
Commissioned Paper
Telephone Call Centers: Tutorial, Review,

and Research Prospects
Noah Gans • Ger Koole • Avishai Mandelbaum

The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Industrial Engineering and Management, Technion, Haifa 32000, Israel
gans@wharton.upenn.edu • koole@cs.vu.nl • avim@tx.technion.ac.il

Telephone call centers are an integral part of many businesses, and their economic role
is significant and growing. They are also fascinating sociotechnical systems in which

the behavior of customers and employees is closely intertwined with physical performance
measures. In these environments traditional operational models are of great value—and at
the same time fundamentally limited—in their ability to characterize system performance.

We review the state of research on telephone call centers. We begin with a tutorial on how
call centers function and proceed to survey academic research devoted to the management
of their operations. We then outline important problems that have not been addressed and
identify promising directions for future research.
(Telephone Call Center; Contact Center; Teleservices; Telequeues; Capacity Management; Staffing;
Hiring; Workforce Management Systems; ACD Reports; Queueing; Abandonment; Erlang C; Erlang
B; Erlang A; QED Regime; Time-Varying Queues; Call Routing; Skills-Based Routing; Forecasting;
Data Mining )
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1. Introduction
Call centers and their contemporary successors, con-
tact centers, have become a preferred and preva-
lent means for companies to communicate with
their customers. Most organizations with customer
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contact—private companies, as well as government
and emergency services—have reengineered their
infrastructure to include from one to many call cen-
ters, either internally managed or outsourced. For
many companies, such as airlines, hotels, retail banks,
and credit card companies, call centers provide a pri-
mary link between customer and service provider.

The call center industry is thus vast and rapidly
expanding, in terms of both workforce and economic
scope. For example, a recent analyst’s report estimates
the number of agents working in U.S. call centers
to have been 1.55 million in 1999—more than 1.4%
of private-sector employment—and to be growing at
a rate of more that 8% per year (Datamonitor, U.S.
Bureau of Labor Statistics, various years). In 1998,
AT&T reported that on an average business day about
40% of the more than 260 million calls on its network
were toll-free (AT&T). One presumes that the great
majority of these 104 million daily “1–800” calls ter-
minated at a telephone call center.

The quality and operational efficiency of these tele-
phone services can be extraordinary. In a large, best-
practice call center, many hundreds of agents can
cater to many thousands of phone callers per hour.
Agent utilization levels can average between 90%–95%;
no customer encounters a busy signal and, in fact,
about half of the customers are answered immediately.
The waiting time of those delayed is measured in sec-
onds, and the fraction that abandon while waiting
varies from the negligible to a mere 1%–2%.

At the same time, these examples of best practice
represent the exception, rather than the rule. Most
call centers—even well-run ones—do not consistently
achieve such simultaneously high levels of service
quality and efficiency. In part, this fact may be due
to a lack of understanding of the scientific principles
underlying best practice.

The performance gap is also likely due to the grow-
ing complexity of contact centers. Recent trends in
networking, “skills-based routing,” and multimedia
have fundamentally increased the challenges inherent
in managing contact centers. While simple analytical
models have historically performed an important role
in the management of call centers, they leave much to
be desired. More sophisticated approaches are needed
to accurately describe the reality of contact-center

operations, and models of this reality can improve
contact-center performance significantly.

In this article, our aim is twofold. We first provide
a tutorial on call centers, which outlines important
operational problems. We then review the academic
literature that is related to the management of call-
center operations, working from the current “state of
the art” to open and emerging problems. Our focus
is on mathematical models which potentially support
call-center management, and we primarily address
analytical models that support capacity management.

Analytical models can be contrasted with simula-
tion techniques, which have been growing in popular-
ity (see §VIII in Mandelbaum 2002). This growth has
occurred partly because of improved user-friendliness
of simulation tools and partly in view of the scarcity
of mathematical skills required for the analytical alter-
natives. Perhaps it is mostly due to the widening gap
between the complexity of the modern call center and
the analytical models available to accommodate this
complexity.

We will not dwell here on the virtues and vices of
analytical versus simulation models. Our contention
is that, ideally, one should blend the two: Analyti-
cal models for insight and calibration, simulation for
fine tuning. In fact, our experience strongly suggests
that having analytical models in one’s arsenal, even
limited in scope, improves dramatically one’s use of
simulation.

There are two related reasons for our focus
on capacity management. First, in most call cen-
ters capacity costs in general, and human resource
costs in particular, account for 60%–70% of operat-
ing expenses. Thus, from a cost perspective, capac-
ity management is critical. Second, the majority of
research to date has addressed capacity management.
This no doubt reflects the traditional emphasis of
operations management (OR/IE) research, and it also
is due to researchers’ sensitivity to the economic
importance of capacity costs.

Nevertheless, these traditional operational models
do not capture a number of critical aspects of call-
center performance, and we also discuss what we
believe to be important determinants that have not
been adequately addressed. These topics include a
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better understanding of the role played by human fac-
tors, as well as the better use of new technologies,
such as networking and “skills-based routing” tools.
Indeed, these behavioral and technological issues are
closely intertwined, and we believe that the ability to
address these problems will often require multidisci-
plinary research.

1.1. Additional Resources
The continued growth in both the economic impor-
tance and complexity of call centers has prompted
increasingly deep investigation of their operations.
This is manifested by a growing body of academic
work devoted to call centers, research ranging in dis-
cipline from mathematics and statistics, through oper-
ations research, industrial engineering, information
technology and human resource management, all the
way to psychology and sociology.

While the focus of the current article is opera-
tional issues and models, a number of comple-
mentary research resources also exist. In particular,
Mandelbaum (2002) provides a comprehensive biblio-
graphy of call-center-related work. It includes refer-
ences and abstracts that cover well over 250 research
papers in a wide range of disciplines. Indeed, given
the speed at which call-center technology and research
are evolving, advances are perhaps best followed
through the Internet, either via sites of researchers
active in the area or through industry sites. For a list
of web sites, see §XI of Mandelbaum (2002).

There also exists a number of academic review
articles of which we are aware: Pinedo et al. (1999)
provides the basics of call-center management, includ-
ing some analytical models; Anupindi and Smythe
(1997) describes the technology that enables current
and plausibly future call centers; Grossman et al.
(2001) and Mehrotra (1997) are both short overviews
of some OR challenges in call-center research and
practice; Anton (2000) provides a managerial survey
of the past, present, and future of customer contact
centers; and Koole and Mandelbaum (2002) is more
narrowly focused on queueing models. One may view
our survey as a supplement to these articles, one that
is aimed at academic researchers that seek an entry
to the subject, as well as at practitioners who develop
call-center applications.

Additional articles that we recommend as part of
a quantitative introduction to call centers include the
following. Buffa et al. (1976) is an early, comprehen-
sive treatment of the hierarchical framework used by
call centers to manage capacity. The series of four arti-
cles by Andrews et al. (1995); Andrews and Parsons
(1989, 1993); and Quinn et al. (1991) constitutes an
interesting record of this group’s work with the call
center of the catalogue retailer, L. L. Bean. Similarly,
Brigandi et al. (1994) present work by AT&T that
demonstrates the monetary value of call-center mod-
elling. Mandelbaum et al. (2001), parts of which have
been adapted to the present text, provides a thorough
descriptive analysis of operational data from a call
center, and Brown et al. (2002a) is its complementary
statistical analysis. Evenson et al. (1998) and Duxbury
et al. (1999) discuss performance drivers and the state
of the art of call-center operations. Finally, Cleveland
and Mayben (1997) is a well-written overview by and
for practitioners. However, we take exception to some
of its views, notably its treatment of customer aban-
donment (Garnett et al. 2002) and its capacity-sizing
recommendations (Srinivasan and Talim 2001).

1.2. Reading Guide
The headings within the Table of Contents provide
some detail on the material covered in the various sec-
tions. Here we offer a complementary guide for read-
ers with specific interests. After reading or skimming
through §2, the sections a given reader would concen-
trate on may vary. What follows is a list of potential
topic choices.

• Queueing performance models for multiple-
server systems: §§3.2, 4.1–4.4, 4.7, and 7.

• Queueing control models for multiple-server,
multiclass systems: §§5 and 7.

• Human resources problems associated with per-
sonnel scheduling, hiring, and training: §§3.2, 3.5,
4.5–4.6, 4.7.2, and 7.

• Service quality, and customer and agent behavior:
§§2.5, 3.5, 6.3.2–6.3.4.

• Statistical analysis of call-center data: §§2.3, 3.3,
6, and 7.

Note that §§2.2–2.3 introduce and define commonly
used call-center names and acronyms that we use
throughout the paper. A summary of the abbreviations
and their definitions can be found in Appendix A.
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2. Overview of Call-Center
Operations

This section offers a tutorial on call-center operations.
Then in §2.1, we provide background on the scope of
call-center operations, then in §2.2 we describe how
call centers work, and we define common call-center
nomenclature. Next, §2.3 describes how call cen-
ters commonly monitor their operations and measure
their operating performance. In §2.4 we highlight the
relationship between call centers and queueing sys-
tems. Then, §2.5 discusses measures of service quality
commonly used in call centers.

2.1. Background
At its core, a call center constitutes a set of resources—
typically personnel, computers, and telecommuni-
cation equipment—which enable the delivery of
services via the telephone. The working environment
of a large call center (Figure 1) can be envisioned
as an endless room with numerous open-space cubi-
cles, in which people with earphones sit in front of
computer terminals, providing teleservices to phan-
tom customers.

Call centers can be categorized along many dimen-
sions. The functions that they provide are highly var-
ied: From customer service, help desk, and emergency
response services, to telemarketing and order taking.
They vary greatly in size and geographic dispersion,
from small sites with a few agents that take local

Figure 1 The Working Environment of a Call Center (right image of First Direct from Larréché et al. 1997)

calls—for example, at a medical practice—to large
national or international centers in which hundreds
or thousands of agents may be on the phone at any
time.

Furthermore, the latest telecommunications and
information technology allow a call center to be the
virtual embodiment of a few or many geographically
dispersed operations. These range from small groups
of very large centers that are connected over several
continents—for example, in the U.S.A., Ireland, and
India—to large collections of individual agents that
work from their homes.

The organization of work may also vary dramati-
cally across call centers. When the skill level required
to handle calls is low, a center may cross-train every
employee to handle every type of call, and calls may
be handled first-come, first-served (FCFS). In settings
that require more highly skilled work, each agent may
be trained to handle only a subset of the types of calls
that the center serves, and “skills-based routing” may
be used to route calls to appropriate agents. In turn,
the organizational structure may vary from the very
flat—in which essentially all agents are exposed to
external calls—to the multilayered—in which a layer
represents a level of expertise—and customers may be
transferred through several layers before being served
to satisfaction.

A central characteristic of a call center is whether
it handles inbound or outbound traffic. Inbound call
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centers handle incoming calls that are initiated by out-
side callers calling in to a center. Typically, these types
of centers provide customer support, help-desk ser-
vices, reservation and sales support for airlines and
hotels, and order-taking functions for catalog and
Web-based merchants. Outbound call centers han-
dle outgoing calls, calls that are initiated from within
a center. These types of operations have tradition-
ally been associated with telemarketing and survey
businesses. A recent development in some inbound
centers is to initiate outbound calls to high-value cus-
tomers who have abandoned their calls before being
served.

Our focus in this article is on inbound call centers,
with some attention given to mixed operations that
blend incoming and outgoing calls. In fact, we are
aware of almost no academic work devoted to pure
outbound operations, the exception being Samuelson
(1999). Within inbound centers, the agents that handle
calls are often referred to as customer service represen-
tatives (CSRs) or “reps” for short. (Appendix A sum-
marizes the call-center acronyms used in this review,
and it displays the page numbers on which they are
defined.)

In addition to providing the services of CSRs, many
inbound call centers use interactive voice response (IVR)
units, also called voice response units (VRUs). These
specialized computers allow customers to communi-
cate their needs and to “self-serve.” Customers inter-
acting with an IVR use their telephone key pads or
voices to provide information, such as account num-
bers or indications of the type of service desired. (In
fact, the latest generation of speech-recognition tech-
nology allows IVRs to interpret complex user com-
mands.) In response, the IVR uses a synthesized voice
to report information, such as bank balances or depar-
ture times of planes. IVRs can also be used to direct
the center’s computers to provide simple services,
such as the transfer of funds among bank accounts.
For example, in many banking call centers, roughly
80% of customer calls are fully self-served using an
IVR. (Interestingly, the process by which customers
who wish to speak to a CSR identify themselves,
using an IVR, can average 30 seconds, even though
subsequent queueing delays often reach no more than
a few seconds.)

A current trend is the extension of the call cen-
ter into a contact center. The latter is a call center in
which agents and IVRs are complemented by services
in other media, such as e-mail, fax, webpages, or chat
(in that order of prevalence). The trend toward con-
tact centers has been stimulated by societal hype sur-
rounding the Internet and by customer demand for
channel variety, as well as by the potential for effi-
ciency gains. In particular, requests for e-mail and fax
services can be “stored” for later response, and it is
possible that, when standardized and well managed,
they can be made significantly less costly than tele-
phone services.

Our survey deals almost exclusively with pure
telephone services. To the best of our knowledge,
no analytical model has yet been dedicated to
truly multimedia contact centers, though a promising
framework (skills-based routing) and a few models
that accommodate IVRs, e-mails and their blending
with telephone services, will be described in §5.

2.2. How an Inbound Call Is Handled
The large-scale emergence of call centers has been
enabled by technological advances in information and
communications systems. To describe these technolo-
gies, and to illustrate how they function, we will
walk the reader through an example of the pro-
cess by which a call center serves an incoming call.
Figure 2 provides a schematic diagram of the equip-
ment involved.

Consider customers in the United States who wish
to buy a ticket from a large airline using the tele-
phone. They begin the process of buying the ticket
by calling a toll-free “800” number. The long-distance
or public switched telephone network (PSTN) company
that provides the 800 service to the airline knows
two vital pieces of information about each call: The
number from which the call originates, often called
the automatic number identification (ANI) number; and
the number being dialed, named the call’s dialed-
number identification service (DNIS) number. The PSTN
provider uses the ANI and DNIS to connect callers
with the center.

The airline’s call center has its own, privately
owned switch, called a private automatic branch ex-
change (PABX or PBX), and the caller’s DNIS locates
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Figure 2 Schematic Diagram of Call-Center Technology
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the PABX on the PSTN’s network. If the airline has
more than one call center on the network—both
reachable via the same 800 number—then a combina-
tion of the ANI, which gives the caller’s location, and
the DNIS may be used to route the call. For example,
a caller from Atlanta may be routed to a Dallas call
center, while another caller from Chicago—who calls
the same 800 number—may be routed to a center in
North Dakota. Conversely, more than one DNIS may
be routed to the same PABX. For example, the airline
may maintain different 800 numbers for domestic and
international reservations and have both types of call
terminate at the same PABX.

The PABX is connected to the PSTN through a num-
ber of telephone lines, often called trunk lines, that the
airline owns. If there are one or more trunk lines free,
then the call will be connected to the PABX. Other-
wise, the caller will receive a busy signal. Once the
call is connected it may be served in a number of
phases.

At first, calls may be connected through the PABX
to an IVR that queries customers on their needs. For
example, in the case of the airline, callers may be told
to “press 1” if they wish to find flight status informa-
tion. If this is the case, then through continued inter-
action with the IVR customers may complete service
without needing to speak with an agent.

Customers may also communicate a need or desire
to speak with a CSR, and in this case calls are handed
from the IVR to an automatic call distributor (ACD).
An ACD is a specialized switch, one that is designed
to route calls, connected via the PABX, to individual
CSRs within the call center. Modern ACDs are highly
sophisticated, and they can be programmed to route
calls based on many criteria.

Some of the routing criteria may reflect callers’
status. For example, an airline may wish to spe-
cially route calls from Spanish-speaking customers.
This identification can happen in a number of ways:
Through the DNIS, because a special 1-800 number is
reserved for Spanish-speaking customers; through the
ANI, which allows the call-center’s computer system
to identify the originating phone number as that of
a Spanish-speaking customer; or through interaction
with the IVR, which allows callers who press “3” to
identify themselves as Spanish speakers.

The capabilities of agents may also be used in
the routing of calls. For example, when agents at
our example airline’s call center begin working, they
log into the center’s ACD. Their log-in IDs are then
used to retrieve records that describe whether they
are qualified to handle domestic and/or international
reservations, as well as whether or not they are profi-
cient in Spanish.

Given its status, as well as that of the CSRs that are
currently idle and available to take a call, the incom-
ing call may be routed to the “best” available agent.
If no suitable agent is free to take the call, the ACD
may keep the call “on hold” and the customer waits
until such an agent is available. While the decision
of whether and to whom to route the call may be
programmed in advance, the rules that are needed to
solve this “skills-based routing” problem can turn out
to be very complex.

Customers that are put on hold are typically
exposed to music, commercials, or other information.
(A welcome, evolving trend is to provide delayed
customers with predictions of their anticipated wait.)
Delayed customers may judge that the service they
seek is not “worth” the wait, become impatient, and
hang up before they are served. In this case, they are

84 Manufacturing & Service Operations Management/Vol. 5, No. 2, Spring 2003



GANS, KOOLE, AND MANDELBAUM
Telephone Call Centers

said to abandon the queue or to renege. Customers that
do not abandon are eventually connected to a CSR.

Once connected with a customer, agents can speak
on the telephone while, at the same time, they work
via a PC or terminal with a corporate information sys-
tem. In the case of our example airline, agents may
discuss flight reservations with customers as they
(simultaneously) query and enter data into the com-
pany’s reservation system. In large companies, such
as airlines and retail banks, the information system
is typically not dedicated to the call center. Rather,
many call centers, as well as other company branches,
may share access to a centralized corporate informa-
tion system.
Computer-telephone integration (CTI) “middleware”

can be used to more closely integrate the telephone
and information systems. For instance, CTI is the
means by which a call’s ANI is used to identify a
caller and route a call: It takes the ANI and uses
it to query a customer database in the company’s
information systems; if there exists a customer in the
database with the same ANI, then routing informa-
tion from that customer’s record is returned. In our
airline example, the routing information would be the
customer’s preferred language.

Similarly, CTI can be used to automatically dis-
play a caller’s customer record on a CSR’s worksta-
tion screen. By eliminating the need for the CSR to
ask the caller for an account number and to enter
the number into the information system, this so-
called “screen pop” saves the CSR time and reduces
the call’s duration. If applied uniformly, it can also
reduce variability among service times, thus improv-
ing the standardization of call-handling procedures.

In more sophisticated settings, CTI is used to inte-
grate a special information system, called a customer
relationship management (CRM) system, into the call-
center’s operations. CRM systems track customers’
records and allow them to be used in operating deci-
sions. For example, a CRM system may record cus-
tomer preferences, such as the desire for an aisle seat
on an airplane, and allow CSRs (or IVRs) to automati-
cally deliver more customized service. A CRM system
may also enable a screen pop to include the history
of the customer’s previous calls and, if relevant, dol-
lar figures of past sales the customer has generated.

It may even suggest cross-selling or up-selling oppor-
tunities, or it may be used to route the incoming call
to an agent with special cross-selling skills.

Once a call begins service, it can follow a number
of paths. In the simplest case, the CSR handles the
caller’s request, and the caller hangs up. Even here,
the service need not end; instead, the CSR may spend
some time on wrap-up activities, such as an updating
of the customer’s history file or the processing of an
order that the customer has requested. It may also
be the case that the CSR cannot completely serve the
customer and the call must be transferred to another
CSR. Sometimes there are several such hand-offs.

Finally, the service need not end with the call.
Callers who are blocked or abandon the queue may
try to call again, in which case they become retrials.
Callers who speak with CSRs but are unable to
resolve their problems may also call again, in which
case they becomes returns. Satisfactory service can
also lead to returns.

2.3. Data Generation and Reporting
As it operates, a large call center generates vast
amounts of data. Its IVR(s) and ACD are special-
purpose computers that use data to mediate the flow
of calls. Each time one of these switches takes an
action, it records the call’s identification number, the
action taken, the elapsed time since the previous
action, as well as other pieces of information. As a call
winds its way through a call center, a large number
of these records may be generated.

From these records, a detailed history of each call
that enters the system can, in theory, be reconstructed:
When it arrived; who the caller was; what actions the
caller took in the IVR and how long each action took;
whether and how long the caller waited in queue;
whether and for how long a CSR served the call; who
the CSR was. If the call center uses CTI, then addi-
tional data from the company’s information systems
may be included in the record: What the call was
about; the types of actions taken by a CSR; related
account information.

In practice, call centers have not typically stored
or analyzed records of individual calls, however. This
may be due, in part, to the historically high cost of
maintaining adequately large databases—a large call
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center generates many gigabytes of call-by-call data
each month—but clearly these quantities of data are
no longer prohibitively expensive to store. It is also
likely due to the fact that the software used to man-
age call centers—itself developed at a time when data
storage was expensive—often uses only simple mod-
els which require limited, summary statistics. Finally,
we believe that it is due to lack of understanding
of how and why more detailed analyses should be
carried out. (Section 6 describes current work that
analyzes call-by-call data. Sections 6 and 7 argue for
the long-term value of this type of work.)

