the good ones, player 1’s forecasted expected payoff differs from

his actual expected payoff by at most 4j(jε)ejε (2 + λ). Over all the bad ones the two differ by at

most ε' (2 + λ).  Thus the difference between 1’s forecasted expected payoff, αT+j, and his actual

expected payoff, αT+j, is at most (ε' + 4j(jε)ejε)(2 + λ).  By assumption, ε' ≤ ε ≤ λ/m4mem and

j ≤ m, so ε' + 4j(jε)ejε  ≤ ε + 4m(mε)emε ≤  2λ.  Thus |αT+j -αT+j| ≤  2λ(2 + λ) ≤  6λ.  Similarly

|βT+j -βT+j| ≤ 6λ. The actual payoffs satisfy |αT+j +βT+j|  ≤  λ, from which we conclude that

|αT+j +  βT+j| ≤  13λ for 1 ≤ j ≤ m.

For each j, 1 ≤ j ≤  m, let α*T+j = (1 - δ1)[αT+j + δ1αT+j+1+ δ12 αT+j+2 + .  .  . ] be player 1’s expected

payoff from period T + j on, discounted to period T + j, as forecast at the end of period T.    Similarly

define β*T+j = (1 - δ2)[βT+j + δ2βT+j+1+ δ22 βT+j+2 + .  .  ].  We claim that α*T+j, β*T+j ≥ -λ/2 for every j.  If

not, some player could switch his strategy to a fifty-fifty random mixture from period T + j on, thus

increasing his expected payoff from that time on, which would contradict sequential rationality.
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Beyond period T + m, the forecasts may no longer be good within ε. However, neither player

expects to get more than 1 + λ/2 in any period, so the sum of expected payoffs beyond period

T + m, discounted to period T + 1, cannot be more than (1 - δ2)δ2m(1 + λ/2).  By choice of m, δ2m ≤
λ, so the previous expression is at most 2λ when λ is small Putting this fact together with

|αT+j +  βT+j|  ≤ 13λ, it follows that, for 1 ≤ j ≤ m,

β*T+j ≤ (1 - δ2)∑j=1,m δ2
j-1βT+j + 2λ ≤ (1 - δ2)∑j=1,m δ2

j-1(13λ - αT+j) + 2λ 
                                               ≤ 15λ - (1 - δ2) {∑j=1,mδ2

j-1αT+j }.                                               (5)

The term {∑j=1,mδ2
j-1αT+j } is similar in form to α*T+j except that the wrong discount factor is being

used and the sum is truncated. Nevertheless we claim that if α*T+j is small, then so is the term in

question. To see this, consider the identity α*T+j = δ1α*T+j+1 + (1 - δ1)αT+j , which holds for all j. From

this we obtain

                              ∑j=1,m δ2
j-1α*T+j = δ1∑j=1,m δ2

j-1α*T+j+1 + (1 - δ1) ∑j=1,m δ2
j-1αT+j,

and after rearranging terms,

     ∑j=1,m δ2
j-1αT+j =  [1/(1 - δ1) ][α*T+j  + (δ2 -δ1) ∑j=1,m-1 δ2

j-1α*T+j+1  - δ1δ2
 m-1α*T+m+1].                (6)

All the terms α*T+j+1, . . . α*T+j+m are at least -λ/2, the term α*T+m+1 is at most  1 + λ/2, and δ1δ2
m-1 ≤

 δ2
m  ≤  λ.  Thus, the right-hand side of (6) is bounded above by  α*T+j/(1 - δ1)  + c'λ, where c' > 0

depends only on the discount factors. The left-hand side of (6) is the term in curly brackets in (5).

Substituting this expression into (5) we see that β*T+j +  [(1 - δ2)/(1 - δ1)]α*T+j ≤ 15λ - (1 - δ2)c’λ.

Since α*T+1, β*T+1 ≥ – λ/2 we conclude that both α*T+1 and β*T+1 are bounded above by cλ for

some c that depends only on the discount factors δ1 and δ2. This concludes the proof of Lemma 2.

Lemma 3.   For every positive integer m and all sufficiently small λ > 0, if (A, B) ∈ P, then there

exists a history hT such that, conditional on hT at time T, both players randomize in each of the

periods T + 1, . . . , T + m.

Proof.  As in the proof of Lemma 2 choose m ≥ 1 such that δ2m ≤ λ and let 0 < ε ≤   λ/m4mem .