Instead, call centers most often summarize call-by-
call data from the ACD (and related systems) as aver-
ages that are calculated over short time intervals,
most often 30 minutes in length. Figure 3 displays 21
half-hours’ worth of data from such a report.

These ACD data are used both for planning pur-
poses and to measure system performance. They are
carefully and continuously watched by call-center
managers. They will also be central to the discussion

Figure 3 Example Half-Hour Summary Report from an ACD (courtesy of a member of the Wharton Call Center Forum)

that continues through much of this article. Therefore,
it is worth describing the columns of the report in
some detail.

The first four columns indicate the starting time of
the half-hour interval, as well as counts of calls arriv-
ing to the ACD: (Recvd), sometimes called offered, is
the total number of calls arriving during that half
hour; (Answ), sometimes called handled, the num-
ber of arriving calls that were actually answered
by a CSR; and (Abn %), the percentage of arriv-
ing calls that abandoned before being served (equals
�1− �Answ�/ �Recvd��× 100%). Note that the num-
ber of calls offered to the ACD may be much smaller
than the total number of calls arriving to the cen-
ter. First, (Recvd) does not account for busy signals,
which occur at the level of the PSTN and PABX. Fur-
thermore, as already mentioned, in some industries it
is not unusual for 80% of the calls arriving to a call
center to be “self-service” and to terminate in the IVR.

(Abn %) is an important measure of system conges-
tion. The next column reports another one: (ASA) is
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the average speed of answer, the amount of time (Answ)
calls spend “on hold” before being served by a CSR.
(Because ASA does not include the time that aban-
doned calls spend waiting, a reasonably full picture
of congestion requires, at a minimum, both ASA and
Abn % statistics.) Call centers sometimes report addi-
tional measures of the delay in queue. For example,
the service level, also called the telephone service fac-
tor (TSF), is the fraction of calls whose delay fell below
a prespecified “service-level” target. Typically the tar-
get is 20 or 30 seconds. Some call centers also report
the delay of the call that waited on hold the longest
during the half hour.

To interpret the remaining statistics in Figure 3,
it is helpful to define the following three states of
CSRs who are logged into the ACD: (1) active, namely
handling a call; (2) sitting idle, available to handle a
call; and (3) not actively handling a call but not idle,
unavailable to take calls. Over the course of each half-
hour reporting interval, the ACD tracks the time that
each CSR that is logged into the system spends in
each of these states, and it aggregates (total active),
(total available), and (total unavailable) time (across
all logged-in CSRs) to calculate the figure’s statistics.

The next column in Figure 3 reports the (AHT), the
average handle time per call, another name for average
service time (equals (total active) ÷ (Answ)). In some
reports this total is broken down into component
parts: “talk” time, the average amount of time a CSR
spends talking to the customer during a call; “hold”
time, the average time a CSR puts a customer “on
hold” during a call, once service has begun; and
“wrap” time, the average amount of time a CSR spends
completing service after the caller has hung up.

The remaining columns detail the productivity of
the call-center’s CSRs. (On Prod FTE) is the average
number of full-time equivalent (FTE) CSRs that were
active or available during the half hour (equals ((total
active)+ (total available))÷ 30 minutes). (Occ %), the
system occupancy, is a measure of system utilization
that excludes the time that CSRs were unavailable to
serve calls (equals (total active)÷ ((total active)+ (total
available))×100%). (On Prod %) is the fraction of time
that logged-in CSRs were actively handling or able to
handle calls (equals ((total active)+ (total available))÷
((total active)+(total available)+(total unavailable))×

100%). (Sch Open FTE) is the number of FTE CSRs
that had been scheduled to be logged in during the
half hour; it is the planned version of (On Prod FTE).
Finally, (Sch Avail %) relates the actual time spent
logged-in to the original plan (equals (On Prod FTE)÷
(Sch Open FTE)×100%).

Thus, the report records three sources of loss in
CSR productivity. The first is idle time that is presum-
ably induced by naturally occurring stochastic vari-
ability in arrival and service times and is captured
by (100%–(Occ %)). The second is the fraction of time
that CSRs were originally scheduled to be available to
take calls but were not, which is calculated as (100%–
(On Prod %)). This percentage can be tracked against
an operating standard that the call center maintains
to make sure that CSRs are not spending “too much”
logged-in time unavailable. Similarly, the third source,
(100%–(Sch Avail %)), allows call-center managers to
track the fraction of time CSRs are not logged in, per-
haps away from their work stations taking unplanned
breaks. The latter two measures are often monitored
to diagnose perceived disciplinary problems: CSRs’
lack of compliance with their assigned schedules.

Note that the occupancies in Figure 3 are quite high,
97%–100% during much of the day. This does not
mean, however, that every CSR spends 97%–100% of
his or her work day speaking with customers. For
example, suppose the arrival rate of calls to a center is
a constant 2,850 per half hour over an eight-hour day.
The (AHT) of a call is one minute, so the call center
expects 2,850 minutes of calls to be served in every
half hour, or 95 FTE CSRs worth of calls (95 CSRs ×
30 minutes per CSR = 2,850 CSR minutes each half
hour). The center does not allow CSRs to be unavail-
able, and in every half hour it makes sure that 100
CSRs are taking calls, so that (Sched Open FTE)= (On
Prod FTE) = 100. Therefore, (Occ %) = 95% and (On
Prod %) = (Sch Avail %) = 100% in every half hour.
The call center has 200 CSRs on staff, however, and
each CSR is scheduled to spend only half of the day
on the phone. Indeed, as we will see in §3, CSRs are
typically given breaks and off-phone work that lower
their overall, daily utilization to more sustainable
levels.

It is also worth noting that, although the statistics
described above are averaged over all agents work-
ing, many can be archived also at the individual-agent
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level. This practice is useful for monitoring individual
compliance, and it can be used as a part of incentive
compensative schemes.

While the specifics of ACD reports may vary from
one site to the next, the reports almost always (as far
as we have seen) contain statistics on the four cate-
gories of data shown in Figure 3: numbers of arrivals
and abandonment, average service times, CSR uti-
lization, and the distribution of delay in queue. This
is hardly surprising—it simply reflects the fact that
call centers can be viewed, naturally and usefully, as
queueing systems.

2.4. Call Centers as Queueing Systems
Figure 4 is an operational scheme of a simple call
center. In it, the relationship between call centers and
queueing systems is clearly seen.

The call center depicted in the figure has the follow-
ing setup. A set of k trunk lines connects calls to the
center. There are w ≤ k work stations, often referred
to as seats, at which a group of N ≤ w agents serve
incoming calls. An arriving call that finds all k trunk
lines occupied receives a busy signal and is blocked
from entering the system. Otherwise, it is connected
to the call center and occupies one of the free lines. If

Figure 4 Operational Scheme of a Simple Call Center

retrials

arrivals

abandon

queue

busy

lost calls

retrials

lost calls returns

N = 3 CSR-servers

5 = (k – N) places in queue

w = 5 work stations

k = 8 trunk lines (not visible)

Call-center hardware Queueing model parameters

fewer than N agents are busy, the call is put imme-
diately into service. If it finds more than N but fewer
than k calls in the system, the arriving call waits in
queue for an agent to become available. Customers
who become impatient hang up, or abandon, before
being served. For the callers that wait and are ulti-
mately helped by a CSR, the service discipline is first-
come, first-served.

Once a call exits the system it releases the resources
it used—trunk line, work station, agent—and these
resources again become available to arriving calls. A
fraction of calls that do not receive service become
retrials that attempt to reenter service. The remaining
blocked and abandoned calls are lost. Finally, served
customers may also return to the system. Returns may
be for additional services that generate new revenue,
and as such may be regarded as good, or they may
be in response to problems with the original service,
in which case they may be viewed as bad.

Thus, the number of trunk lines k acts as an upper
bound on the number of calls that can be in the system,
either waiting or being served, at one time. Similarly,
the number of CSRs taking calls, N ≤ w, provides an
upper bound on the number of calls that can be in ser-
vice simultaneously. Over the course of the day, call-
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center managers can (and do) dynamically change the
number of working CSRs to track the load of arriving
calls.

Less frequently, if equipped with the proper tech-
nology, managers also vary the number of active
trunk lines k. For example, a smaller k in peak hours
reduces abandonment rates and waiting (as well as
the associated “1-800” costs, to be discussed later);
this advantage can be traded off against the increase
in busy signals.

For any fixed N , one can construct an associated
queueing model in which callers are customers, the
N CSRs are servers, and the queue consists of callers
that await service by CSRs. When N changes, �k−N�,
the number of spaces in queue, changes as well. As
in Figure 3, model primitives for this system would
include statistics for the arrival, abandonment, and
service processes. Fundamental model outputs would
include the long-run fraction of customers abandon-
ing, the steady-state distribution of delay in queue,
and the long-run fraction of time that servers are busy.

In fact, these types of queueing models are used
extensively in the management of call centers. The
simplest and most widely used model is that of an
M/M/N queue, also known in call-center circles as
Erlang C, which we later describe in more detail. For
many applications, however, the model is an over-
simplification. Just looking at Figure 4, one sees that
the Erlang C model ignores busy signals, customer
impatience, and services that span multiple visits.

In practice, the service process sketched above is
often much more complicated. For example, the incor-
poration of an IVR, with which customers interact
prior to joining the agents’ queue, creates two stations
in tandem: An IVR followed by CSRs. The inclusion
of a centralized information system adds a resource
whose capacity is shared by the set of active CSRs,
as well as by others who may not even be in the
call center. The picture becomes far more complex if
one considers multiple teams of specialized or cross-
trained agents that are geographically dispersed over
several interconnected call centers, and who are faced
with time-varying loads of calls from multiple types
of customers.

2.5. Service Quality
Service quality is a complex and important topic that
is closely related to the understanding of CSR and
customer behavior, and we return to these subjects in
§7. Here, we briefly review three notions of service
quality that are most commonly tracked and managed
by call centers.

The first view of quality regards the accessibility of
agents. Typical questions are, “How long did cus-
tomers have to wait to speak to an agent? How many
abandoned the queue before being served?” This type
of quality is measured via ACD (and related) reports,
described above, and queueing models are used to
manage it. In this article, we concern ourselves with
problems associated with capacity management, and
our emphasis will be on measures of accessibility.

The second view is of the effectiveness of service
encounters, and it parallels the notion of rework in the
manufacturing literature. The question here is “Did
the service encounter completely resolve the cus-
tomer’s problem, or was additional work required?”
Among call centers in the United States, a call without
rework is sometimes referred to as “one and done.”
This type of quality is typically measured by sampling
inspection; agent calls are listened to at random—
either live or on tape—and they are judged as requir-
ing rework or not. To our knowledge, there do not
exist widespread, formalized schemes for managing
service effectiveness.

The last type of quality that is consistently mon-
itored is that of the content of the CSRs’ interac-
tions with customers. Typical questions concern the
CSR’s input to the encounter and include, “Did
the CSR use the customer’s name? Did s/he speak
to the customer with a ‘smile’ in his or her voice?
Did the CSR manage the flow of the conversation
in the prescribed manner?” As with the question of
“one and done,” answers to these questions are found
by listening to a random sample of each CSR’s calls.
Sometimes the output of interactions is tracked, and
the question “Was the customer satisfied?” is asked.
Customer satisfaction data are typically collected via
surveys.

Of course, the notion of the quality of the cus-
tomers’ experiences extends beyond their interaction
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with CSRs. For example, it critically includes the time
spent waiting on hold, in queue.

In particular, we note that the nature of the time
customers spend waiting on hold, in a telequeue, is
fundamentally different than that spent in a physical
queue at a bank or a supermarket checkout line, for
example. Customers do not see others waiting and
need not be aware of their “progress” if the call cen-
ter does not provide the information. As Cleveland
and Mayben (1997) point out, customers that join a
physical queue may start out unhappy—when they
see the length of the queue which they have joined—
and become progressively happier as they move up in
line. (For experimental evidence of this effect, see Car-
mon and Kahneman 2002.) In contrast, customers that
join a telequeue may be optimistic initially—because
they do not realize how long they will be on hold—
and become progressively more irritated as they wait.
Indeed, call centers that inform on-hold callers of
their expected delays can be thought of as trying to
make the telequeueing experience more like that of a
physical queue.

3. A Base Example: Homogeneous
Customers and Agents

In this section we use a baseline example to describe
the standard operational models that are used to man-
age capacity. We begin in §3.1 with background on
capacity management in call centers. Then in §3.2 we
define a hierarchy of capacity management problems,
as well as the analytical models that are often used to
solve them: Queueing performance models for low-
level staffing decisions; mathematical programming
models for intermediate-level personnel scheduling;
and long-term planning models for hiring and train-
ing. In §§3.3–3.4 we describe standard practices in
call-center forecasting. Finally, §3.5 offers a qualitative
discussion of longer-term problems in system design.

3.1. Background on Capacity Management
Higher utilization rates imply longer delays in queue,
and in managing capacity, call centers trade off
resource utilization with accessibility. This trade-off
is central to the day-to-day operations of call cen-
ters and to the workforce management (WFM) software

tools that are used to support them. It is also the con-
cern of much of the research that is discussed in later
sections.

In some cases, revenues or costs can be directly
associated with system performance. One can then
seek to maximize expected profits or to minimize
expected costs. For example, call centers that use toll-
free services pay out-of-pocket for the time their cus-
tomers spend waiting, and these “1-800” costs grow
roughly linearly with the average number in queue:
A call center that is open 24 hours a day, 7 days a
week, and averages 40 calls in queue will pay about
$1 million per year in queueing expenses (when the
cost per minute per call is $0.05). Similarly, order-
taking businesses can sometimes estimate the oppor-
tunity cost of lost sales due to blocking (busy signals)
or abandonment. For example, see Andrews and
Parsons (1993) and Akşin and Harker (2003).

More typically, however, call-center goals are
formulated as the provision of a given level of acces-
sibility, subject to a specified budget constraint. Com-
mon practice is that upper management decides on
the desired service level and then call-center man-
agers are called on to defend their budget. (See Borst
et al. 2000 for a discussion of the constraint satisfac-
tion and cost minimization approaches.)

Furthermore, call-center managers’ view of system
capacity most often focuses on agents. CSR salaries
typically account for 60%–70% of the total operating
costs, and managers presume that other resources,
such as information systems, are not bottlenecks.
While centers often do maintain extra hardware
capacity, such as workstations, Akşin and Harker
(2001, 2003) show that planning models that do not
account for other bottlenecks when they exist could
be a problem.

We next introduce a “base case” example that
reflects the capacity-planning approach used by most
call centers. We note that the example does not repre-
sent the state of the art or, for that matter, best prac-
tice. It does, however, give a sense of the state of
common practice. Furthermore, the description of the
example—and its inherent problems and limitations—
will provide a framework by which we will organize
our subsequent discussion of call-center research.
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The subsection is divided into three parts. We begin
by describing, from the bottom up, a hierarchy of
capacity-planning problems (already introduced for-
mally in Buffa et al. 1976). We then describe forecast-
ing and estimation procedures which are commonly
used to determine inputs to the capacity-planning
process. Finally, we sketch how the elements are put
together within the context of the call center’s day-to-
day operations.

3.2. Capacity-Planning Hierarchy
Consider the call center whose statistics are reported
in Figure 3. One sees that the pattern of arrivals and
service times the center experiences is changing over
the course of the day. Offered calls (per half-hour)
peak from 11:00 a.m.–11:30 a.m., dip over lunch, and
then peak again from 2:30 p.m.–3:00 p.m. Average
handle times also appear to change significantly from
one half-hour to the next.

Figure 5 A Hierarchical View of Arrival Rates (adapted from Mandelbaum et al. 2001, following Buffa et al. 1976)

…each month of the year …each day of the month

…each hour of the day …each minute of the hour

Number of calls arriving… 

Indeed, in most call centers, the arrival rate and
mix of calls entering the system vary over time. Over
short periods of time, minute-by-minute for example,
there is significant stochastic variability in the num-
ber of arriving calls. Over longer periods of time—the
course of the day, the days of the week or month,
the months of the year—there also can be predictable
variability, such as the seasonal patterns that arriving
calls follow. (See Figure 5. For more on various types
of uncertainty, see §6.2.)

Because service capacity cannot be inventoried,
managers vary the number of available CSRs to track
the predictable variations in the arrival rates of calls.
In this manner, they attempt to meet demand for ser-
vice at a low cost, yet with an acceptable delay. In
turn, capacity-planning naturally takes place from the
bottom up: Queueing models determine how many
CSRs must be available to serve calls over a given
half-hour or hour; scheduling models determine when
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during the week or month each CSR will work;
hiring models determine the number of CSRs to hire
and train each month or quarter of the year.

At the lowest level of the hierarchy, the arrival
times of individual calls are not predictable (lower
right panel of Figure 5). Here, common practice uses
the M/M/N (Erlang C) queueing model to estimate
stationary system performance of short—half-hour or
hour—intervals. In doing so, the call center implic-
itly assumes constant arrival and service rates, as well
as a system which achieves a steady state quickly
within each interval. Furthermore, the arrival process
is assumed to be Poisson, service times are assumed
to be exponentially distributed and independent of
each other (as well as everything else in the system),
and the service discipline is assumed to be first-come,
first-served. Blocking, abandonment, and retrials are
ignored.

Given these assumptions, the Erlang C formula
(see (3) below) allows for straightforward calculation
of the stationary distribution of the delay of a call
arriving to the system. This and other steady-state
performance measures are used to make the capacity-
accessibility trade-off.

The calculations begin as follows. Let �i be the
arrival rate for 30-minute interval i. Similarly, let E	Si�
and �i = E	Si�

−1 be the expected service time and ser-
vice rate for the interval. Then define

Ri

�= �i/�i = �iE	Si� (1)

to be the offered load and

�i
�= �i/�N�i�= Ri/N (2)

to be the associated average system utilization or
occupancy (also called “traffic intensity”). Note that
Ri, often dubbed the number of offered Erlangs, is a
unitless quantity. That is, over half-hour i, an average
of Ri units of service time is offered to the call cen-
ter per unit of time, and CSRs are busy an average of
�i×100% of the time.

Given the Erlang C’s no-blocking and no-
abandonment assumptions, at least Ri CSRs are
required to work for a half-hour to serve this expected
load. Furthermore, N must be strictly greater than Ri,

equivalently �i < 1, for the system to have a steady
state. In this case, the Erlang C formula

C�N�Ri�
�= 1−

∑N−1
m=0�Ri

m/m!�∑N−1
m=0�Ri

m/m!�+�Ri
N /N !��1/�1−Ri/N��

(3)

defines the steady-state probability that all N CSRs
are busy.

The application of the “Poisson arrivals see time
averages” (PASTA) (Wolff 1982) property then allows
us to obtain our first measure of system accessibility,
the fraction of arriving customers that must wait to
be served:

P�Wait> 0�= C�N�Ri�� (4)

In turn, given the event that an arriving customer
must wait, the conditional delay in queue is expo-
nentially distributed with mean �N�i − �i�

−1, and
additional steady-state measures of accessibility are
straightforward to calculate:

ASA
�=E	Wait� = P�Wait>0�·E	Wait 
Wait>0�

= C�N�Ri�·
(

1
N

) (
1
�i

)(
1

1−�i

)
� (5)

the average waiting time before being served, and

TSF
�= P�Wait ≤ T � = 1−P�Wait> 0�

·P�Wait> T 
 Wait> 0�

= 1−C�N�Ri� · e−N�i�1−�i�T � (6)

the fraction of customers that wait no more than T

units of time, for some T that defines the desired tele-
phone service factor. All three stationary measures are
monotone in N : P�Wait> 0� decreasing, ASA decreas-
ing, and TSF increasing.

Figure 6 depicts the empirical relationship between
ASA and system occupancy, �, at a relatively small
call center, analyzed in Brown et al. (2002a). The
“cloud” of points in the figure’s left panel plots the
result for each of 3,867 hourly intervals that the call
center was open during 1999. The right panel high-
lights the relationship between ASA and � by fur-
ther averaging the occupancies and ASAs of adjacent
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Figure 6 Congestion Curves Based on Raw and Aggregate Data (from Brown et al. 2002a)
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points. The data plotted in Figure 6 clearly parallel
the theoretical relationship defined by (5).

It is interesting to note that P�Wait > 0� is a fun-
damental measure of accessibility from which ASA
and TSF are derived, and it also plays an important
part in asymptotic characterizations of accessibility.
(See §4.) However, it is almost never tracked by call-
center management.

Rather, call centers typically choose ASA or TSF as
the standard used for determining staffing levels. For
example, a call center might define ASA∗ to be an
upper bound on the acceptable average delay of arriv-
ing calls. Then the monotonicity of ASA with respect
to N is used to find the minimum number of agents
required to meet the service-level standard:

Ni = min�N ≤w 
 ASA ≤ ASA∗�� (7)

Over relatively long time intervals, variations in
arrival rates become more predictable. For example,
the fluctuations shown in the lower-left and upper-
right panels of Figure 5 are fairly typical patterns of
arrivals over the course of the day and month. Com-
mon practice assumes that these fluctuations are com-
pletely predictable.

Point forecasts for system parameters are then
inputs to the next level up in the planning hierar-
chy, staff scheduling. More specifically, each half-hour
interval’s forecasted �i and �i give rise to a target

staffing level for the period, Ni. For a call center that
is open 24 hours a day, 7 days a week, repeated use
of the Erlang C model will produce 1,440 Nis in a 30-
day month. The vector of Nis becomes the input to
the scheduling model.

We distinguish between two elements of the
scheduling process, shifts and schedules. A shift
denotes a set of half-hour intervals during which a
CSR works over the course of the day. A schedule is a
set of daily shifts to which an employee is assigned
over the course of a week or month. Both shifts and
schedules are often restricted by union rules or other
legal requirements and can be quite complex. For
example, a feasible shift may start on the half-hour
and last nine hours, including an hour total of break
time. One half-hour of this break must be devoted
to lunch, which must begin sometime between two
and three hours after the shift begins, and the other
to a morning or afternoon pause. A feasible sched-
ule may require an employee to work five, 9-hour
shifts each week of the month, on Sunday, Monday,
Tuesday, Friday, and Saturday. Another may require a
CSR to work a different set of shifts each week of the
month.

Now, suppose there is a collection of j = 1� � � � � J ,
feasible schedules to which employees may be
assigned and that the monthly cost of assigning an
agent to schedule j equals cj . This cost includes wage
differentials and overtime costs that are driven by
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Figure 7 An Example A-Matrix for the Scheduling Problem

time j = 1 2 3 4 5 6 7 8 9 10

8:00-8:29am i  = 1 1 1

8:30-8:59 2 1 1 1 1

9:00-9:29 3 1 1 1 1 1 1

9:30-9:59 4 1 1 1 1 1 1 1

10:00-10:29 5 1 1 1 1 1 1 1 1

10:30-10:59 6 1 1 1 1 1 1 1 1

11:00-11:29 7 1 1 1 1 1 1 1 1

11:30-11:59 8 1 1 1 1 1 1 1 1

12:00-12:29pm 9 1 1 1 1 1 1 1 1

12:30-12:59 10 1 1 1 1 1 1 1

1:00-1:29 11 1 1 1 1 1 1

1:30-1:59 12 1 1 1 1 1 1

2:00-2:29 13 1 1 1 1 1 1

2:30-2:59 14 1 1 1 1 1 1 1

3:00-3:29 15 1 1 1 1 1 1 1

3:30-3:59 16 1 1 1 1 1 1 1 1

4:00-4:29 17 1 1 1 1 1 1 1 1

4:30-4:59 18 1 1 1 1 1 1 1 1

5:00-5:29 19 1 1 1 1 1 1

5:30-5:59 20 1 1 1 1 1 1

6:00-6:29 21 1 1 1 1

6:30-6:59 22 1 1

schedule assignments; it need not include regular
wage and benefit costs that do not change with the
schedule. Then determination of an optimal set of
schedules can be described as the solution to an inte-
ger program (IP). Given i = 1� � � � � I , half-hour inter-
vals during the planning horizon, we define the I × J

matrix A= 	aij �, where

aij =




1� if an agent working according to
schedule j is available to take calls
during interval i;

0� otherwise.

(8)

Figure 7 shows the complete A-matrix for sched-
ules that cover one 11-hour day (for simplicity, rather
than 30 days). To enhance readability, only the matrix’s
ones are shown, not the zeros. Each of the 22 rows
represents a different half-hour interval, and each of
the 10 columns represents a different schedule to
which employees may be assigned. Inspection reveals
that the first five columns all have the same struc-
ture; the only difference among them is the time that
an employee assigned to the schedule would start.
Similarly, the second set of five columns share the
same structure. Every one of the 10 schedules has an
employee take calls for seven hours of a nine-hour day.

Letting the decision variables xj� j = 1� � � � � J , rep-
resent the numbers of agents assigned to the various

schedules, and letting Ni� i= 1� � � � � I , denote the half-
hourly staffing requirements determined via (7), one
solves

min�c′x 
Ax ≥ N�x ≥ 0�x integer� (9)

to find a least-cost set of schedules. That is, the opti-
mal solution to (9) defines the number of CSRs to
assign to each monthly schedule, j , subject to the
lower bounds on available CSRs imposed by the
service-level constraint. This formulation can become
quite large—with thousands of time slots (rows) and
feasible schedules (columns)—in which case it can-
not be solved to optimality. For call centers in which∑

i Ni is large, the rounded (up) solution of a linear
programming relaxation may perform well, however
(see Gans and Mandelbaum 2002).

In practice, the formulation of the scheduling prob-
lem may differ somewhat from (9). One alternative is
to impose an aggregate service-level constraint for a
longer period of time, such as a day, rather than one
for each half-hour or hour (see Koole and van der
Sluis, forthcoming). Another is to minimize the devia-
tion between the recommended staffing levels, Ni, and
the actual staffing levels obtained from the assigned
schedules (see Buffa et al. 1976). Both of these alterna-
tives reduce overall staffing levels, in effect by relax-
ing the service-level constraints.
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Furthermore, a solution to (9) defines only how
many agents are assigned to the various schedules,
not necessarily which person works on what sched-
ule. For large call centers, the final assignment of
employees to schedules, often called rostering, is an
even more complex problem for which even feasible
solutions are difficult to construct. Here, heuristics are
often used. One common method ranks employees
by job tenure or seniority and allows higher-ranking
employees to choose their schedules first.

Figure 8 shows how the number of busy CSRs
tracks the arrival of work at a fairly large (virtual) call
center, under study by Brown et al. (2002b). Note that,
although call-centers’ WFM systems typically sched-
ule CSRs to start working every 15 or 30 minutes, the
figure shows the number of busy CSRs closely track-
ing the offered load in the morning. This may be due
to one of two factors, or perhaps a combination of the
two: either additional CSRs log into the ACD every
few minutes in the morning as the arrival rate grows
or there exist additional (underutilized) CSRs who are
available to take calls but do not show up in the chart
because they never take calls. Note also the system
overcapacity during the peak of the day, an interval
over which the center operates at about 80% utiliza-
tion. We believe that this relatively low occupancy is
due to a skills-based routing scheme in which spe-
cialized CSRs are prohibited from taking regular calls
and are, hence, underutilized.

The solution to (9) also defines the total number of
employees required to be assigned to monthly sched-

Figure 8 The Numbers of CSRs Working Tracks the Offered Load (from
Brown et al. 2002b)
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ules, 1′x. Typically this number is then “grossed up”—
say by a factor  ∈ �0�1�—to account for unplanned
breaks, time spent training and in meetings, absen-
teeism, and other factors that reduce employees’ pro-
ductive capacity. For example, statistics, such as (On
Prod %) and (Sch Avail %) in Figure 3, can be used
in the estimation of  . Thus, the number of agents
needed in month t becomes nt = 1′x/ .

At the top of the planning hierarchy, a long-term hir-
ing problem is solved to ensure that monthly staffing
requirements are met. The horizon for the hiring prob-
lem, � , may be on the order of six months to one year.

The gross numbers of employees needed each
month over the planning horizon, �nt# t = 1� � � � �� �,
are found by solving the scheduling problem (9)
(and the underlying staffing problems, (7)) for each
month t. Other input data for the hiring problem
include the following: An estimate of the monthly
turnover rate, $; and an estimate of the lead time, % ,
that is required to recruit and train a new employee
once the decision to hire has been made.

It is worth noting that these latter two factors can
be significant. For example, in many centers employee
turnover exceeds 50% per year; hiring and training
lead times can be two or three months, and sometimes
significantly more.

Given these data, a simple method of addressing
the long-term problem that we have seen is to myopi-
cally hire enough new employees so that, by the time
they are trained, the projected number of employees
on hand meets or exceeds the projected requirements.
More formally, suppose yt employees are on hand at
the start of month t and that, due to previous months’
hiring decisions, yj employees will start working in
months j = t+1� � � � � t+%−1. Then the number, zt , to
hire in month t is

zt =
(
nt+% −

t+%−1∑
j=t

yj �1−$�%−�j−t�
)+
� (10)

so that yt+% = zt +
∑t+%−1

j=t yj ≥ nt+% . Here, the terms
within the summation account for the after-turnover
numbers of employees on hand at t+ % , before the
hiring decision at t is made. By hiring the differ-
ence between nt+% and that total, (10) assumes that
no turnover occurs among employees during recruit-
ment and training.
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3.3. Forecasting
The hierarchy of capacity-planning models, described
above, requires the following inputs: Arrival rates �i,
service rates �i, productivity factor  , turnover rate
$, and lead time % . Much of the data required to
build estimates for these parameters come from ACD
reports, such as that shown in Figure 3. For exam-
ple, the (Rcvd) and (AHT) columns of the report state
actual arrival rates and average service times for each
half-hour of the day.

The sources of the other data vary. WFM systems
sometimes track productivity figures for employ-
ees, such as Figure 3’s (On Prod %), through the
ACD. Employee turnover rates, hiring lead times,
and training requirements are (clearly) not captured
by ACD systems, however. These data are collected
from employee records by the call-center’s human
resources (HR) department.

Arrival rates are often forecast on a “top-down”
basis. The process begins by aggregating the reported
number of calls arriving each half-hour into monthly
totals, such as those found in the upper left of Fig-
ure 5. These totals are the historical basis of forecasts
that are to be built on a combination of simple time-
series methods, such as exponential smoothing, and
managerial opinion regarding what will happen to the
business that the call center supports. (For an early
book on exponential smoothing see Brown 1963; for a
recent one see Makridakis et al. 1998.) The result is a
month-by-month forecast of call volumes.

Once these top-level forecasts are set, the monthly
totals are then allocated by day-of-week and day-of-
month, as well as by time of day. (See the upper right
and lower left of Figure 5.) For example, it may be
assumed that 20% of July’s calls are handled in the
first week of the month and Mondays account for 27%
of each week’s total volume. Similarly, each half-hour
may be allocated a fixed percentage of a day’s total
call volume.

Common call-center practice is then to assume
constant arrival rates over individual half-hours or
hours. Such an approximation, by a piecewise con-
stant arrival-rate function, allows one to use standard,
steady-state models. This is reasonable if steady state
is achieved relatively quickly, in particular when the
event rate (�+N� in an M/M/N queue) is large

when compared to the duration of the interval, and
when predictable factors that drive the rates are rela-
tively stable over the interval.

In addition to using day-of-week and day-of-month
allocations, managers may flag certain days as spe-
cial and increase or decrease anticipated call volumes
accordingly. For example, suppose July 4th falls on a
Tuesday. Then the anticipated volume for the 4th may
be adjusted down, below normal. Conversely, the vol-
ume for the 5th may be adjusted upward, in anticipa-
tion of customers who put their calls off from the 4th
to the 5th. Again, these adjustments are made using
a combination of data analysis and experience-based
judgment.

In theory, the half-hourly ACD records of average
service times could also be used to generate detailed
forecasts of �is. In practice, however, many call cen-
ters do not forecast service times or other parameters
in detail. Instead, grand averages for historical ser-
vice rates, productivity rates, and turnover rates are
calculated.

For capacity-planning purposes, the parameters �,
 , and $ are often assumed to be objects of man-
agerial control, and how they are set is the result
of negotiation. For example, upper management may
assign call-center managers an objective of reducing
employee turnover rates by 3% or of reducing aver-
age handle times by five seconds.

3.4. The Forecasting and Planning Cycle
In most call centers there is a planner who is responsi-
ble for agent rosters. Every week or every few weeks,
this person begins preparing a forecast for the spec-
ified period. Based on this forecast, required num-
bers of CSRs are determined and, together with agent
and management input (concerning days off, meet-
ings, etc.), a roster is determined. This process is very
often supported by WFM software, whose core func-
tion is to forecast arrival rates and average service
times and then solve (7) and (9). These WFM packages
allow call-center planners and managers to refine and
redefine their operating plans.

The establishment of an initial agent roster is not
yet the end of story, however. Forecasts are continu-
ally updated and changes are made to the roster until
the scheduled day itself. When the roster is executed,
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a supervisor is responsible for service levels and CSR
productivity. He or she monitors abandonment rates
and waiting times and changes agents’ deployments,
based on real-time operating conditions. During the
day, data are fed back into the workforce management
tool, forecasts are updated, and the process repeats
itself.

3.5. Longer-Term Issues of System Design
Beyond workforce management, more strategic deci-
sions concern the design of the service process and
system. Often, HR planning and the use of technology
are tied together through service process design.

In the case of a single call center with universal
(flexible) agents, these issues can be easily illustrated.
For example, such a call center may attempt to reduce
HR costs by having more calls resolved in its IVR.
In this case, additional IVR resources may need to
be purchased, and the IVRs must be programmed to
handle the newly added service. At the same time, the
expected change in CSR load must be estimated: The
fraction of customers that decides to self-serve using
the IVR causes arrival rates to decline; the elimination
of these calls from the original mix causes the average
service time to change as well. The changes then flow
through the staffing models described above, and an
estimated reduction in CSR head count may be made.
Thus, investment in the IVR is traded off against HR
savings.

Newer technology expands the possibilities for call-
center design, and it also makes the task of evaluat-
ing and implementing the options more complex. For
example, consider how IVRs and skills-based routing
makes the use of part-time CSRs become economi-
cally attractive. In general, “part-timers” are valuable
because they may work only during the daily peak
in arriving calls, thereby reducing the number of full-
time agents that are (paid but) not well utilized at
other times of the day. CSR training is expensive,
however, and turnover among part-time employees
is high. To make cost-effective use of the part-timers,
their training may need to be reduced. This implies
that they will be able to serve only a subset of the
calls handled by the center. To identify which incom-
ing calls can be handled by part-time CSRs, the IVR
is programmed so that customers identify the type

of service they desire. To make sure that only simple
calls are routed to part-time CSRs, the center invests
in skills-based routing.

Interestingly, while skills-based routing allows for
more efficient use of CSR resources, many call cen-
ters also see the technology as a means for reducing
employee turnover. The idea expands on the use of
part-time workers described above. A set of skills is
designed to act as a career path; as agents learn new
skills they move up the ladder. This, in turn, is hoped
to improve employee motivation and morale and to
reduce job burnout and turnover.

4. Research Within the
Base-Example Framework

In this section we review research that bears directly
on the capacity-planning problems described in §2.
As such, it reflects the state of the art within a narrow
context: A single type of call is handled by a homoge-
neous pool of CSRs at a single location. (We consider
models of multiple call types, CSR skills, and loca-
tions in §5.) Even so, this special case provides a chal-
lenging set of problems, and its results offer essential
insights into the nature of capacity management in all
call centers, simple and complex.

In §§4.1–4.4 we cover queueing models used to
determine short-term staffing requirements. Then §4.5
reviews research devoted to the problem of schedul-
ing CSRs. Next, §4.6 addresses models for long-term
hiring and training. Finally, §4.7 discusses open prob-
lems in each of the three areas of research.

4.1. Heavy-Traffic Limits for Erlang C
The Erlang C model described in §3.2 has been widely
adopted primarily because of its ease of use. In partic-
ular, there exist simple expressions such as (4)–(6) for
most performance measures of interest. At the same
time, the model has notable limitations.

Although the Erlang C formula is easily imple-
mented, it is not easy to obtain insight from its
answers. For example, to find an approximate answer
to questions such as “how many additional agents do
I need if the arrival rate doubles?” we have to per-
form a calculation. An approximation of the Erlang C
formula that gives structural insight into this type
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of question would be of use to better understand
economies of scale in call-center operations.

Erlang-C-based predictions can also turn out to be
highly inaccurate because of violations of underlying
assumptions, and these violations are not straight-
forward to model. For example, non-exponential ser-
vice times lead one to the M/G/N queue which, in
stark contrast to the M/M/N system, is analytically
intractable.

Thus, approximations are useful both to aid insight
and to extend modelling scope, and when modelling
call centers, the most useful approximations are typi-
cally those for heavy-traffic regimes—those in which
agent utilization is high. The heavy-traffic assumption
naturally reflects the highly utilized nature of large
call-center operations, particularly the peak-hour con-
ditions that drive overall system scale.

Consider the M/G/N queue. For small to mod-
erate numbers (1s to 10s) of highly utilized agents,
Kingman’s classical “Law of Congestion” asserts that
delay in queue is approximately exponential, with
mean as given by

E	Wait for M/G/N�

≈E	Wait for M/M/N� × 1+c2
s

2
(11)

(see Whitt 1993). Here cs =)�S�/E	S� denotes the coef-
ficient of variation of the service time, a unitless quan-
tity that naturally quantifies stochastic variability.
(When cs = 1 and N = 1, the approximation reduces to
the well-known Pollaczek-Khintchine formula and is
exact.) Furthermore, the heavy-traffic regime assumed
by Kingman 1962—and, more broadly, traditional
heavy-traffic analyses—implies that essentially all
customers experience some delay before being served.
(For recent texts on heavy traffic, see Chen and Yao
2001 and Whitt 2002a.)

Then, given C�N�R�≈ 1, (11) becomes

E	Wait for M/G/N�

≈
(

1
N

)
E	S�

(
�

1−�
)(

1+ c2
s

2

)
� (12)

From (12) we clearly see that the effect on conges-
tion of both utilization, �, and stochastic variability,
cs , is nonlinear—in fact, increasing convex. Indeed,

even small increases in load (utilization), �, can have
an overwhelming, negative effect on highly utilized
systems. Performance also deteriorates with longer
and more variable service times, E	S� and c2

s , and it
improves with increased parallelism, N .

4.1.1. Square-Root Safety Staffing. The use of
Kingman’s Law for call centers was advocated by Sze
(1984), where it was attributed to Lee and Longton
(1959). Sze was motivated by a traffic mix problem
in a call center with the following characteristics. We
loosely quote from Sze (1984): “The problems faced in
the Bell System’s operator service differ from queue-
ing models in the literature in several ways: (1) Server
team sizes during the day are large, often 100–300
operators. (2) The target occupancies are high, but
are not in the heavy traffic range. While approxima-
tions are available for heavy and light traffic systems,
our region of interest falls between the two. Typically,
90%–95% of the operators are occupied during busy
periods, but because of the large number of servers,
only about half of the customers are delayed” (p. 229).

Sze (1984) tests a number of asymptotic approxima-
tions for M/G/N systems and, interestingly, favors
Approximation (11). This approximation, in particu-
lar, identifies exponential service times with any other
service time for which cs = 1. But, as will be seen later
in Figure 14, this identification can be inaccurate in
the case of many highly utilized servers. (Perhaps the
conclusion in Sze (1984) is due to testing only phase-
type service-time distributions, which allows (11) to
be a reasonable approximation.)

Indeed, for many call centers, N is in the tens or
hundreds, rather than ones, and larger N gives rise
to an asymptotic regime that differs from that of
Kingman’s Law in that significantly many customers
do not wait and service quality is carefully balanced
with server efficiency. For this reason, we call it aQual-
ity and Efficiency Driven (QED) operational regime.

The QED regime for the M/M/N queue was first
analyzed by Halfin and Whitt (1981). Formally, in this
regime a service rate � is fixed, as well as a target
value  ∈ �0�1� for P�Wait> 0�. Thus, it is defined as
one in which some, but not all, customers wait for
service. Then scaling � ↑ � and N ↑ �, Halfin and
Whitt demonstrate

P�Wait> 0�→  ⇐⇒ √
N�1−�N �→ $ (13)
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Figure 9 Optimal � for Linear Waiting and Staffing Costs (from Borst et al. 2000)
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for some fixed service grade $ ∈ �0���, so that �N =
�/N� ↑ 1. They then derive the following asymptotic
expression for the Erlang-C formula:

P�Wait> 0�≈ P�$�=
[
1+ $+�$�

,�$�

]−1

� (14)

where  =P�$� in (13). Here + and , are, respectively,
the distribution and density functions of the standard
normal distribution (mean = 0, variance = 1).

For a fixed service grade, $, (13) suggests a square-
root safety-staffing principle that recommends the num-
ber of servers N to be

N = R+-= R+$√R� 0< $<�� (15)

where, again, R = �/� is the offered load. Note that
(13) is more precisely equivalent to N ≈R+$√N , but
$�N ; hence, the two relationships are essentially the
same. (See Figure 9.)

The quantity - = $
√
R is “safety staffing” against

stochastic variability. Note that $≤ 0 implies a utiliza-
tion of 100% or more, hence an unstable system. As $
increases, so does the level of safety staffing. In turn,
P�$�≈ P�Wait> 0� decreases with $.

Recalling that �Wait
Wait > 0� is exponentially dis-
tributed with mean �N�− ��−1, one deduces from
Expressions (5), (6), and (15) that square-root safety-
staffing with -= $

√
R obtains

E	Wait� = P�Wait> 0� ·E	Wait 
Wait > 0�

≈ P�Wait> 0� · E	S�
-

� (16)

as well as the following simple expression for the dis-
tribution of delay:

P�Wait> T �≈ P�Wait> 0� · e−�T /E	S��-� (17)

While Halfin and Whitt’s formal analysis did not
appear until the early 1980s, “folk” versions of this
square-root law have long been recognized. Erlang
(1948) himself described the square-root relationship
as early as 1924, and he reports that square-root rules
had been in use at the Copenhagen Telephone Com-
pany since 1913.