Assume in addition that ε' = ε4m.  Now apply Lemma 1 with 2m instead of m: there is a time T such

that, with probability at least 1 - ε’, the next-period forecasts are within ε of being correct for the

periods T + 1, … , T + 2m.
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For each hT+j, 0 ≤ j ≤ 2m - 1, say that hT+j is good if both players’ next-period forecasts are within ε
of being correct; otherwise hT+j is bad. Say that hT+j is γ-good if it is good and, conditional on hT+j

occurring in period T + j, the probability is at most γ that someone makes a bad next-period

forecast in any continuation of hT+j  through period T + 2m – 1.

By choice of T there is at least one state, hT, that has positive probability under the strategies and

is ε'-good. Lemma 2 implies that the expected discounted payoffs from T + 1 on are bounded

above by cλ.  We claim this implies that both players randomize in period T + 1, and in fact each of

them chooses each action with probability at least ε. Suppose, to the contrary, that some player

(say player 1) chooses action 1 with probability less than ε. Since hT is good, player 2 forecasts

that 1 will play action 2 with probability at least 1 – 2ε. But then player 2 could obtain a higher

expected payoff by mismatching (playing action 1) in period T + 1 and randomizing fifty-fifty in

every period thereafter. (The expected payoff from this strategy is at least

(1 – δ2)[(1 – λ/2)(1 - 2ε) + δ2(-λ/2)], which is greater than cλ for all sufficiently small λ.)  This

contradiction shows that player 1 chooses each action in period T + 1 with probability at least ε,

and the same holds for player 2.

It follows that each of the four possible continuations of hT to period T + 1 has probability at least ε2.

Since ε2 > ε' and hT is ε'-good, none of these four continuations can be bad, and in fact each of

them must be at least (ε'/ε2)-good. Now apply Lemma 2 again (redefining ε' to be ε4m/ε2) and

conclude that, for every continuation of hT to some hT+2, the conditional expected payoffs from

period T + 2 forward are bounded above by cλ.  As before we conclude that both players

randomize in period T + 2, each putting at least ε on each action. Continuing in this manner, we

deduce that both players randomize in every continuation of hT to period T + m.  This concludes

the proof of Lemma 3.

The gist of the proof so far is that, if the payoff realizations (A, B) lead to good predictions with µ-

positive probability, then for every sufficiently large positive integer m, there exists a state hT that

induces randomization by both players in each of the next m periods. We now show that this

implies that the payoffs are zeroes of a function whose set of zeroes has ν-measure zero. This will

show that good prediction occurs with ν-measure zero.

Let hT  be any state and let m be a positive integer. Suppose that player 1 plays action 1 in each of

the periods T + 1 to T + m, after which he plays an optimal strategy given his beliefs. We can write

his expected utility, discounted to time T + 1,  as a function of his payoff matrix A as follows:
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                                         U1(A) = θ1a11 + (1 - δ1m - θ1)a12 + δ1mR1(A).

Here θ1 comes from player 2’s randomization between actions 1 and 2, and the  remainder term

R1(A) is concave and bounded. In fact, |R1(A)| ≤ (1 - δ1m)(|a11| + |a12| + |a21| + |a22|). Similarly define

U2(A) to be player 1’s expected utility from playing action 2  for m periods and an optimal strategy

thereafter. This can be written analogously to U1(A) with a remainder function R2(A) that satisfies

the same bound as R1(A). All of these functions depend of course on hT.

It will be convenient to consider a one-dimensional subspace of the payoff matrices A.  Namely, for

every four real numbers w, x, y, z, let  ψx,y,z(w) be the 2 x 2 matrix with entries

a11 = w + x, a12 = w – x, a21 = y, and a22 = z. Given x, y, and z, define the following function:

Fx,y,z(w) = U1(ψx,y,z(w)) – U2(ψx,y,z(w)). We can write this in the form

                            Fx,y,z(w) = Kx,y,z+ (1 – δ1m)w + δ1m[R1(ψ(w)) – R2(ψ(w))],

where Kx,y,z is a linear function of x, y, z and does not depend on w. The functions Ri(ψ(w)) are

concave and bounded by the same bound as before. By choosing m to be sufficiently large, we

can ensure that Fx,y,z(w) is strictly monotone increasing in w. It follows that, for any triple x, y, z,

there is at most one value of w such that Fx,y,z(w) = 0.  Since x, y, z are drawn from the continuous

density ν, we have P[{w: Fx,y,z(w) = 0|x, y, z)}] = 0. By the smoothing theorem (i.e., the law of

iterated expectations), it follows that P[{(w, x, y, z) ∈ ℜ4 : Fx,y,z(w) = 0}] = 0.