Related, infinite-server heuristics that generate
square-root staffing rules also have been long recog-
nized (see Whitt 1992 and the references in Borst et al.
2000). In infinite-server systems, the number of busy
CSRs found by an arriving call has a Poisson distri-
bution, and the heuristic assumes that in large finite
systems, this number is nearly Poisson if delays are
not prevalent. In turn, a Poisson random variable with
mean R is approximately a normally distributed ran-
dom variable with mean R and standard deviation√
R. Then, given a target delay probability of  , one

chooses $ in (15) such that

 = 1−+�$�≡ +̄�$��

This is justified by

P�Wait> 0� = P�Number of busy servers>N�

≈ P�R+Z√R> R+$√R�= +̄�$�� (18)

Here Z denotes a standard normal random variable,
and the PASTA property ensures that P�Wait > 0� =
P�Number of busy servers>N�. For smallP�Wait> 0�,
+̄−1�$�≈ P−1�$�, and the heuristic’s recommendation
essentially matches that of Halfin and Whitt (1981).

Borst et al. (2000) prove that, for a variety of natural
delay-cost functions, staffing based on the square-root
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principle is, in fact, (asymptotically) optimal for large,
heavily loaded systems. That is, the paper shows
that to minimize cost, it is optimal to operate in the
QED regime. The same conclusion applies when min-
imizing staffing levels subject to constraint on perfor-
mance measures, which is more common in practice.

Square-root safety staffing turns out to be excep-
tionally accurate and robust: It is tested in Borst et al.
(2000) over all regimes, from very light to very heavy
traffic, and it rarely deviates by more than a sin-
gle server from the exactly optimal staffing level. The
introduction to Borst et al. (2000) offers further details
through a set of staffing scenarios.

Borst et al. (2000) also derives an explicit means
of determining the optimal $, a problem which they
term “dimensioning.” Figure 9 graphs the optimal $
for the case in which delay costs and staffing costs
are both linear functions of time. In this case, let r
denote the ratio of delay cost per hour to CSR cost per
hour. Then, the optimal $ can be seen to be growing
exceptionally slowly with r :

$�r� ≈




√
r/�1+r�√1/2−1�� 0≤r <10�

√
2ln�r/

√
21�−ln�2ln�r/

√
21�� 10≤r <��

(19)

From the left chart one sees that for r = 10, which
reflects delay costs that are 10 times that of staffing
costs, the optimal $ is about 1.68. For a call center
with offered load of R = 400, this implies that safety
staffing should equal about 34 (1�68×√

400 = 33�6)
and the call center then operates at 92.2% (400÷434)
utilization.

4.1.2. Operational Regimes, Pooling, and Econo-
mies of Scale. The square-root safety-staffing princi-
ple leads to additional insights concerning the nature
of economies of scale in the M/M/N queueing sys-
tems. In particular, the analysis in Borst et al. (2000)
gives rise to three asymptotic cases, each of which
displays different economies of scale.

In the first case, waiting costs of customers dom-
inate the cost of capacity, and the optimal staffing
policy uses an asymptotically fixed utilization rate.
Staffing levels grow linearly with the offered load,

and there are no economies of scale. In a large system,
the vast majority of callers are served without delay.
This is dubbed a (service) quality-driven regime.

An example of such a system is shown in Figure 10,
which summarizes the performance of a large U.S. cat-
alogue retailer. Focus on the peak period of 10:00 a.m.–
11:00 a.m.: 765 customers called; service time is about
3.75 minutes on average, with after-call work of 30
seconds and auxiliary work requiring roughly 5% of
CSRs’ time; ASA is about one second and only one call
abandoned (after one second—which seems more like
a “typo”). However, there were about 95 agents han-
dling calls, resulting in about 65% utilization—clearly
a quality-driven operation.

Another, common example of a quality-driven
regime is in the operation of an IVR. Here, capacity
is relatively inexpensive when compared to the cost
of CSR assistance. To encourage customer self-service,
companies ensure that capacity is ample enough that
callers virtually never encounter congestion.

At the other extreme, staffing costs dominate the
imputed cost of customer delay. In this case, the num-
ber of excess CSRs—beyond the number required to
handle the offered load (R)—is asymptotically fixed
in the optimal regime. Thus, as the offered load
increases, utilization quickly approaches 100% (at a
rate that equals the number of servers).

This is called an efficiency-driven regime. Examples
are found in e-mail response and many help-desk
operations (that offer “free” service to customers who
have recently purchased hardware or software). In
these systems, essentially all customers are delayed
in queue, ASA is on the order of an expected service
time, and agents are utilized very close to 100% of the
time.

In-between these two extremes are call centers
that fall within the quality- and efficiency-driven (QED)
regime, in which quality and efficiency are carefully
balanced. As they grow, these centers display both the
economies of scale shown in efficiency-driven systems
and the high accessibility that is the characteristic of
quality-driven operations.

This is the case in Figure 11, which summarizes the
performance of 12 call centers operated by a large U.S.
health insurance company: One observes a daily aver-
age of 31-second ASA, 318-second AHT, with 91%
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Figure 10 A Quality-Driven Call Center that Takes Sales Orders (from Koole and Mandelbaum 2002)

Figure 11 Performance of 12 Call Centers in the QED Regime (courtesy of a member of the Wharton Call Center Forum)
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agent utilization, in fact, over 95% in a couple of
the call centers. (Note also that 2.8% of calling cus-
tomers abandoned. Customer impatience, however, is
beyond the explanatory scope of Erlang C, and we
address it in §4.2.2.)

Recall from (13) that the QED regime is character-
ized by a fraction of delayed customers that is neither
close to zero (quality-driven) nor to unity (efficiency-
driven). Indeed, more refined data from the above-
mentioned health insurance company show that, over-
all, only about 40% of the customers were delayed,
while the other 60% accessed an agent immediately,
without any delay. Thus, the call-center characteristics
described by Sze (1984) identify the QED regime.

Economies of scale are the enabler that allows
the QED regime to circumvent the traditional trade-
off between service level and resource efficiency.
To sharpen this insight, we consider the following
problem that is commonly addressed by call-center
managers: The pooling of geographically dispersed
call centers. This pooling may be achieved either
physically—by closing some operations and expand-
ing others—or “virtually”—through the use of net-
working technology that allows calls to be routed to
various sites. For this problem we can compare how
the different regimes affect the economies of scale
enabled through pooling.

As a first step, we use (16)–(17) to define the fol-
lowing analogues to (5)–(6):

ÃSA = E
[
Wait
E	S�

∣∣∣∣ Wait> 0
]
≈ 1
-
� (20)

and

T̃SF = P
{

Wait
E	S�

> T

∣∣∣∣ Wait> 0
}
≈ e−T-� (21)

Note that these definitions modify the standard ver-
sions of ASA and TSF in two ways: They are condi-
tioned on the event that delay is nonzero, and waiting
time is measured in units of expected service dura-
tion, E	S�. This gives rise to simple expressions that
are straightforward to compare across regimes.

We observe that in each of the three regimes a single
measure of system performance is fixed, which then
determines the other performance measures:

• in the efficiency-driven regime, excess capacity -
and, in turn, ÃSA and T̃SF are fixed;

• in the quality-driven regime, system utilization �=
R/�R+-� is held constant; and

• in the QED regime, the service grade $ and, in
turn, P�$�≈ P�Wait> 0� are fixed.
The above scalings have been formalized in Whitt
(2001).

Now consider the pooling of m statistically identical
call centers into a single operation. Each call center has
the same � and �. The arrival rate to the pooled call
center is m×�, and its � is unaltered. Figure 12 sum-
marizes the results. Note that, within each column, the
boxed entries highlight the performance measures that
are fixed under that regime’s scaling.

Under efficiency-driven staffing, the service grade
decreases from $ to $/

√
m, and the delay probability

increases from P�$� to P�$/
√
m� (which can be sig-

nificant even for small ms). Note, however, that ÃSA
and T̃SF are unchanged. As m ↑ �, we observe fast
convergence to a system in which servers are 100%
utilized—so that the system behaves as a single server
that processes m times more quickly—and essentially
all customers are delayed.

For the quality-driven system, there is a signifi-
cant overall improvement of the service level: ÃSA
decreases to ÃSA/m, T̃SF decreases to �T̃SF�m, and the
delay probability decreases from P�$� to P�$

√
m�. As

m ↑ �, essentially all customers are served immedi-
ately upon arrival.

Finally, in the QED regime, the service grade and
probability of wait remain constant (by definition).
In contrast, ÃSA decreases to ÃSA/

√
m, and T̃SF

decreases to �T̃SF�
√
m. Note that it is both efficiency

driven (occupancy increases to 100%) and quality
driven (a significant fraction, namely 1−P�$�, of the
customers is served immediately).

4.2. Busy Signals and Abandonment
The Erlang C model provides an exceedingly sim-
ple means of trading off capacity and accessibility.
In turn, its heavy-traffic limits provide insight into
these trade-offs that deepen our understanding of
economies of scale in call centers and how they
should be managed. There are, however, significant
limitations to the Erlang C model.

In particular, recall that arriving calls have three
ways in which they may exit the system: A call that
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Figure 12 Erlang C in the Efficiency, Quality, and QED Regimes (homework exercise of Mandelbaum and Zeltyn 2001)
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finds all k trunk lines occupied encounters a busy sig-
nal and is blocked; a caller that becomes impatient
may abandon the queue before being served; and a
caller that waits for a CSR is served and then leaves.
The Erlang C model ignores the effect of the first two
of these three.

4.2.1. Busy Signals: Erlang B. A call center can
eliminate all delays by setting the number of lines
to be equal to the number of agents. In this case,
the so-called Erlang B formula (think “B” for block-
ing) characterizes the blocking (busy-signal) probabil-
ity for the associated M/M/N/N system. There are
no queues, and accessibility is measured solely in
terms of the fraction of customers that encounter a
busy signal. A serendipity is the well-known insen-
sitivity of the blocking probability with respect to
the service-time distribution. This accommodates gen-
eral, rather than exponential, service-time distribu-
tions (hence M/G/N/N , rather than M/M/N/N ).

In the QED regime, the Erlang B system displays
square-root results that are analogues to those for
the Erlang C system. Again, Erlang (1948) reports
that the Copenhagen Telephone Company had made
use of this relationship as early as 1913, but a
formal analysis appears to have been first carried
out by Jagerman (1974). He shows that, for large
M/G/N/N systems with N = R+$√R�−�< $<�,
the blocking probability is of order 1/

√
N :

√
N ·

P�All trunks are busy� → ,�$�/+�$�. Thus, even in
the absence of the ability to queue, accessibility
remains high in the QED regime.

For $ > 0, the fraction of callers that is blocked in
an Erlang B system is small. Furthermore, (14) shows
that, under the same conditions ($> 0), the fraction is
small enough that it would not overwhelm the system
if allowed to queue. Of course, the Erlang C system’s
infinite space in queue (number of trunk lines) is not
practically attainable.
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In between the Erlang B and Erlang C systems, one
trades off blocking with delay: The former decreases
with the available space in queue, while the latter
increases. How much queue space should be allowed?
Feinberg (1990) performs a simulation study of an
M/M/N/k system which systematically varies k ≥N .
The paper argues that a mere 10% excess of lines
over agents suffices for good performance: More lines
would give rise to too much waiting; fewer, too many
busy signals.

It turns out that another square-root principle
emerges here, given that the offered load and N grow
as in the QED regime. Letting k = N + b

√
N in such

an M/M/N/k queue gives rise to a “double” QED
regime in which blocking is of the same order as
in Jagerman (1974), order 1/

√
N , but with a smaller

constant. The square-root principle for queue dimen-
sioning was addressed in Mandelbaum and Reiman
(2000), and the resulting steady-state distribution is
formally characterized in Massey and Wallace (2002).
Whitt (2002b) develops process limits for systems that
also include abandonment, as well as service times
that are mixtures of an exponential distribution and a
point mass at zero. In turn, Whitt (2002a) uses these
exact results as the basis for a diffusion approxima-
tion of G/GI/n/k systems.

One might think that queue size is unimportant
in call centers, that waiting customers are only log-
ical entities in a phantom queue. As was already
mentioned, however, queue size determines overall
“1-800” delay costs, which can be significant (mil-
lions of dollars per year). Furthermore, although
the above discussion motivates the trade-off between
busy signals and delays, it fails to acknowledge the
most prevalent outcome of excessive congestion—the
build-up of impatience that culminates in a customer
abandoning the telequeue.

4.2.2. Abandonment: Erlang A. A model that
incorporates both busy signals and abandonment is
the so-called M/M/N/k+ G queue. In this model,
patience is defined as the maximal amount of time
that the customer is willing to wait for service; if not
served within this time, he or she abandons the tele-
queue. The “+G” notation indicates that patience is
generally distributed, i.i.d. over customers and inde-
pendently of everything else. Baccelli and Hebuterne

(1981) were motivated by telephone services to ana-
lyze the performance of the M/M/N/k+G system.
Brandt and Brandt (1999b) extend the results to cover
more general birth-and-death processes in which
arrival and service rates may vary from state to state.
(It is both remarkable and useful that general patience
is amenable to exact analysis.)

A special case is the M/M/N/k + M queue, in
which patience is assumed to be exponentially
distributed. A performance analysis “engine” for
the M/M/N/k + M queue is publicly available at
www.4callcenters.com. (The website includes two
tools, iProfiler and Charisma, to support workforce
management of call centers. iProfiler is available for
online use, free of charge.) For mathematical details,
see Palm (1943) and Riordan (1961, pp. 109–112), as
well as the more recent Garnett et al. (2002), which
specifically addresses call centers.

Prevailing practice is to install an ample number of
lines, enough so that a busy signal becomes a rare
event. In this case, one has an M/M/N +M (equiva-
lently, M/M/N/�+M) system, which we shall refer
to as “Erlang A” (“A” for Abandonment, and for the
fact that this model interpolates between Erlang B and
Erlang C).

In analogy to the heavy-traffic analysis of Erlang C
models (Borst et al. 2000, Halfin and Whitt 1981),
Garnett et al. (2002) develop three operational regimes
for an Erlang A system: efficiency-driven, quality-
driven, and QED. As before, the regimes are char-
acterized by their delay probability: close to 1, close
to 0, and within �0�1�, respectively. And, as before,
the QED regime, with N ≈ R+$√R agents, is robust
enough to cover the full operational spectrum. Here,
however, the service grade, $, can take both positive
and negative values, since abandonment stabilizes the
system at all staffing levels. The operational character-
istics of the QED regime are appealing, and they can
be summarized as follows: Server idleness, ASA, and,
most importantly, the fraction abandoning are all of
order �1/

√
N�. (The introduction of Garnett et al. 2002

is recommended for an informal elaboration.) Figure 3
summarizes the daily performance of a call center that
operates, most of the time, in the QED regime.

We now use the Erlang A model to demonstrate
mathematically how, in heavily loaded call centers,
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customer abandonment behavior significantly affects
system performance. Consider Figure 3, which in fact
details the daily operation of the Charlotte call cen-
ter that is listed in Figure 11. Note that across busy
half-hours—for example, from 10:00 a.m.–11:30 a.m.—
the number of agents working (“on production”) does
not vary significantly. At the same time, changes in
the offered load, the numbers of arriving calls, and
AHTs are matched by changes in both the ASA and
abandonment rate.

To get a sense of how abandonment affects perfor-
mance, we fit the Erlang A model within individual
half-hour intervals. From Figure 3 we naïvely use the
count of arriving calls and the AHT as estimates of
� and �. (We will discuss estimation in more detail
in §6.) We round (up) “On Production FTE” to arrive
at an approximate N . Then, given three out of four
parameters for the M/M/N +M, model, we search
for the abandonment rate that (roughly) generates the
ASA and abandonment percentage observed during
the half-hour.

For example, during the period from 10:30 a.m.–
11:00 a.m., the procedure yields an estimated mean
time to abandonment of 30 minutes. Given this esti-
mate, the absence of only five agents (out of the 223
working) would likely result in almost a doubling of
both the ASA and the fraction abandoning.

Interestingly and significantly, a model in which
average patience is 30 minutes differs dramati-
cally from a model which does not acknowledge
abandonment (“infinite patience”). For the half-hour
10:30 a.m.–11:00 a.m., the latter would give rise to an
unstable system in which agents are required to be
busy “more than 100%” of their time. Stability could
nevertheless be achieved by adding only two agents
(225 all together), but in this case ASA would be close
to seven minutes—an order-of-magnitude error in the
predicted performance if one ignores abandonment.

Thus, in heavy traffic even a small fraction of
calls that abandons the queue (or is blocked) can
have a dramatic effect on system performance, and it
should be accounted for when determining minimum
staffing levels. For this reason, we recommend the use
of Erlang A as the standard to replace the prevalent
Erlang C model.

Indeed, a common complaint one hears from
call-center managers is that workforce management
systems consistently recommend overstaffing. While
some managers develop an intuitive sense of how to
adjust staffing levels down, a better approach is to
model abandonment in the first place.

4.3. Time-Varying Arrival Rates
As is clear from Figures 5 and 8, the arrival rate
of calls can change significantly—and predictably—
throughout the day. The “Erlang” models (C, B, and
A), however, assume that arrival rates (and other sys-
tem parameters) are constant. Hence, in practice the
models are typically used only for shorter intervals
of time, such as 30 minutes, for which the arrival
rate is (hopefully) fairly constant. The instantaneous
arrival rate, ��t�, is averaged over the desired interval,
T , to calculate an interval average, �= 1/T

∫ T

0 ��t� dt.
The average arrival rate is then used to calculate
(stationary) performance measures, such as ASA or
P�Wait> 0�, for the interval.

Of course, stationary models often cannot ade-
quately capture the performance of highly time-
varying systems. Furthermore, the use of stationary
performance measures implicitly assumes that the
time required for the system to relax is small when
compared to the interval for which the measure is
used. This should be the case for systems in which
the event rate, �+N�, is large when compared with
the length of the interval, T , typically 30 minutes.
But exceptions arise, again, with abrupt changes in
the arrival (or, for that matter, service) rate, or when
overload occurs during one or more intervals. In this
case, a backlog builds up, and nonstationarity must
be accounted for.

One method of accommodating time-varying
parameters is numerical. Yoo (1996) and Ingolfsson
et al. (2002a) investigate exact methods, numerically
solving the Chapman-Kolmogorov forward equations
for Mt/M/Nt systems to calculate the associated tran-
sient system behavior. Yoo (1996) and Ingolfsson
and Cabral (2002) approximate continuously vary-
ing parameters with small, discrete intervals and use
the so-called randomization method (see Grassmann
1997) to explicitly calculate the change in system occu-
pancy from one small interval to the next.
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Another natural means of accommodating changes
in the arrival rate is to reduce the interval over which
a stationary measure is applied. In the limit, one
heuristically applies a stationary Erlang formula for
instantaneous ��t�, and as ��t� changes, one calculates
a continuously varying measure of accessibility, such
as Pt�Wait > 0�. In turn, one averages the pointwise
estimates to approximate the average performance
for the interval: �1/T �

∫ T

0 Pt�Wait > 0� dt. This is the
essence of the pointwise stationary approximation (PSA)
of Green and Kolesar (1991), but the PSA does not
explicitly consider nonstationary behavior that may
be induced by abrupt changes in the arrival rate, and
it appears to perform less well in these cases. For
example, without accounting for abandonment, the
PSA does not allow for instances t in which ��t� >

N�, and such short-term overloads can (in fact, can
be designed to) occur.

Mandelbaum and Massey (1995) analyze a single-
server queue with time-varying arrival and service
rates. (Formally, the Mt/Mt/1 queue.) A notable quali-
tative outcome is that a time-varying queue alternates
among several phases, the major ones being under-
loaded (or subcritical), overloaded (or supercritical)
and critically loaded. Roughly speaking, steady-state
analysis applies to underloaded regimes, and over-
loaded regimes are well approximated by fluid mod-
els. Critically loaded regimes exhibit, in some sense,
the null-recurrence behavior of a Markov chain and
are rather subtly described. The phase transitions of
Mandelbaum and Massey (1995) should also apply to
multiserver queues in efficiency-driven operations, but
this is yet to be verified.

Interestingly, allowing the number of servers to
increase can simplify things. This is well illustrated
in Mandelbaum et al. (1999a, b, 2000), which mod-
els a call center with abandonment and retrials. In
these papers, all parameters can vary with time. Then,
given fast transitions through periods of critical load-
ing, fluid and diffusion limits are derived for the
queue-length and waiting-time processes.

Indeed, the fluid models provide excellent fits to
the average transient behavior of systems that other-
wise are far beyond the capabilities of exact analysis.
Moreover, the models are intuitive and easy to set up.
For example, primitives in Mandelbaum et al. (1999a)

are as follows: The arrival rate, �t ; a number nt of
servers, each processing at rate �t ; the abandonment
rate 4t ; and the initial queue length Q�0�. Then the
first-order differential equation,

dQ�t�

dt
= �t−�t min�Q�t��nt�−4t�Q�t�−nt�+�

defines the system occupancy Q�t� as it evolves. A
queue with abandonment and retrials is similarly
modelled with two intuitive, autonomous first-order
differential equations.

Figure 13 compares the fluid approximation of a
system with retrials to actual (simulated) system per-
formance. In the example, the arrival rate is �t = 10
per hour at all times except 9 a.m.–11 a.m., when it
is increased to 110 per hour. All the parameters are
constant. In particular, �t = 1 per hour and nt = 10
at all times. The figure’s circles represent the average
number in queue from the simulation of a Marko-
vian system with the given parameters. The solid
line that runs through the circles is the theoretical
queue length calculated from the fluid model—truly
a remarkable fit.

Jennings et al. (1996) extend the square-root staffing
principle to account for intertemporal effects, allow-
ing the number of servers to change in response to
a time-varying offered load. The scheme is based on

Figure 13 Fluid Model of the Transient Behavior of an Overloaded
Queue (from Mandelbaum et al. 1999a)
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infinite-server approximations, as in §4.1.1, and uses
results for the Mt/G/� queue, developed by Eick
et al. (1993a, b). In particular, Jennings et al. (1996)
assumes the number of busy agents at t is Poisson
distributed with mean E	��t−Se��E	S�. (Se is the equi-
librium distribution of the service time: P�Se ≤ t� =
�
∫ t

0 P�S > 6�d6.) The number of busy servers lags the
number of arriving calls by an equilibrium service-
time distribution.

The staffing heuristic then uses a time-varying ver-
sion of (15) with Rt = E	��t− Se��E	S�, to determine
staffing levels as ��t� varies. In these time-varying
models, the appropriate $ also varies with t, and
the paper uses the heuristic procedure in (18) for
its calculation. Numerical tests in Jennings et al.
(1996) show that the procedure performs well under
a wide variety of conditions. Indeed, current work by
Mandelbaum et al. (2002) formally justifies the under-
lying asymptotic scheme.

Infinite-server approximations to time-varying
queues have been further analyzed in Massey and
Whitt (1997). The paper develops an asymptotic
characterization of the time lag between the maxi-
mum arrival rate and the maximum number of busy
servers, as the arrival changes ever more slowly.
The asymptotic analysis leads to a refined, modified-
offered-load (MOL) heuristic that performs well in
numerical tests.

The idea that the number of busy servers (peak
congestion) lags the arrival of calls (peak load) has
also been used to improve the performance of other
approximations. Green and Kolesar (1997) show that
a “lagged” version of the PSA performs better than
a nonlagged version when estimating peak-hour con-
gestion. Similarly, Green et al. (2001, forthcoming)
show that using a lagged arrival rate often signif-
icantly improves the performance of the original,
Erlang-C-based staffing models themselves.

Finally, Ingolfsson et al. (2002b) have recently eval-
uated the accuracy and computational requirements
of a number of approaches, including the exact cal-
culation of the Chapman-Kolmogorov forward equa-
tions, the method of randomization (Grassmann
1977), the infinite-server approximations of Eick et al.
(1993a, b), and the MOL approximation of Massey
and Whitt (1997). The results show that the method

of randomization generally produces results that are
close to exact, in about one-third of the computational
time. Among the quicker but more approximate meth-
ods, the MOL tends to outperform the infinite-server
approximation. We believe the latter will continue to
prove useful, however, because of its particularly sim-
ple and intuitive nature.

4.4. Uncertain Arrival Rates
While the models described above explicitly represent
uncertainty in interarrival times, the overall arrival
rate is assumed to be known. As §6.3.1 describes in
more detail, however, this is typically not the case.
Rather, the arrival rate is predicted from historical
data and is not known with certainty. (Whitt 2002d
calls this “parameter uncertainty.” See §6.2.)

It can be risky to ignore arrival-rate uncertainty,
and for call centers that operate in the QED regime,
such as those in Figure 11, the danger is particularly
acute. For example, if a call center plans to operate
at 95% utilization and the arrival rate turns out to be
5% higher than planned, either actual system utiliza-
tion climbs to 99.75%—and waiting times explode—or
customer abandonment far exceeds planned-for lev-
els. Given this potential for difficulty, it is natural to
increase safety staffing above the level required by the
expected arrival rate. Surprisingly, however, there is
little work devoted to an exploration of how much.

Specifically, suppose 7 is the random arrival rate
and let f �7� be an arrival-rate-dependent measure
of system performance. Typically these measures are
nonlinear functions of 7. For example, given fixed N

and �, Figure 6 shows the highly convex relationship
between ASA and �. Common practice is to staff so
that f �E	7�� attains the desired level of performance,
but the nonlinear nature of f �·� implies that actual
performance, E	f �7��, will not match that of the plan
and typically will be worse.

To account for this nonlinearity, Chen and Hen-
derson (2001) develop simple bounds on E	f �7��−
f �E	7�� for convex and concave f . They then use
these bounds to indicate cases in which uncertainty
in the arrival rate is likely to induce significant errors
in performance estimation (again, typically overpre-
dictions of performance).
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Ross (2001) numerically tests the following heuris-
tic, proposed by Grassmann (1988): Add the variance
of 7 to the offered load when determining safety
staffing, so that N ≈ R+ z

√
R+var�7�. Here, z is

a number of standard deviations derived from an
infinite-server approximation, such as (18). In Ross
(2001), the heuristic is shown to consistently underes-
timate the number of CSRs needed to attain a desired
service level, and Ross suggests and tests modified
versions of the heuristic that correct for the bias.

Jongbloed and Koole (2001) offer two approaches
for setting staffing levels: The first assumes there
exists a fixed staffing level to be determined, and
the second that a separate pool of flexible workers
can be called in if needed. More specifically, suppose
a call center wishes to set an 80-20 TSF: P�Wait ≤
20 seconds�= 80%. Given a fixed � and �, the call cen-
ter would simply choose a staffing level, N , to meet
the target. If 7 is random and N and � are fixed, how-
ever, then larger realizations of 7 imply lower TSFs.
Therefore, a fixed N will only achieve the desired
TSF a fraction of the time. The paper’s first approach
chooses a target probability,  , with which the call
center should meet or exceed the 80-20 TSF. Then,
given this  , it calculates a � such that P�7≤ � �= ,
as well as a staffing level, N , so that the 80-20 TSF is
met for � . This N becomes the fixed staffing level.
The second approach sets target levels for two pools
of employees: Full-time CSRs, who work no matter
what the realization of 7; and flexible CSRs, who can
be called in if the realization of 7 is “too” large. In
this case, the call center chooses two target probabili-
ties,  1 < 2, and two associated arrival rates, �1 < �2,
so that P�7 ≤ �i� =  i, i = 1�2. In turn, the number
of full-time CSRs, N1, is chosen so the 80-20 TSF is
met for �1. Similarly, N2 is set so that the 80-20 TSF is
met for �2, and the number of call-in CSRs becomes
�N2 −N1�.

The above methods can be naturally combined with
square-root safety staffing. Suppose one seeks to guar-
antee a service grade $ (or one of its analogues) with
a certain probability,  . For the first approach, let R =
� /� be the associated upper bound on the offered
load, with � defined as before. Then to ensure a ser-
vice grade of $ with a probability of  , one staffs N =
R +$

√
R CSRs. For the second, let R1 = �1/� and

R2 = �2/�, so that N1 =R1+$
√
R1 and N2 =R2+$

√
R2

are the associated staffing levels.

4.5. Staff Scheduling and Rostering
In the example presented in §3, a two-stage process
is used to transform half-hourly staffing requirements
into schedules for individual CSRs. First a minimum-
cost set of schedules is found. Then, individual agents
are assigned to various schedules. We now discuss
articles devoted to these problems.
Scheduling Problems. The staff-scheduling problem

(9) is quite general and is tied to call centers only
through the fact that queueing formulae are used to
determine the underlying half-hourly staffing require-
ments, Ni. In fact, the IP (9) has a history that
dates back to Dantzig in the 1950s. (For brief his-
tories see Aykin 1996, Thompson 1995.) It seeks a
minimum-cost (positive, integral) linear combination
of the columns of A that “covers” the requirements
defined on the right-hand side,

→
N .

For this reason (9) is known as a set-covering
formulation. Although simple to state, set-covering
formulations can be difficult to solve for problems
with many rows (time slots) and columns (feasible
schedules). Our understanding is that, in practice,
these scheduling problems are not solved to optimal-
ity. Rather, suboptimal solutions are arrived at via
simulated annealing and other heuristic methods.

In particular, it is the presence of breaks in the mid-
dle of employee shifts that cause trouble. If every
employee were to work consecutive half-hour peri-
ods, without breaks, then every column of the matrix
A would have contiguous ones. In this case, the
matrix is called totally unimodular (TU). In turn, it is
well known that for TU A, the optimal solution of the
linear program (LP) relaxation of (9) is integral (for
example, see Nemhauser and Wolsey 1988). With the
introduction of breaks, however, A is no longer TU,
and the LP solution need not be integral.

Given that breaks are the source of computational
difficulty, a natural heuristic approach is to tackle the
problem in two stages. In the first step, shifts with-
out breaks—often called “tours”—are defined, and an
LP is run to find a minimum-cost set of tours that
cover the staffing requirements. In the second stage,
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breaks are heuristically placed within tours and addi-
tional tours are added as needed. An example of this
procedure can be found in Segal (1974), which uses
a network-flow formulation in the first stage of the
problem.

An alternative is to restrict the size of the problem
by exogenously limiting the numbers of columns of
A that may be considered. This is the approach taken
by Henderson and Berry (1976), who first heuristi-
cally select a “good” subset of columns and then use
rounding to make LP relaxations feasible.

Another approach is to avoid the set-covering for-
mulation (9) all together and look for alternatives
that may be easier to solve (see Thompson 1995). For
example, Aykin (1996) and Brusco and Jacobs (2000)
define two sets of variables: The first defines the start
time and duration of shifts; and the second defines
possible break times. Additional constraints are then
used to define which break times are feasible for what
shifts. For more on these alternative formulations, see
the papers and their references.

Even with these alternative approaches, the solu-
tion of scheduling IPs can be computationally bur-
densome. When schedules use short intervals—for
example, 15- or 30-minute periods—and last for many
days, the number of rows (time periods) grows into
the hundreds, and the number of columns (feasible
shifts) into the thousands (Thompson 1995). Again,
in practice one finds solutions via “global search”
heuristics, such as simulated annealing and genetic
algorithms, as well as local search techniques.

Finally, it is worth noting that the scheduling prob-
lem may become easier, rather than harder, for larger
call centers. In particular, even though there may be
many thousands of feasible schedules, the optimal
solution of the LP relaxation (of the scheduling IP)
will only include a small fraction of them. (Some frac-
tion of the rows will have binding constraints, and
each binding constraint will correspond to a sched-
ule.) Given this fixed set of feasible schedules, larger
numbers of CSRs make the simple rounding (up) of
the LP relaxation more attractive. (See Gans and Man-
delbaum 2002.) For example, a 1,000-CSR call cen-
ter that uses only 50 feasible schedules would add
between 0 to 50 extra CSRs due to rounding. That’s
0%–5% above the (infeasible) LP lower bound.

Joint Staffing and Scheduling. One can also consider
the underlying staffing (queueing) problem together
with the scheduling problem. For example, any fea-
sible solution to the IP (9) will meet the minimum
staff level Ni in all periods. Furthermore, scheduling
constraints make it likely that a solution will strictly
exceed Ni in some—perhaps many—periods. In these
periods the call center will strictly exceed the service-
level constraint ASA∗.

An alternative formulation of (9) relaxes the
interval-by-interval service-level restriction and,
instead, seeks a minimum-cost set of schedules,
subject to an aggregate service-level constraint:∑

i fi Ei	Wait� ≤ ASA∗, where fi = �i/
∑

j �j . A signifi-
cant complication in this formulation, however, is the
fact that the scheduling problem is no longer linear.
Nevertheless, Koole and van der Sluis (forthcoming)
demonstrate that when the A-matrix (8) is TU, a
greedy procedure exists for finding an optimal set of
schedules.

This joint approach to staffing and scheduling also
allows for more straightforward inclusion of time-
varying arrival rates. Yoo (1996), Ingolfsson et al.
(2002a), and Ingolfsson and Cabral (2002) all take
this approach. In these papers, a higher-level schedul-
ing routine proposes potential schedules for CSRs,
and a lower-level service-level evaluator then explic-
itly calculates (transient) system performance for the
resulting Mt/M/Nt system. The methods of generat-
ing high-level schedules vary: Yoo (1996) tests greedy
heuristics and dynamic programming (DP); Ingolfsson
et al. (2002a), genetic algorithms; and Ingolfsson and
Cabral (2002), an IP cutting-plane heuristic. (The DP
algorithm presented in Yoo 1996 relies on the stochas-
tic submodularity of the occupancy of the G/M/N
system with respect to initial queue size and staffing
level. This property is formally demonstrated in Fu
et al. 2000.) Finally, Atlason et al. (2002) use a scheme
in which sample schedules from a high-level IP are
evaluated for feasibility via discrete-event simulation.
The approach assumes that the service level is con-
cave with respect to the staffing level, and it uses this
property as the basis for the systematic introduction
of cutting planes in the top-level IP. We note that the
example problems solved in all of these papers are not
large, and the computational feasibility of (at least the
current versions of) the approach remains unclear.
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Assignment of CSRs to Schedules. Once a set of sched-
ules is determined, an assignment problem must be
solved to match agents and schedules. Call centers
with few workers can perform the assignment man-
ually, but operations with hundreds or thousands
of CSRs require supporting software. Often call cen-
ters use a process called “shift bidding” to make the
assignment. In shift bidding each employee first states
preferences for various schedules. Then employees
are ranked, typically according to seniority, and they
are assigned to schedules according to their rank-
ing. Thompson (1997) describes a case study in which
a decision support system is used to automate the
process.

We are also aware of a call center that posts sched-
ules on a website and allows employees (who are typ-
ically students) to choose shifts on a FCFS basis. In
this operation, most shifts are taken within 10 minutes
of posting, which turns the “bidding” process into,
essentially, a lottery. As a consequence, some CSRs
can go for months without working a shift, a real-
ity that can persist only when agents tolerate volatile
schedules.

4.6. Long-Term Hiring and Training
Like the scheduling problem described above, the
longer-term problem of deciding how many employ-
ees to hire and train is not necessarily tied to call
centers, and a number of disciplines have addressed
problems related to hiring and training. Broadly
speaking, this research has focused on two fundamen-
tal problems with the “solution” to the hiring problem
defined by (10).

The first set of work introduces an element of con-
trol into (10). That is, rather than myopically hiring
a minimal number of employees in each period, this
work considers minimizing staffing costs over some
time horizon and looks for optimal hiring rules. Fur-
thermore, the hiring systems modelled in this stream
are much more complex and include attributes such
as: Capacity improvements that come with experi-
ence, multiple stages of learning and training, and the
ability to hire “experienced” employees.

The bulk of the literature that explores these control
issues uses a mathematical programming approach
derived from aggregate planning. Perhaps the first is

the seminal work of Holt et al. (1960). Also well
known are a monograph by Grinold and Marshall
(1977) and a volume on planning models edited
by Charnes et al. (1978). Akşin (2002) uses dual
prices from these types of mathematical programs to
account for the “appreciation” and “depreciation” in
employee value that comes with experience.

The second set of work recognizes that employee
advancement and turnover occur at random when
considered at the aggregate level. It thus models the
evolution of an operation’s population of employees
as a stochastic process, mostly Markov chains. In con-
trast to the research based on mathematical program-
ming, this work has not typically considered issues of
control. Bartholomew et al. (1991) provide a compre-
hensive summary of research in this area.

More recent work has sought to combine elements
of stochastic modelling and control. Bordoloi and
Matsuo (2001) derive steady-state performance mea-
sures for a heuristic class of linear control rules.
Gans and Zhou (2002) develop a DP model of long-
term hiring that admits a more general class of con-
trols. In Gans and Zhou, the lower-level scheduling
problem (9) is explicitly modelled as the core of the
DP’s one-period cost function, and optimal hiring
policies are characterized as analogues to “order-up-
to” policies in the inventory literature. In these poli-
cies the current numbers of employees determine an
optimal number of new employees to target having
on hand. More specifically, if the current number of
new employees falls below a threshold, then the dif-
ference between the current and the threshold number
of employees is hired; if the current number exceeds
the threshold, no hiring is done.

4.7. Open Questions
The research that we have reviewed thus far has
addressed capacity management in the simple set-
ting of a single call center with a single type of
call. As the preceding sections should make clear, a
great deal of progress has been made in understand-
ing how best to manage this base case. Nevertheless,
even here there remain significant open questions.
Section 4.7.1 describes problems related to lower-
level queueing models, and §4.7.2 outlines questions
related to higher-level scheduling and training.
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4.7.1. Simple Multiserver Queues in the QED
Regime. Dimensioning: The N = R+$

√
R form of the

square-root safety-staffing principle, along with its
insight into economies of scale, has been well estab-
lished. For the Erlang C system, Borst et al. (2000)
also provide a complete analysis of the dimensioning
problem of how to determine the economically opti-
mal value of $. For all other models, however, work
remains to be done.

For various other “Erlang” models, the stationary
behavior in the asymptotic QED regime has been
characterized. In particular, performance analysis for
the Erlang B system can be found in Jagerman (1974),
and that for the Erlang A system in Fleming et al.
(1994) and Garnett et al. (2002). Current work by
Mandelbaum et al. (2002) analyzes the time-varying
system developed in Jennings et al. (1996), work
which requires deep mathematics (for example, excur-
sion theory). In each of these models, as well as all
those surveyed in the sequel, the optimal $ is yet to
be determined.
Time-Varying Conditions. Recent work on fluid and

diffusions approximations such as that in Mandel-
baum et al. (1999a, b, 2000), offers a framework for
incorporating both abandonment and nonstationarity,
as well as retrial behavior. This approach should also
work well for modelling the abrupt overloads that
arise from predictable events, such as rushes of calls
that are generated by TV advertising. Fluid approx-
imations may work less well in underloaded situa-
tions, however, as argued in Altman et al. (2001).

The employment of square-root safety staffing to a
time-varying system, as done heuristically in Jennings
et al. (1996), gives rise to a QED operation. As Borst
et al. (2000) suggest, the optimal dimensioning of such
a system should also lead to this same regime. The
justification of the heuristics and the optimization of
staffing levels are mathematically challenging prob-
lems, however. (See Mandelbaum et al. 2000, 2002.)
General Service and Interarrival Times. Asymptotic

analysis in the QED regime also should be extended
to cover nonexponentially distributed service times.
This is important practically, as service times in call
centers can well be nonexponential (Bolotin 1994,
Brown et al. 2002a, Sze 1984), and they can affect per-
formance in subtle ways (Mandelbaum and Schwartz
2002).

Exact analysis of the performance of systems with
general service times is challenging theoretically,
however. For general service times, a state-descriptor
of the queue must account for the state of each
server and, in the QED limits, the number of servers
increases indefinitely. Puhalskii and Reiman (2000)
prove weak convergence for (the queue and virtual
wait) processes of the GI/PH/N system to a com-
plex, multidimensional diffusion process, but not its
steady state. Whitt (2002c) characterizes the steady-
state behavior of a one-dimensional diffusion approx-
imation for G/GI/N/k systems.

Jelenkovic et al. (2002) analyze the GI/D/N system.
The fact that service times are deterministic allows
for an especially simple analysis. The reason is that
waiting times in GI/D/N systems are the same under
both FCFS service and the cyclical assignment of
servers (ideal load balancing), and the latter allows
each server to be analyzed individually. For exam-
ple, the M/D/N queue is equivalent to an EN/D/1
system, which has Erlang(N ) interarrival times (the
sum of N i.i.d. exponentials). Taking QED limits of
a GI/D/N queue thus amounts to applying the cen-
tral limit theorem to the interarrival times of a single-
server queue.

Simulation experiments of M/GI/N queues in the
QED regime are conducted in Mandelbaum and
Schwartz (2002). As Figure 14 shows, determinis-
tic service times cut ASA in half when compared
to the analogous M/M/N system. This is consistent
with conventional heavy traffic (11), as explained in
Jelenkovic et al. (2002).

Surprisingly, lognormally distributed service times,
with mean and coefficient of variation both equal to
one, also reduce congestion. This finding runs directly
counter to (11), which predicts the same ASA as in
an M/M/N system (or even a worse ASA, taking
the heavier tails of the lognormal distribution into
account).

The paper Mandelbaum and Schwartz (2002) takes
the notion of heavy tails to the extreme, considering
an M/GI/100 system with two-valued service times:
1− :, with a high probability, and 100 with a small
probability, so that both the mean and variance of the
service duration equal 1. Conventional heavy-traffic
results would identify the system’s performance with
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Figure 14 Effect of Service-Time Distribution on ÃSA and P�Wait> 0� (from Mandelbaum and Schwartz 2002)
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that of an M/M/100 queue, but simulations confirm
that in the QED regime it actually behaves like an
M/D/100 system. The many servers in this case ren-
der the effect of the service tail negligible.