To state this in terms of the matrix A, let G(A) = Fx,y,z(a11 + a12)/2) where x = (a11 - a12)/2, y = a21,

and z = a22.  The preceding implies that P[{A: G(A) = 0}] = 0.  Recalling that F (and thus G) are

conditional on a particular history hT, we can write this as P[{{A: G(A) = 0}| hT}] = 0. Hence

∑ hT P[{A: G(A) = 0}| hT] P(hT) = 0. In other words, player 1 is only indifferent between actions 1 and

2 on a set of payoff matrices A having ν-measure zero.

Suppose now that (A, B) is a pair for which good prediction holds. Let hT be a history as

guaranteed by Lemma 3, where m is sufficiently large that F is strictly monotone increasing in w.

By Lemma 3, player 1 randomizes in each of the periods T + 1, . . ., T +  m.  Hence he is indifferent

between playing action 1 or action 2 in each of these periods, an event that has ν-measure zero.

We conclude that there are ν-almost no payoff realizations (A, B) such that both players learn to
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predict with positive probability.  This establishes the first claim of the theorem. We also note for

future reference that we have actually established the following fact.

Lemma 4.  If m is large enough and λ is small enough, then the ν-probability is zero that there

exists a state hT such that, conditional on hT at time T, both players randomize in each of the

periods T + 1, . . . , T + m.

It remains to be shown that, for ν-almost all (A, B), play fails to come close to the set of Nash

equilibria in the sense that (4) fails to hold for almost all histories h.   The first step is to show that

all Nash equilibria of the repeated game are sufficiently mixed in each time period provided that λ
is sufficiently small.

Lemma 5.  There exists ε > 0 and λ' > 0 such that, whenever 0 < λ ≤ λ', every Nash equilibrium of

the repeated game puts probability at least 2ε on each action in every time period.

The proof is similar to that of Lemma 2; in outline it runs as follows. In equilibrium, each player’s

expected discounted payoff must be at least –λ/2, because at least this much is guaranteed by

randomizing fifty-fifty in every period. Since the actual payoffs in each period sum to λ or less,

each player’s expected discounted payoff can be bounded from above by kλ, where k is a positive

constant. If some player were to play an action with less than probability 2ε in some period t, the

opponent can take a pure action with expected payoff at least (1 – λ/2)(1 – 2ε)  in period t and get

at least –λ/2 in every period thereafter. When ε and λ are sufficiently small, the expected

discounted payoff from such a deviation exceeds kλ, a contradiction.

Fix λ ∈ (0, λ']. For each pair of payoff matrices (A, B), let N(A, B) be the set of all histories h such

that expression (4) holds, i.e., such that play comes close to Nash in a weak sense. We are going

to show that there are µ-almost no such histories for ν-almost all (A, B).  This is a consequence of

the following.

Lemma 6.  Let (A, B) be a pair of payoff matrices such that (4) holds with µ-positive probability.

Then for every positive integer m and every sufficiently small λ, there exists a state hT such that,

conditional on hT, each player randomizes in each of the periods T + 1, . . . , T + m.

By choosing m large enough, it follows from Lemma 4 that there are ν-almost no payoff

realizations (A, B) with this property.  In other words, for ν-almost all payoff realizations play fails to
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come close to Nash.  Thus, once we establish Lemma 6, we will have completed the proof of the

theorem.

Proof of Lemma 6.  Fix a pair (A, B) such that (4) holds with µ-positive probability. Choose ε and λ
such that every element of QN puts probability at least 2ε on each action in each time period, as

guaranteed by Lemma 5.  Let m be a positive integer, and let ε' = ε4m. There exists a time T such

that, with µ-probability at least 1 - ε', d(qt(ht), QN) ≤ ε for every ht in the interval T ≤ t ≤ T + m. (If

this were not so, condition (4) would hold with µ-probability zero, contrary to our assumption.)

Say that a history ht is good if d(qt(ht), QN) ≤ ε. It is very good if it is good and all of its successors

for the next m periods are good.  If a history is good then each action is played in the next period

with probability at least ε. Hence every continuation of a good history occurs with probability at

least ε2. If no history at time T is very good, then the µ-probability of a bad history occurring in the

interval T, T + 1, . . . ., T + m – 1 is at least ε2(m-1) > ε', contrary to our assumption. Hence there

exists hT such that d(qt(ht), QN) ≤ ε for every continuation of hT in the interval T + 1 ≤ t ≤ T + m, and

hence both players randomize for m periods in succession. By Lemma 4 this happens with

ν-probability zero. This concludes the proof of Lemma 6, and thereby the proof of the theorem.
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