In contrast to service times, general interarrival
times present no extra difficulty in the QED regime,
as long as they are not too “heavy tailed.” A heavy
enough tail seems to necessitate a change of scale, to
something like N ≈ R+$RH , where H > 1

2 depends
on the weight of the tail (Whitt 2002a). Indeed, Halfin
and Whitt (1981) already analyze the GI/M/N queue.
Alternative Measures of System Performance. To date,

most work has concentrated on the minimization of
costs that grow (linearly or convexly) with queue
length or delay in queue. There are important and
emerging cases in which other cost or revenue mea-
sures are more appropriate, however. For example, in
many “900” telephone services, the service provider
earns revenue proportionally to the length of time
customers spend on the phone, rather than on a per-
call basis. This difference may in fact lead to signifi-
cant differences in how capacity and calls should be
managed.

Thus, the QED regime and its accompanying
square-root staffing principal appear to be widely ap-
plicable. For many models, however, complete under-
standing and supporting analysis still remain an
important open avenue for research.

4.7.2. Staffing and Hiring Models. How best to
set staffing levels, given uncertain arrival rates, is a
problem of great importance. As already noted, for
call centers that operate in the QED regime, it is no
doubt critical. We believe that a complete treatment of
the problem needs to model customer abandonment,
however.

Specifically, suppose there is an arrival-rate fore-
cast, 7, and that � and N are fixed. Then, in mod-
els which do not account for abandonment, such as
the Erlang C, a realization of 7 > N� makes the sys-
tem unstable: The queue length explodes, and posi-
tive increasing (cost) measures of the backlog make
no sense—they are infinite. Models that include cus-
tomer abandonment have no such problem, however.
Even when 7 > N�, abandonment stabilizes the sys-
tem, stationary queue length and delay distributions
exist, and one can meaningfully trade off capacity
against measures of system accessibility, such as aban-
donment rate and delay.

A second problem of practical importance is the
joint determination of staffing levels and schedules.
Previous research suggests that, in comparison to
the standard procedure—which first sets half-hourly
staffing requirements using (7), and then uses the
scheduling IP (9) to determine CSR schedules—the
joint approach offers both cost and service-level bene-
fits. Work remains to be done, however, to extend this
approach for larger systems. In particular, for higher
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call volumes analytical approximations, such as those
in Jennings et al. (1996) and Massey and Whitt (1997),
should be of use in the lower-level problem of evalu-
ating service levels.

Similarly, the practice of first determining CSR
schedules, and then assigning particular agents to
schedules, can potentially be improved upon. In real-
ity, not all CSRs are necessarily available for every
feasible schedule, and the number of agents available
for various schedules can greatly influence the types
of schedules required.

Of course, in theory one would find even better
solutions by integrating staffing, shift determination,
and assignment problems together. While the inte-
grated problem is likely to be too complex to solve
to optimality, heuristic approaches may be of value.
Even if a combined approach to the three is imprac-
tical, work is required to understand which two of
the three—staffing and scheduling, or scheduling and
assignment—should be combined.

Finally, the analysis of hiring models should be
extended in at least two directions. First, in many
call centers, additional training and promotions are
not automatically granted to all CSRs; rather, man-
agers control the numbers of CSRs that advance from
one skill level to the next. While the ability to con-
trol the numbers of advancing CSRs is modelled in
some deterministic analyses, it is not accounted for
in stochastic analyses, such as that of Gans and Zhou
(2002). Second, while the DP approach to stochas-
tic hiring models does allow for the characterization
of optimal policies, it is nevertheless computationally
burdensome. Alternative methods of searching for
optimal “hire-up-to” numbers need to be developed.

5. Routing, Multimedia, and
Networks

The research reviewed in §4 addresses a highly sim-
plified setting, one in which a single type of call
arrives to a call center at a single location that
handles only inbound calls. In fact, advances in
call-center technology expand the possibilities and
make capacity-management decisions more complex
in all of these aspects: Skills-based routing technol-
ogy allows for distinctions to be made among many

types of calls and many skills of servers; the growth
of e-mail, chat, and Web-based services expands call
centers into multimedia “contact” centers; and net-
working technology allows for multiple locations to
be linked into larger, “virtual” call centers.

In this section we describe the new capabilities, and
we review a growing body of research that addresses
them. We start in §§5.1–5.1.1 by providing a qualita-
tive discussion of skills-based routing and associated
capacity-planning problems. Then in §§5.1.2–5.1.4 we
review queueing research that applies to the control
of these systems, as well as insights into staffing that
some of the models provide. Next, §5.2 provides a
qualitative description of problems relating to multi-
media and a brief review of recent models in this area.
Finally, §5.3 describes new networking technology.

5.1. Skills-Based Routing
Consider a call center of a large European com-
pany which provides technical support for a product
in all major European languages. There are several
approaches for staffing the operation.

One strategy is to establish a single pool of agents,
each of whom is cross-trained to offer service in all of
the languages the center supports. This type of oper-
ation is straightforward to manage; it may be viewed
as a classical center that handles a single type of call.
Labor cost for the required multilingual agents may
be exorbitant, however. If the number of languages
supported is high, it may even be impossible to find
qualified people.

At the other end of the spectrum, one may staff
a separate pool of agents for each language. In this
case, the call center can be regarded as several smaller,
independent call centers operating in parallel. The
advantage is that one need not hire multilingual
agents. From §4.1.2 we know that the cost is a loss of
economies of scale that a single, large pool of agents
would provide.

In-between, one might partition languages into sep-
arate subgroups—for example, French, Italian, and
Spanish; Dutch, German, and English—and staff these
intermediate groups in parallel. Still, this excludes the
possibility of hiring agents that do not speak an entire
subset, and it does not make full use of agents who
speak languages beyond a subset.
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Another, more flexible alternative is to use skills-
based routing. In this scheme, each agent is acknowl-
edged as speaking an individual subset of the
languages offered; agents identify the languages for
which they qualify when they log into the system.
Arriving calls are then identified by language—either
through the number called by the customer (DNIS)
or through the customer’s interaction with the IVR—
and the ACD is programmed to route calls only to
qualified agents.

Of course, the applications of skills-based routing
reach far beyond the language domain. For example,
it can be used to route customers with different types
of questions to agents with various sets of expertise or
to route high-value customers to more highly trained
agents. Whenever one defines many types of calls,
and agents are heterogenous in the types of calls they
(can and) may handle, skills-based routing becomes a
necessity.

Figure 15 is an example of a system with an elab-
orate skills-based routing structure. In it six types of
calls are routed to five pools of agents. All agents in a
pool can handle the same set of call types; we equiva-
lently say that the agents within a pool have the same
skills. Arrows between call types and agent pools
describe the various pools’ skills. Dashed arrows at
the sides of queues represent customer abandonment.
(We note that the nomenclature for skills-based rout-
ing has not yet become standardized. For example,
one ACD manufacturer refers to customer types as
“skills” and to agents with the same skills as having
the same “skill set.”)

It is important to note that, in addition to call con-
tent and agent training, call types and agent skills

Figure 15 An Example of Skills-Based Routing

1 2 3 4 5

1 2 3 4 5 6

types of calls

pools of CSRs

feasible routings

may be defined according to any of a vast set of
attributes. Examples include operational attributes
such as the forecasted duration of service, and eco-
nomic attributes such as how much an agent is
compensated.

The majority of advanced ACDs now offer some
capability to do skills-based routing, provided as a
menu of options from which managers can choose.
However, our experience is that skills-based rout-
ing capabilities are scarcely offered with guidelines
on how best to use them. Indeed, the technology
has raced ahead of managers’ and academics’ under-
standing of how it may best be used, and the char-
acterization of effective strategies for skills-based
routing poses challenging, unanswered questions at
all levels of the capacity-planning hierarchy described
in §3.

5.1.1. Capacity Planning Under Skills-Based
Routing. At the lowest level, new call-routing prob-
lems emerge. When an agent becomes free and one or
more calls (for which the agent is qualified) is waiting
to be served, one must choose which call to attend to
first, if any. For an arriving call that finds one or more
appropriately skilled agents free, one must decide to
which agent the call should be routed, if any. Often
these are dubbed call-selection and agent-selection prob-
lems, respectively.

These call-routing problems feed requirements for
minimal staffing levels that are a multiskilled analog
to the single-skilled call-center’s solution of (7). In the
single-skilled center, there is one pool of agents, and
the minimum number of agents required for interval
i is a scalar, Ni. In the multiskilled call center there
are many pools of agents. In turn, the “minimum”
number of agents required is a vector in which each
element represents the number of agents in a partic-
ular pool.

Note that there is an extra layer of complexity, how-
ever. There is typically more than one “minimal” vec-
tor of agents that can feasibly fulfill the center’s ser-
vice requirements. In a call center that serves two
types of calls, for example, a certain time interval may
require 5 CSRs that can handle Type-1 calls and 10
CSRs that can handle Type 2; alternatively, 13 CSRs
that are cross-trained to handle both call types might
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also suffice. (The characterization of feasible staffing
induces a partial order of staffing vectors.)

Furthermore, the means of determining whether a
given fixed vector of agents is or is not feasible is
through the application of a call-routing scheme. Thus,
the “online” control problem of routing calls, and the
“offline” problems of determining half-hour staffing
levels per skill—as well as of designing customer types
and server skills—are closely intertwined. In fact, the
determinationof systemstability—whetherornot there
exists some routing scheme that is capable of keeping
up with arriving work—is not trivial, though it can
be arrived at via the solution of an LP (Armony and
Bambos 1999, Bambos and Walrand 1993, Gans and van
Ryzin 1997).

The upper levels of the capacity-planning hierar-
chy also become much more complex. In the interme-
diate scheduling integer program (9), each Ni again
becomes a set of minimal staffing vectors for inter-
val i. A solution to the program is feasible if in each i
the numbers of agents on hand exceeds at least one
of the interval’s minimal vectors. Finally, the top-
level problem expands from the consideration of how
many employees to hire each period to how many
to hire and train. Furthermore, in any period, train-
ing may be applied to transform one class of existing
employee into another.

While skills-based routing affects the entire chain
of capacity-management activities, research into how
best to solve skills-based routing problems is just
beginning. Some of the work on long-term hiring
described in §3.2 is formulated with multiple skills in
mind, but we are not aware of any work that directly
addresses the problem. The state of research into the
intermediate scheduling problem appears to be even
less developed; we are not aware of any work on staff
scheduling that explicitly addresses the multiskilled
problem we have described.

The state of research for the lower-level problems of
call routing and staffing is somewhat more advanced.
There exists work that starts to address the problems
in a preliminary fashion. In the next subsections, we
review this work and offer a view of future research
needs and opportunities.

5.1.2. Call Routing and Staffing. A standard ap-
proach for determining effective routing policies in

Markovian queueing systems is via dynamic pro-
gramming. The system state represents the servers’
profiles (what types of calls are currently in service by
which server skill) and the queue profile (how many
of each type of call is in queue). System controls are
rules for routing waiting calls to idle servers at event
epochs, namely the times at which a call arrives to the
system or completes service. Effective policies satisfy
service-level constraints with fewer (rather than more)
CSRs, perhaps also minimizing 1-800 delay costs. In
fact, effective routing policies are likely to be dynamic
in that call-routing decisions critically depend on the
current system state.

The identification of effective routing policies
through DP is often impractical, however. For a large
call center with many types of calls, the dimensional-
ity of the state space is large, making the derivation
of structural properties of effective policies difficult,
if not impossible. Similarly, the size of the state space
explodes, so that the application of standard DP
techniques to numerically find effective controls also
becomes infeasible. Rather than tackling the realis-
tic problem as is, research to date has attempted to
reduce complexity in roughly three ways: Topology
simplification, control simplification, and asymptotic
analysis.
Topology Simplification. The first means of reduction

is to consider simple special network topologies such
as those shown in Figure 16. These configurations rep-
resent building blocks for more complex systems. For
example, in a “V” design a single pool of agents han-
dles two (or more) types of calls. In a “W” design,
two pools of agents cater to three types of calls: Pool 1
serves Types 1 and 2; Pool 2 serves Types 2 and 3.

Figure 16 Some Canonical Designs for Skills-Based Routing (from
Garnett and Mandelbaum 2001)

“I” “N” “X” “W” “M”“V”

1 2 2 2 2 11 1 1 1 3 2

1 2 2 2 11 1 1 1 32
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The “X” design, in which two types of calls can be
served by either of two pools of agents, represents full
flexibility. It also reflects the fact that skill groups may
be defined on a relative, rather than absolute, basis.
For example, an X-design arises when CSR Pool 1 is
assigned call Type 1 as a “primary skill,” CSR Pool 2 is
assigned call Type 2 as primary, and both pools have
the other type of call assigned as secondary. A pool
takes “secondary skill” calls only when deemed nec-
essary: Say, only if it has idle CSRs and the other pool
is congested. In this case, skills-based routing captures
the fact that different type-to-pool assignments have
differing (perhaps implicit) costs or rewards.

It is also important to note that the same network
topology can be used quite differently, given various
levels of traffic and routing schemes. For example,
an “N” design can be used when Type-1 customers
are VIP but there are not enough specialized Pool-1
CSRs to serve them. In this case, Pool-2 CSRs can con-
tribute to maintaining an adequate service level for
Type 1s. Conversely, the same N-design can be used
when Type-2 customers are VIP and Pool-2 capacity
is in excess. Here, acceptable resource efficiency can
be maintained by routing Type-1 calls to idle Pool-2
CSRs.

Garnett and Mandelbaum (2001) is an introductory
teaching note that lays out the canonical structures
shown in Figure 16. The paper also uses simulation to
demonstrate how various routing policies can effect
dramatic differences in system performance.

Perry and Nilsson (1992) consider a V-design in
which two classes of calls are served by a single pool
of crossed-trained agents. The model represents a sin-
gle group of operators that provides directory assis-
tance, as well as serving toll/assist calls. Bhulai and
Koole (2000) and Gans and Zhou (2003) also model
variants of a V-design. Stanford and Grassmann
(2000), who model a call center with monolingual and
bilingual CSRs, as well as Shumsky (2000), analyze an
N-design.
Control Simplification. A second method of simpli-

fying skills-based routing is to consider more easily
characterizable, heuristic methods of capacity sizing
and routing control. Stanford and Grassmann (2000)
and Shumsky (2000) both consider fixed, static prior-
ity policies: The former use matrix-geometric methods

for performance analysis and staffing; and the latter
an approximate analysis. Perry and Nilsson (1992)
use a scheme first analyzed by Kleinrock (1964) and
Kleinrock and Finkelstein (1967), that assigns to each
waiting customer an aging factor that grows propor-
tionally to its waiting time. The call selection problem
is solved by serving the call with the greatest attained
age. The results are used to determine both the num-
ber of agents and the aging factors needed to yield
specified expected waiting times.

Armony and Bambos (2001) propose two classes
of easily implementable policies, both of which are
shown to be throughput maximizing. In cone poli-
cies the space of queue-length vectors is partitioned
into geometrical cones, and call routing is determined
based on the dynamic position of the queue-length
vector with respect to these cones. This set of poli-
cies includes MaxProduct, in which the cones are
determined by an inner product maximization, and
FastEmpty, in which the cones are constructed based
on a linear program whose solution determines the
minimal system-emptying time. The adaptive discrete
review (batching) policy aggregates jobs into batches
and schedules them according to a near-optimal
scheduling rule. The near-optimality is with respect
to the system-emptying time, disregarding future
arrivals. This policy can easily account for practical
system considerations. For example, it can tolerate
nonnegligible switching (transaction) times between
different tasks without compensating throughput.

Borst and Seri (2000) apply more complex heuris-
tics for both the call-routing and the staffing-level
problems. For a fixed set of agents, they propose a
dynamic scheme in which the number of calls of
each class that actually has been served is compared
to the number that, nominally, should have been
served under a long-run average allocation scheme.
The farther “behind” the actual number of services,
the higher the resulting priority. (Alternatively, in a
call center that has service-level agreements with var-
ious clients, the scheme penalizes those who “misbe-
have,” namely those who request more service than
what had been agreed upon.) The paper also deter-
mines bounds for the number of agents required to
offer a given level of service: It applies the square-
root staffing principle to identify a lower bound, and
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it uses results concerning the achievable performance
of multiserver systems (Federgruen and Groenevelt
1988) to produce an upper bound.

Finally, consider the following protocol, which is
prevalent in practice. Agents are first divided into
pools, such that all agents within a pool can serve
the same types of calls. Call types are assigned fixed
priorities and, when an agent becomes available,
the call-selection problem is solved by assigning the
highest-priority call that the agent is qualified to han-
dle. Similarly, for each type of call, there exists an
ordered list of qualified agent pools, and the agent-
selection problem is solved by assigning arriving calls
to the first pool in the list that has an agent available.

We note that among the criteria used for ranking
pools there exists a notion of dominance. Specifically,
suppose the call types that one pool handles are a
superset of the those that are handled by another
pool. Then the first pool dominates the second pool.
In turn, suppose an arriving call can be served by
either of these two pools, and it finds both with idle
CSRs. Then the call should not be routed to the dom-
inant pool. Rather, it should be routed to the domi-
nated pool, thereby reserving the more flexible CSRs.

To the best of our knowledge, there does not yet
exist a general analysis of these fixed-priority routing
schemes. Nevertheless, there are two sets of results
that bear mentioning. First, for the W design Stolyar
(2002) has shown that, for any static priority scheme,
there exist conditions for which: (1) The static scheme
is unstable; (2) yet another routing scheme makes
the system stable. Second, the static method of agent
selection used for arriving calls makes them “over-
flow” from one pool of CSRs to the next. Such
overflow problems are notoriously hard to analyze
because the interoverflow process is not Poisson. An
approximate analysis of performance of this type of
overflow behavior is performed in Koole and Talim
(2000).
Asymptotic Analysis. The third approach for sim-

plifying skills-based routing is asymptotic analysis.
The asymptotic regime is heavy traffic, and two
such regimes have been considered. The first is the
efficiency-driven regime of conventional heavy traffic,
originally proposed by Kingman (1962). The second
is the QED regime. In the next two subsections, we

describe research that analyzes skills-based routing in
each of the two regimes.

5.1.3. Skills-Based Routing in the Efficiency-
Driven Regime. For an efficiency-driven operation,
one lets the agents’ utilization approach 100% in a
way that, in the limit, all customers are delayed in
queue. (The agent-selection problem then becomes
irrelevant.) As one takes limits, the number of agents
either remains fixed, in which case the backlog of
waiting calls grows without bound, or it is allowed
to increase while controlling ASA, but at a rate slow
enough so that the fraction delayed still approaches
100%.

In these conventional heavy-traffic conditions, the
results of Gans and van Ryzin (1997) imply that even
though there may be many ways in which arriving
calls can be assigned to various pools of CSRs, one
need only consider a small number of possible assign-
ments when minimizing the system backlog. Harrison
and Lopez (1999) further characterize the nature of
type-skill matchings (or minimal skill overlaps) that
make such small sets of assignments most efficient.
In particular, they identify that, in heavy traffic, effi-
cient sets of assignments enable complete resource pool-
ing (CRP), a condition in which the set of CSRs act as
a (pooled) single, virtual “super” server. Note that all
of the designs of Figure 16, except for “X,” satisfy this
CRP condition; eliminating any of the four arrows in
“X” would do as well.

This pooling condition is the cornerstone for analy-
sis of efficiency-driven operations, and it seems likely
to be relevant in the QED regime. Section 5 of Stolyar
(2002), which characterizes optimal policies for a more
general resource-pooling condition, compactly lays out
the relevant literature. Section 3 and the beginning of
§5 in Williams (2000) have the full story.

Harrison and Lopez (1999) is the first skills-based-
routing model that resembles the reality of a call cen-
ter. In Gans and van Ryzin (1997), both the model,
which lists only call-center-wide processing rates, and
the measure of system congestion, the minimum time
required to work off the entire backlog of waiting
calls, are aggregate. In contrast, in Harrison and
Lopez (1999) the assignment of individual calls to
CSRs is explicitly modelled, and occupancy costs are
defined as growing linearly with the backlog of each
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type of call. Both Gans and van Ryzin (1997) and Har-
rison and Lopez (1999) consider discrete-review poli-
cies that process sets of calls in large batches, how-
ever. This class of policies is reasonable for e-mails, for
example, but it is clearly inappropriate for inbound
calls.

In contrast, for the N-design of Figure 16, Bell and
Williams (2001) prove the asymptotic optimality of
threshold controls. More specifically, they assume lin-
ear occupancy costs and that Type-1 customers are
VIP. They then establish that whenever the length of
the Type-1 queue exceeds a critical threshold, Type-1
calls should get priority over Type-2 calls at CSR
Pool 2. Williams (2000) conjectures that dynamic,
threshold-based policies are also asymptotically opti-
mal for the model in Harrison and Lopez (1999). It is
important to note, however, that the calculation of the
conjectured thresholds requires prior processing (the
solution of linear programs) that intimately depends
on model parameters and topology.

An alternative to thresholds is provided by index
controls: Each queue is assigned an index that
depends only on that queue’s state; the queue cho-
sen for service is then the one with the highest index.
A striking example is van Mieghem’s (1995) analy-
sis of the V-design with a single server, which proves
the asymptotic optimality of a simple Generalized c�
(Gc�) rule for waiting costs that are convex increas-
ing. By equipping each agent with its own index for
call selection, Mandelbaum and Stolyar (2002) verify
that these Gc� rules remain asymptotically optimal in
the context of skills-based routing.

To elaborate, consider a general skills-based design
in which type-i calls are served by pool-j agents at
rate �ij . (Here �ij is the reciprocal of an average ser-
vice time, and �ij = 0 if js cannot serve is). Delay costs
are quantified in terms of type-dependent increas-
ing convex functions: Ci�w� is the cost incurred by a
type-i customer that spends w units of time in the
system. Then each server j that becomes idle at time t
adheres to the following Gc� rule: Choose to serve
the longest-waiting i∗ customer for which

i∗ ∈ argmax
i
C ′
i �Wi�t���ij � (22)

Here C ′
i is the derivative of Ci, and Wi�t� is the longest

waiting time (that of the head-of-the-line customer) in

queue i at time t. In Mandelbaum and Stolyar (2002)
it is proved that, under complete resource-pooling (as
in Harrison and Lopez 1999 and Williams 2000), and
for costs with Ci�0� = C ′

i �0� = 0, the above parsimo-
nious Gc� rule is asymptotically optimal in heavy
traffic. Qualitatively speaking, the result demonstrates
that an exceedingly simple call-selection index per-
forms well for system that are efficiency driven—even
within complex routing designs. (In these circum-
stances, agent selection arises infrequently enough to
be handled arbitrarily.)

We note that quadratic costs recover the aging
factor of Kleinrock (1964), Kleinrock and Finkelstein
(1967), and Perry and Nilsson (1992) that is intro-
duced in the previous subsection. The assumption
C ′
i �0� = 0 rules out linear costs, but it is conjectured

in Mandelbaum and Stolyar (2002) that these can be
accommodated by carefully choosing aging factors
that vary with system parameters.

The natures of threshold and Gc� controls differ
fundamentally. (In certain cases Gc� policies do gen-
erate threshold rules. For example, see van Mieghem
1999.) The former require careful prior calculations
(of thresholds) and management by exception: Type-2
calls get priority at CSR Pool 2 until the number
of waiting Type-1 calls “crosses” an “emergency”
boundary. In contrast, Gc� rules are simple and
robust (surprisingly enough, they do not depend even
on arrival rates), but they are based on a continuous
reevaluation of the state-dependent indices.

To summarize, conventional heavy-traffic analy-
sis has yielded strikingly simple classes of policies
that should perform well in efficiency-driven envi-
ronments. This regime is appropriate for slower-
turnaround work, such as e-mails or faxes, that may
be processed after some delay. It is not appropriate for
work that must be performed in the quality or QED
regimes, however.

5.1.4. Skills-Based Routing in the QED Regime.
With the exception of Borst’s and Seri’s (2000) heuris-
tic use of square-root laws, research to date on skills-
based routing in the QED regime has been limited to
variants of the V-design. Given a V-design, the QED
regime is straightforward to characterize as simply
maintaining square-root safety staffing. Formally, let
�i and �i denote the arrival and service rates for type
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i customers, respectively. The offered load is then R=∑
i��i/�i�, and square-root safety staffing, as before,

prescribes a number of agents N ≈ R+$√R. The ser-
vice grade $ is arbitrary if there is abandonment and
positive otherwise.

Two papers (Atar et al. 2002, Harrison and Zeevi
2002) analyze general V-designs in the QED regime
(that is, under square-root safety staffing). Being
inspired by call centers, both allow for multiple types
of impatient customers.

Harrison and Zeevi (2002) assume a Markovian
model with preemption, work conservation (no idling
when there are customers waiting), and linear costs
that are discounted over an infinite horizon. They
identify with the QED limit a diffusion control prob-
lem, which they solve. The solution yields control
policies for the original problem that are conjectured
to be asymptotically optimal. A two-type example is
then solved numerically to concretize the results.

In Atar et al. (2002), the cost per unit of time can be
a nonlinear function of the number of customers wait-
ing to be served in each class, the number actually
being served, the abandonment rate, the delay expe-
rienced by customers, the number of idling servers,
as well as certain combinations thereof. Service times
and impatience clocks are exponentially distributed,
but interarrival times are renewals. In the QED limit,
the queueing scheduling problem converges to a dif-
fusion control problem. Its solution is used to con-
struct controls that are then proved asymptotically
optimal for the original queueing system.

The analysis yields both qualitative and quantita-
tive insights. For example, it implies that, for natural
cost structures, the advantage of preemption is neg-
ligible in the QED regime. Similarly, the benefit of
violating work conservation appears to be negligible.
Thus, when solving the “call-selection” problem in
the QED regime, the ability to idle CSRs need not be
considered.

Finally, Armony and Maglaras (2001, 2002) consider
a more specific V-design in which a single pool of
CSRs serves two classes of customers: One that opts
to queue for service, and another that elects to be
called back by the call center at a later time. (The two
classes endogenously arise from a model of choice
behavior.) In Armony and Maglaras (2001) arriving

customers have static, equilibrium estimates of the
distribution of delay for immediate service, and in
Armony and Maglaras (2002), customers are given a
state-dependent estimate of delay. In both cases, the
authors demonstrate that a threshold control policy—
that gives priority to waiting customers if and only if
the queue of “call-back” customers falls below a fixed
level—asymptotically minimizes the expected delay
for immediate service (among all nonidling policies).
Furthermore, in Armony and Maglaras (2002), they
demonstrate that systems that use dynamic estimates
of delay outperform those that relay on static esti-
mates. Both papers also provide staffing guidelines
that follow from square-root laws.

It is worth noting that the asymptotic analysis of
Atar et al. (2002) and Harrison and Zeevi (2002) has
so far shed little “qualitative light” on the structure of
optimal controls for skills-based routing in the QED
regime. This differs fundamentally from the thresh-
old controls of Armony and Maglaras (2001, 2002)
and the index controls of the efficiency-driven regime
(Mandelbaum and Stolyar 2002, van Mieghem 1995).
QED complexity stems from the absence of complete
resource pooling and the fact that the agent-selection
problem plays an important role—indeed, the QED
characteristic is that a significant fraction of the cus-
tomers find idle servers upon arrival.

In summary, this is a newly emerging and impor-
tant area of research. There is much to achieve, both
on the staffing and control fronts.

5.2. Call Blending and Multimedia
The integration of telephony and data-processing
infrastructure has allowed call centers to expand their
range and provide additional services. These so-called
“contact centers” have the ability to handle a wide
range of media. Common examples include e-mail
and electronic faxes. Other less common examples
include callbacks, in which customers signal—via a
company’s website or IVR—that they wish to be
called back by the center, and chat, in which agents
communicate in (more or less) real time over the Inter-
net with customers, using text.

In fact, the latest generation of systems has the
potential to route any type of electronically medi-
ated work. For example, consider a claims-processing
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center for a large U.S.-based health insurance com-
pany. The information system with which CSRs inter-
act as they handle customer requests is the company’s
claims-processing and adjudication system. The tele-
phone and claims systems are integrated via CTI, and
the company has the ability to route both phone calls
and “screens” of claims-processing work to idle CSRs.

In one sense, multimedia may be thought of as an
example of skills-based routing. The various types of
work—call, e-mail, claims-processing screen—parallel
various call types. Each agent’s skills define the types
of media s/he is capable of handling.

At other levels, however, differences among media
are deeper than differences among calls: One impor-
tant difference is the natural time scales at which the
various media must be responded to; another is the
discipline required for service; yet another is the men-
tal “setup” required to switch among media.

Typically, telephone calls are to be served within
seconds or minutes and, once started, should not be
interrupted. Responses to e-mail and fax requests, on
the other hand, can be delayed for hours or per-
haps days, and they may be preempted and resumed.
Response times for chat services fall somewhere in-
between, and CSRs that handle chat may serve several
customers at once.

Differences in timing naturally lead one to consider
priority schemes in which telephone calls receive high
priority and e-mails and faxes, low. In addition, limits
in the structure of shifts and schedules often prompt
the solution to the staffing problem (9) to include peri-
ods of overcapacity (i s.t.

∑
j aijxj > Ni). During these

intervals, agents that might otherwise be idle can
become productive by handling low-priority work.
Historically, the problem first arose in the context of
mixing inbound and outbound calls, a process com-
monly known as call blending.

Thus, contact centers enjoy an advantage over call
centers in that slower response-time traffic can be
shifted between intervals (inventoried), and this can
help to increase CSR utilization and reduce operating
costs. At the same time, blending of traffic of vari-
ous priorities, subject to medium-specific service-level
constraints, creates problems that are akin to those
of skills-based routing. Bhulai and Koole (2000) and
Gans and Zhou (2003) address the lower-level routing

problem: Given a fixed set of CSRs, how to maximize
the throughput of low-priority traffic, for example, e-
mail, subject to a service-level constraint on incom-
ing calls. They demonstrate that variants of threshold
reservation policies, which reserve agents for inbound
calls, are effective. Brandt and Brandt (1999b) assume
the use of these threshold policies and analyze anal-
ogous systems with customers that have generally
distributed patience. To the best of our knowledge,
extensions of higher-level scheduling and hiring prob-
lems have not been tackled in this context.

We are aware of three papers that model the use of
IVRs and callbacks. Brandt et al. (1997) consider a call
center with a finite number of lines, customers with
exponential patience and, prior to waiting, an IVR
message of constant duration. The system is modelled
as a two-dimensional network, and approximations
to steady-state performance measures are derived.
Brandt and Brandt (1999a) analyze a birth-and-death
model of a system in which callers who have waited
beyond a given threshold are transferred to a callback
queue. The callback queue is served only when there
are no “live” callers waiting and the number of idle
agents exceeds some threshold. This again gives rise
to approximate measures of performance of a two-
dimensional network. Armony and Maglaras (2001,
2002) model a system in which customers who are not
immediately served may choose to wait in queue for
service, to wait for a later callback, or to balk if they
deem both waits too long.

Finally, Mandelbaum et al. (1998) develop a frame-
work for the analysis of Markovian service networks.
In these systems, multiple types of customers are
served according to preemptive-resume priority disci-
plines. The primitives include time-varying abandon-
ment and retrial intensities, and the asymptotics are
in the QED regime. This framework is thus applicable
for performance analysis of large multimedia call cen-
ters. While the framework does not yet accommodate
nonpreemptive priority disciplines or finite buffers
(busy signals), both features appear to be within the-
oretical grasp: Given the results of Atar et al. (2002),
the gains from preemption promise to be negligible
in the QED regime, and current work by Massey and
Wallace (2002) addresses finite-buffer systems.
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Figure 17 Common Methods of Networking Call Centers
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5.3. Networking
Telephone networking technology allows companies
to link geographically dispersed call centers, and
through careful management their performance can
approach that of a single “virtual” call center. In
this manner, companies can better exploit potential
economies of scale. For example, this is the case in
Figure 11, the header of which reads “Command
Center Intraday Report.” Here, load balancing is exer-
cised from a single command center that oversees the
12 call centers represented in the table.

There currently exist several methods for network-
ing call centers, the main variants of which are
summarized in Figure 17. There exist true network
ACD systems that have the ability to hold calls cen-

Figure 18 Example Flow of Calls Within a Network of Four Call Centers (from Brown et al. 2002b)
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trally and route individual calls to call centers as
agents become free. There also exist less elaborate
load-balancing schemes in which calls are routed from
a central switch to call centers with traditional ACDs.
Here, calls queue locally at the individual centers. In
overflow systems, calls that are queued at one call cen-
ter may be laterally transferred to another, and com-
binations of the load-balancing and overflow schemes
may also be used.

In addition to these main variants there may be
many other hybrids. One with which we are familiar
allows calls to queue simultaneously at more than one
center. In this so-called “interflow” scheme, each call
first arrives at an individual center. If it is predicted
to be served within a fixed time limit, say 15 seconds,
then the call queues only at that center. If the expected
delay is greater than the threshold, however, then the
call simultaneously queues at the original site as well
as any other site whose expected delay falls below the
expected-delay threshold (possibly none).

Figure 18 shows one hour’s worth of data from a
network of four call centers (nodes) that use this inter-
flow scheme. Numbers with asterisks indicate the vol-
umes of calls arriving to each of the nodes, as well
as each call’s final disposition: Served or abandoned.
Numbers on the arrows between nodes indicate the
numbers of calls that were served at a location that
differed from the originating node. From the figure,
one sees that Nodes 2 and 4 were not interconnected.
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One also sees that of the 2,092 calls arriving at Node 1,
for example, less than 1.4% abandoned, and almost
34% were ultimately served at Locations 2 and 3.

While there is a fairly extensive literature on load
balancing, little of it appears to be directly applicable
to these systems. Servi and Humair (1999) analyze the
problem of setting static routing probabilities in load-
balancing systems. More can be gained if routing is
dynamic, and Kogan et al. (1997) compare two basic
strategies for the dynamic routing of calls: The first is
a network-ACD that queues calls centrally and routes
calls to individual CSRs as they become available
at various sites, and the second is a dynamic load-
balancing scheme that immediately routes an arriving
call to the site with the least expected delay, at which
point the call queues. The paper demonstrates numer-
ically that, to the extent that a FCFS system imposes a
delay in switching calls to centers, it may be inferior
to the less elaborate dynamic load-balancing method.
Numerical tests in Borst et al. (1996) show that simi-
lar dynamic load-balancing schemes perform well, so
that “a multiple site system approaches quite closely
the performance of a single virtual facility” (Borst and
Seri 2000).

Thus, the growing trend of networking call cen-
ters has barely been investigated. In particular, both
dynamic load-balancing and overflow protocols can—
in theory—lead the arrival processes at individual
call centers to not be Poisson. Questions of how
the assumptions are violated, by how much, and
how this impacts capacity management have yet to
be addressed systematically. Because the effect of
complex networking protocols are difficult to pre-
dict, empirical analysis that captures actual behav-
ior would help to deepen academics’ and managers’
understanding of the benefits and drawbacks of the
various networking schemes.

6. Data Analysis and Forecasting
The modelling and control of call centers must nec-
essarily start with careful data analysis. For example,
the simple Erlang C queueing model described in §3
requires the estimation of a calling rate (�i) and a
mean service time (�−1

i ) for each half-hour interval.
Moreover, as Figure 3 and the accompanying discus-
sion in §4.2 indicate, the performance of call centers

in peak hours can be extremely sensitive to changes
in these underlying parameters.

It follows that accurate estimation and forecasting
of parameters are prerequisites for a consistent service
level and an efficient operation. Furthermore, given
the computer-mediated, data-intensive environment
of modern call centers, one might imagine that highly
developed estimation and forecasting methods would
exist.

But in fact, though there is a vast literature on statis-
tical inference and forecasting, surprisingly little has
been devoted to stochastic processes, and much less
to queueing models in general and call centers in par-
ticular. For example, §II in Mandelbaum (2002) lists
only 17 papers on the statistics and forecasting of call-
center data. Indeed, the practice of statistics and time-
series analysis is still in its infancy in the world of
call centers, and serious research efforts are required
to bring it up to par with prevalent needs.

The scarcity of statistical research of call centers
renders this part of our survey more speculative.
In §§6.1–6.2 we describe general categories of call-
center data, as well as various statistical approaches
that are useful for their analysis. Then in §6.3 we
review data analysis and statistical research that is
related to call-center operations: The analysis of sys-
tem primitives, such as arrival rates, service times,
and abandonment behavior; and that of system per-
formance measures, such as waiting times and aggre-
gate customer-abandonment rates. We conclude the
section in §6.4 by stating our views concerning data
analysis and forecasting work that needs to be done.

6.1. Types of Call-Center Data
Recall from §2.2 the description of how a call is han-
dled. This process generates a great deal of data,
which we divide into four categories: Operational,
marketing, human resources, and psychological.
Operational data reflect the physical process by

which calls are handled. These data are typically col-
lected by pieces of the telephone infrastructure such
as IVRs and ACDs. They can be usefully organized in
two complementary fashions.

Operational customer data provide listings of every
call handled by a site or network of call centers. Each
record includes time stamps for when the call arrived,
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when it entered service or abandoned, when it ended
service, as well as other identifiers, such as who was
the CSR and at which location the call was served.

Operational agent data provide a moment-by-
moment history of the time each logged-in agent spent
in various system states: Available to take calls, han-
dling a call, performing wrap-up work, and assorted
unavailable states. These data allow one to deduce the
numbers of agents working at any time. Sometimes
these records include identifiers of the calls being
served and (with difficulty) can be matched to the
operational customer data described above, for joint
analysis.
Marketing or business data are gathered by a

company’s corporate information system. They may
include records of the transactions that took place
over the customer’s entire history with the company,
through call centers as well as through other chan-
nels. They may also capture information concerning
the customer’s current status at the business.

In theory, operational and marketing data can be
seamlessly integrated via CTI software, which con-
nects the telephone infrastructure with a company’s
customer databases. That is, given the existence of
CTI, one might expect companies to record and ana-
lyze a full view of what happens to each call as it
enters the system: Marketing data concerning what
happened during the service, together with opera-
tional data concerning how and when the service hap-
pened. In practice, however, the use of CTI appears,
thus far, to be limited to facilitating the service pro-
cess through “screen pops” which save CSRs time,
not to the joint reporting of call data. Incompatibil-
ity between data storage schemes of (older) ACD and
(newer) CTI systems may be the problem that pre-
vents this integration from taking place.
Human resources data record the history and profile

of agents. Typical data include information concern-
ing employees’ tenure at the company, what train-
ing they have received and when, and what types
of call they are capable of handling. With one fre-
quent exception, these data generally reside within
the records of a company’s human resources depart-
ment. The exception is that of “skills” data, which
define the types of calls that agents can handle. This

information is needed by the ACD (or those that man-
age it) to support skills-based routing.

Finally, psychological data are collected from surveys
of customers, agents or managers. They record sub-
jective perceptions of the service level and working
environment.

Two additional sources of data are important to
acknowledge. First, some companies record individ-
ual calls for legal needs (e.g., brokerage and insurance
businesses) or training reasons. While potentially use-
ful, we are not aware of any simple machinery that
can extract these data for analysis (say, into a spread-
sheet). Advances in speech recognition and natural
language processing may change this state of affairs,
however. A second source is subjective surveys in
which call-center managers report statistics that sum-
marize their operations. These surveys can include
both operational and marketing data, such as arrival
and utilization rates, average handle times, and the
average dollar value of a transaction. While they
may facilitate rough benchmarking (see, for example,
www.benchmarkportal.com), these data should be han-
dled with care. By their nature, they are biased and
should not serve as a substitute, or even a proxy, for
the operational and marketing data discussed above.

6.2. Types of Data Analysis and Source
of Model Uncertainty

As in any statistical work, the analysis of call-center
data can take a number of forms. We briefly make
three sets of distinctions.
Descriptive, Explanatory, and Theoretical Analysis.We

first distinguish among descriptive, explanatory, and
theoretical analysis. Each mode is important, and we
briefly describe the three in turn.1

Descriptive models organize and summarize the data
being analyzed. The simplest of these are tables or his-
tograms of parameters and performance. An example
is a histogram of service duration by service type, or
of customers’ patience by customer type, or of wait-
ing times for those ultimately served.

1 Parts of the present section are adapted from the report
Mandelbaum et al. (2001). This is an in-depth empirical analysis,
mostly descriptive, of call-center operational data gathered at a
small Israeli bank over the 12 months of 1999. Both the report and
the data are downloadable from ie.technion.ac.il/serveng/.

Manufacturing & Service Operations Management/Vol. 5, No. 2, Spring 2003 123



GANS, KOOLE, AND MANDELBAUM
Telephone Call Centers

These can be contrasted with theoretical models that
seek to test whether or not the phenomenon being
observed conforms to various mathematical or statis-
tical theories. Examples include the identification of
an arrival process as a Poisson process or of service
durations as being exponentially distributed.

In-between descriptive and theoretical models fall
explanatory models. These are often created in the con-
text of regression and time-series analysis. Explana-
tory models go beyond, say, histograms by identifying
and capturing relationships in terms of explanatory
variables. For example, average service times of calls
may be systematically higher from 11 a.m. to 3 p.m.
and lower at other periods. At the same time, these
models fall short of theoretical models in that there is
no attempt to develop or test a formal mathematical
theory to explain the relationships.

Queueing models constitute theoretical models
which mathematically define relationships among
building blocks, for example, arrivals and services,
which we refer to here as primitives. Queueing anal-
ysis of a given model starts with assumptions con-
cerning its primitives and culminates in properties
of performance measures, such as the distribution
of delay in queue or the abandonment rate. Vali-
dation of the model then amounts to a compari-
son of its primitives and performance measures—
typically theoretical—against their analogs in a given
call center—mostly empirical.

For example, theoretical analysis of the G/G/N
queue gives rise to Kingman’s law of congestion: In
heavy traffic, the waiting time of delayed customers is
close to being exponentially distributed with expected
delay defined as in (11). Empirical analysis of call
centers operating in heavy traffic can then validate or
refute Kingman’s law, as in Brown et al. (2002a) (see
Figure 6).
Estimation Versus Prediction. We also distinguish

between two closely related, but different, statistical
tasks: Estimation and prediction. Estimation concerns
the use of existing (historical) data to make inferences
about the parameter values of a statistical model. Pre-
diction concerns the use of the estimated parameters
to forecast the behavior of a sample outside of the
original data set (used to make the estimate). Predic-
tions are “noisier” than estimates because, in addition

to uncertainty concerning the estimated parameters,
they contain additional sources of potential errors.

As an example, consider a simple model in which
the arrival rate to a call center (each day from
9:00 a.m.–9:30 a.m.) is a linear function of the number
of customers receiving a promotional mailing. That is

�i =  +$xi+=i� (23)

where �i is the arrival rate, xi is the number of mail-
ings,  and $ are unknown constants, and the =i
are i.i.d. normally distributed noise terms with mean
zero. Given n sample points �xi��i�, one may use
regression techniques (such as least squares) to pro-
duce parameter estimates  ̂ and $̂. There is uncer-
tainty, however, regarding how closely these estimates
match the true  and $. That is,  ̂ and $̂ are random
variables that are functions of the n i.i.d. samples, and
given our estimated function

�̂i =  ̂+ $̂xi� (24)

the associated estimation error is distributed as

�i− �̂i = � −  ̂�+ �$− $̂�xi�
Now suppose we are told the number of mailings that
customers will receive on day n+1, and we are asked
to predict what �n+1 will be. We then use �̂n+1 to pre-
dict the �n+ 1�st arrival rate, and from (23)–(24) we
see that the prediction error is distributed as

�n+1 − �̂n+1 = � −  ̂�+ �$− $̂�xn+1 +=n+1�

In particular, the =n+1 term makes the prediction error
larger than the estimation error that arises from the
use of  ̂ and $̂. (For more on estimation and pre-
diction see, for example, Bickel and Doksum 2001, as
well as Brown et al. 2002a.)
Sources of Uncertainty. Call centers operate in a ran-

dom environment, and it is useful to classify their
sources of uncertainty (see Whitt 2002d). For exam-
ple, exact call arrival times are usually not known
in advance. This inherent randomness is called pro-
cess uncertainty. In addition to process uncertainty
there are two other sources of uncertainty which may
be significant. First, any model is an approximation
of reality, and therefore necessarily misspecifies the
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underlying phenomenon to some extent. This is called
model uncertainty. For example, there can be uncer-
tainty as to whether or not an arrival process is actu-
ally Poisson. An important part of data analysis is
to study model uncertainty. It is equally important
to study the influence of model uncertainty on per-
formance measures. For example, Figure 14 shows
that system performance is not insensitive to the form
of the service-time distribution. Given a model that
describes reality satisfactorily, there still may exist
parameter uncertainty, as in the case of a Poisson pro-
cess with an uncertain rate. These sources of uncer-
tainty are described in more detail in Whitt (2002d).

6.3. Models for Operational Parameters
First we review work devoted to primitives: Arrivals,
service times, abandonment (patience), and retri-
als. Then we address the validation of performance
measures.

6.3.1. Call Arrivals. The arrival process records
the epochs at which calls arrive to the center. Among
the queueing primitives of call centers, it has been
studied most extensively. For example, consider the
following three models for the arrival process of calls
to a call center during a given day.

Descriptive models, such as histograms of interar-
rival times, reflect short-term patterns of randomness
in arrivals. Conversely, more aggregate descriptions
of the arrival process, such as those developed in
Mandelbaum et al. (2001), may average out stochas-
tic variability over several (similar) days to develop
deterministic, fluidlike models that reflect predictable
variability in the calling rate. For example, the lower-
right panel of Figure 5 reveals the stochastic nature of
arrivals in the short term, and the remaining panels
highlight predictable variability.

Explanatory models can be used to forecast future
arrival rates of calls to a call center, a crucial first step
in the process of scheduling personnel. Arrival rates
depend on many factors—day of week or month,
time of day, holidays, etc.—and statistical techniques
using explanatory variables can be used to represent
them. For example, Andrews and Cunningham (1995)
develop autoregressive integrated moving average
(ARIMA) models that estimate the number of daily

calls for orders (buying merchandise) and inquiries
(e.g., checking order status) at L.L. Bean. In addition
to day of week, covariates include the presence of hol-
idays, catalog mailings, as well as forecasts for orders
that are independently produced by the company’s
marketing department.

Classical theoretical models posit that arrivals form
a Poisson process. It is well known that such a process
results from the following behavior: There exist many
potential, statistically identical callers to the call cen-
ter; there is a very small yet nonnegligible probabil-
ity for each of them calling at any given minute, say,
so that the average number of calls arriving within
a minute is moderate; and callers decide whether or
not to call independently of each other. (For exam-
ple, see Çinlar 1975.) When the average numbers of
arrivals change over the time of day, then one obtains
a time-inhomogeneous Poisson process.

Suppose the same “seasonal” cycle of arrival
rates—such as the daily pattern shown in the lower-
left panel of Figure 5—repeats itself. Then a com-
mon method of estimating the arrival rate is to break
the cycle into smaller intervals, collect several cycles’
worth of samples for each subinterval, and use each
sample mean as an estimate of that subinterval’s
arrival rate. Henderson (2002) performs an asymp-
totic analysis of this scheme, one in which the length
of the subinterval (appropriately) shrinks as the num-
ber of cycles’ worth of data grows. The analysis
shows that, when the underlying arrival process is
time-inhomogeneous Poisson and cyclical, the limit-
ing sample-rate function is a consistent estimator of
the original arrival-rate function.

Massey et al. (1996) approximate a general time-
inhomogeneous Poisson process as one with a piece-
wise linear rate function. That is, over intervals
�0�T1�� � � � � �Ti−1�Ti�� � � � � �Tn−1�Tn�, the arrival process
is Poisson with rate �i�t�= ai+ bi · t. Using simulated
arrivals, they compare ordinary least-squares (OLS),
weighted least-squares (WLS), and maximum likeli-
hood (ML) methods of estimating �ai� bi�. They find
that, given an arrival rate that is a linear Poisson pro-
cess, all three methods perform well as long as ai > 0.
For ai ≈ 0, however, WLS and ML (which are asymp-
totically equivalent) perform better. They also offer
standard tests for validating the linear Poisson model.
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Of course, forecasts of arrival rates are not exact.
Call centers may not always have sufficient histori-
cal data upon which reliable estimates can be based.
Furthermore, unpredictable factors such as weather
conditions also make future arrival rates uncertain.
As §4.4 describes, uncertainty in the arrival rates can
be dangerous to ignore, particularly for highly uti-
lized call centers operating in the QED regime. There-
fore, it is desirable to develop distributional (rather
than point) forecasts.

Jongbloed and Koole (2001) analyze the numbers of
arrivals to a Dutch call center by time of day. For each
time interval (e.g., 10:00 a.m.–10:30 a.m.) they collect
several days’ worth of data, and they show that, for
a given time interval, the data do not appear to be
i.i.d. samples of Poisson random variables: While the
mean and variance of a Poisson distribution are the
same, the samples’ variances are much larger than
their means. Thus, given only time-of-day informa-
tion, the process turns out to be doubly Poisson: The
rate itself is random.

The paper (Jongbloed and Koole 2001) goes on to
develop parametric (Gamma-Poisson) and nonpara-
metric (ML) methods of estimating a distribution for
the (unknown) arrival rate of a Poisson processes.
(The Gamma distribution is a convenient prior to use
for the arrival rate, since it is a conjugate prior for the
Poisson distribution.) Gordon and Fowler (1994) also
address this problem, but in less detail.

Brown et al. (2002a) analyze the arrival process of
calls to a relatively small call center in Israel. They
confirm that arrivals (by call type) do correspond to a
Poisson process in which the arrival intensity varies.
As in Jongbloed and Koole (2001), the arrival process
appears to be doubly Poisson, however. Indeed, when
numbers of arrivals are stratified by time of day and
day of week, the samples for specific time-day pairs
(e.g., Monday from 10 a.m.–11 a.m.) do not appear to
be i.i.d. samples of Poisson random variables.

Brown et al. (2002a) also develop a method for gen-
erating prediction (as opposed to estimation) confi-
dence intervals of a nonstationary arrival rate. The
prediction model includes an autoregressive term—
each day’s aggregate arrival rate is conditioned on
that of the previous day—and the introduction of the
autoregressive element noticeably reduces prediction

error. Thus, the arrival rates are (positively) serially
correlated

There are also scenarios in which the Poisson
assumptions are clearly violated. A simple exam-
ple occurs when callers react to an external event,
such as a telephone number shown in a TV commer-
cial, which can be modelled by adding a Poisson-
distributed number of arrivals at a predictable point
in time. (This is still referred to a Poisson point pro-
cess, which “enjoys” a discontinuity in its cumulative
arrival rate.) Other examples occur when busy signals
generate immediate retrials or when the arrivals from
one call center overflow to another, for example, via
centralized load-balancing schemes. In an analogy to
Internet traffic, it is conceivable that phenomena such
as long-range dependence, or heavy tails of the inter-
arrival times, would then emerge, but as of yet there
has been no empirical support of these phenomena.
For example, see Willinger et al. (1995).

6.3.2. Service Duration. The service duration is
typically defined as the time an agent spends han-
dling a call. This may include time speaking with
the customer, time during which the customer is “on
hold” and the agent is processing the customer’s
request, as well as time after the caller hangs up that
the agent continues processing the request.

Work on service times has concentrated almost
exclusively on description and validation of theoret-
ical models for service duration. Thus, there exists
published work that presents data analysis, such as
histograms, as well as tests for “goodness of fit” with
certain parametric families of distributions, but little
in the way of explanatory work.

Furthermore, there does not exist an extensive the-
ory for the distributional form that service durations
should follow. Mixtures of Erlang distributions are, in
fact, dense among all distributions, and this subfamily
of phase-type distributions is convenient numerically.
(For example, see Latouche and Ramaswami 1999.)
However, having ample parameters, they are less con-
venient theoretically. To this end, lower-dimensional
parametric models are desired.

The most frequently used parametric model of ser-
vice is that of exponentially distributed durations. In
practice, the main “theoretical” justification for its
use has been analytical tractability, along with a lack
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of empirical evidence to the contrary. Nevertheless,
some studies have compared empirical distributions
of service durations to exponential distributions and
found an acceptable fit. One example is Kort (1983),
which summarizes models of the Bell System Pub-
lic Switched Telephone Network, developed in the
70s and 80s. Another is Harris et al. (1987), which
analyzes IRS call centers. Our experience has fre-
quently confirmed these findings for human services
that are homogeneous and unpaced (not only tele-
phone services).

In addition to the exponential distribution, two
other parametric statistical families have been found
to arise in applications: Erlang (or, more generally,
Gamma) distributions and the lognormal distribution.
Both families are explored in Chlebus (1997), who
analyzes holding-time distributions in cellular com-
munication systems. Other confirmations for the log-
normal fit are provided by the service times in Bolotin
(1994) and in Mandelbaum et al. (2001), where the fit
has been found to be truly remarkable (right panel
of Figure 19). It has also shown up in an (unpub-
lished) analysis of data from the call center of a Dutch
bank. The excellent fit of lognormal arises not only
for overall service times. It is also found when service
times are stratified by service types, by individual
agents, and so on. Furthermore, Bolotin (1994) notes
that “Weber’s Law”—in which the perceived dura-
tion (or value) of the incremental time spent in an

Figure 19 Service-Time Distributions from a Call Center (from Mandelbaum et al. 2001)
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activity remains a fixed proportion of the time already
spent—is consistent with the lognormal form of ser-
vice durations.

A comparison of the two histograms in Figure 19 is
worth making. Observe that the left panel, which is
the empirical distribution of call times from January
to October of 1999, has a spike near 0 seconds (the
origin): About 7% of the calls were shorter that 10
seconds. These very short calls were due to certain
agents who were taking small “rest breaks” by hang-
ing up on customers. In contrast, the right panel,
which reflects only November and December data,
shows no such spike. At the end of October, the prob-
lem was discovered and corrected.

The problem of agents “abandoning” their calls
arises when short service durations (or many calls
per shift) are highlighted as a prime performance
objective. The problem becomes immediately appar-
ent from call-by-call data. It cannot be discovered,
however, through the prevalent standard of reporting
only half-hour averages.

6.3.3. Abandonment and Retrials. A final set of
primitives in operational queueing models concerns
the behavior of the customers who are calling to be
served. From Figure 4 we recall that these include
abandonment, retrials, and returns. Among published
papers, most attention has been given to patience and
abandonment, with little devoted to the tendency to
retry, namely redial, and even less to returns.
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The Impatience Function. A basic description of
patience is the cumulative distribution function, say
F , of the time beyond which a customer would not be
willing to wait. An equivalent description is its corre-
sponding hazard rate function. Assuming that F has
a density f = F ′, its hazard rate function is given by
h�t� = f �t�/�1− F �t��, t ≥ 0. Intuitively, h�t�dt is the
probability that a customer who has already survived
waiting for t units of time will abandon within the
next dt units, namely during �t� t+dt�. Thus, the haz-
ard rate h�t� provides a natural dynamic depiction of
(im)patience, as it evolves while waiting. We will refer
to this as the impatience function, or simply impatience.

Figure 20 plots two impatience functions. It has
appeared in Brown et al. (2002a) and Mandelbaum
et al. (2001), and it has several noteworthy features.
First, note that the impatience of “priority” customers
lies strictly below that of “regular” customers, so that
the high-priority customers emerge as (stochastically)
more patient (less impatient) than regular customers.
This could be a reflection of a more urgent need on the
part of priority customers to speak with an agent, or
it could reflect their higher level of trust that they will
be served soon after arrival. Second, the impatience
functions of both types of customers are not mono-
tone and have two peaks: the first near the origin,
due to those who simply decide not to wait, and
the second at about 60 seconds. The second, as it

Figure 20 Impatience Functions of Regular and Priority Customers (follows Brown et al. 2002a, Mandelbaum et al. 2001)
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happens, reflects an announcement to customers who
have waited 60 seconds, informing them of their rel-
ative place in the telequeue (but not their anticipated
waiting time). As can be seen, the information here
encourages abandonment. This could be in contrast
to its original goal, namely preventing abandonment
by reducing the uncertainty about waiting times. (For
a theoretical exploration of the benefits of inducing
abandonment, see Whitt 2001.)
Models of Impatience. The first model of impatience

was developed by Palm (1943) in the 1940s, who esti-
mates the inconvenience of waiting. To this end, he
introduces an inconvenience function of time I�t�, t ≥ 0,
the derivative of which he calls irritation. As a plausi-
ble form for irritation, Palm proposes

dI�t�= c · t�dt� t ≥ 0�

as being proportional to the hazard rate of customer
abandonment, our impatience function. This reason-
ing implies that the distribution of patience (the time
a customer is willing to wait for service) is Weibull.
The special case of exponentially distributed patience,
as in Erlang A, corresponds to � = 0, which is irrita-
tion (or impatience) that is constant over time.

In calibrating �, Palm (1943) considers three cir-
cumstances, two of which have close present-day ana-
logues. Short delays, during which a subscriber waits
to be connected to a circuit, are similar to today’s
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call-center telequeueing delays. From direct measure-
ments of patience, Palm concludes that in this case, �
is close to one, possibly slightly less. Medium delays,
after which an operator calls back a subscriber with
a requested connection, are similar to those gener-
ated by present-day “call-back” systems (Armony and
Maglaras 2001, 2002). These induce exponentially dis-
tributed impatience, with �= 0.

Palm’s findings are remarkably consistent with
those reported by Kort in the 1980s. Based on aban-
donment behavior in laboratory testing in the U.S.A.,
Kort (1983) proposes Weibull as the distribution of
patience while waiting for a dial tone and deduces �=
1�23. Kort also has two additional models of patience:
Time to abandonment while dialing, described in
terms of a shifted exponential; and time to abandon-
ment prior to network response (after dialing), where
a mixture of two lognormal distributions fits well.

Roberts (1979) presents descriptive models for
redial and abandonment behavior, based on experi-
mental observations in France. A parametric model
for the data in Roberts (1979) is derived by Baccelli
and Hebuterne (1981), who find that an Erlang distri-
bution with three phases provides a reasonable fit.

Analogous studies of abandonment behavior in call
centers exist in three related papers. The first two, by
Mandelbaum et al. (2001) and Brown et al. (2002a),
develop descriptive models for customer patience.
The third, by Zohar et al. (2002), considers the fol-
lowing linear relationship between the abandonment
fraction and expected delay; it holds for patience that
is exponentially distributed, say with parameter 4:

P�Abandon�= 4 ·E	Wait�� (25)

(To verify the relationship, start with the flow con-
servation equation, � · P�Abandon� = 4 · E	Queue-
Length�, in which both sides represent the effective
abandonment rate. Then use Little’s Law, E	Queue-
Length� = � ·E	Wait�, and cancel out the �.) Empiri-
cal support for this relationship is given in Figure 21,
which is based on the same data set as Figure 20.

The focus of Zohar et al. (2002) is the effect of cus-
tomer learning on the above relationship. In particu-
lar, customers may learn through experience to adjust
their expectations concerning delay, thus becoming
relatively more patient at typically highly congested

Figure 21 Empirical Relationship Between Abandonment and Delay
(from Brown et al. 2002a)
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times of day. This effect tends to flatten the observed
slope of plots such as Figure 21.

More fundamentally, though, the impatience in
Figure 20 is hardly exponentially distributed, a pre-
requisite for (25) to hold in the first place. This fact
suggests that the linear relationship in Figure 21 is
to be expected under broader circumstances. And
indeed, suppose that the distribution of patience has
a density function whose value at the origin, say r�0�,
is positive. Mandelbaum and Zeltyn (2002) show that,
in the quality-driven and QED regimes,

P�Abandon�≈ r�0� ·E	Wait�� (26)

which is an asymptotic generalization of (25). In
fact, the distribution of patience becomes critical
only at its origin because, in the quality-driven and
QED regimes, customers wait little, if at all. In
the efficiency-driven regime, however, the asymptotic
behavior differs.

A comparison of the recent Brown et al. (2002a),
Mandelbaum et al. (2001), and Zohar et al. (2002) with
the older Kort (1983), Palm (1953), and Roberts (1979)
is not straightforward for several reasons. While all
address impatience, they do so in different circum-
stances. For example, the natural time unit for Kort
(1983), Palm (1953), and Roberts (1979) is seconds,
while patience in a call center is typically meas-
ured in minutes, an average of about 10 minutes
in Brown et al. (2002a), Mandelbaum et al. (2001),
and Zohar et al. (2002). Furthermore, the customers
in Brown et al. (2002a), Mandelbaum et al. (2001), and
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Zohar et al. (2002) hear a 60-second announcement
that reflects their status in queue, information which
was not available to the participants in Kort (1993),
Palm (1953), and Roberts (1979).
Censored Sampling. Data associated with patience

and abandonment are typically censored, since the
patience of those who get served before they aban-
don is not fully observed. Consequently, the need to
account for censoring is an important topic in much
of the work cited above. Both Palm (1953) and Kort
(1983) avoid the problem by sampling from (unfortu-
nate!) subjects who called a nonworking service and
waited until they were exhausted. Mandelbaum et al.
(2001) account for censoring by using standard tools
from the statistical theory of survival analysis, espe-
cially the Kaplan-Meier estimator of a distribution
function. (See the Appendix in Zohar et al. 2002 for
details.) Roberts (1979) handles censoring in a self-
developed method, which is essentially equivalent to
the Kaplan-Meier approach.
Redials and Revisits. Recalling Figure 4, there are

three modes of return to a call center: redials after
encountering a busy signal, redials after abandoning,
and revisits after service. The well-developed theory
of retrial queues is mostly devoted to the first. (For
example, see Falin and Templeton 1997.) This is the
least relevant to the practice of call centers, however.
Indeed, managers have typically resolved the trade-
off between busy signals and abandonment in favor
of the latter, by operating with an ample number of
trunk lines. As a result, immediate returns are mostly
redials after abandonment, and delayed returns are
revisits after service.

In most work, redials are quantified in terms of
some perseverance function that gives the probabil-
ity of an nth attempt, given a survival beyond the
�n−1�th attempt. Andrews and Parsons (1993) report
(but do not actually show) that redials to an L.L. Bean
call center are infrequent enough and spread out
enough over time that they do not alter the Poisson
nature of arrivals. (See the discussion at the end of
§6.3.1.) Hoffman and Harris (1985) develop a method
of jointly estimating arrival rates (before retrials) and
redial rates from ACD data.

There is no work on revisits after service, to the best
of our knowledge. This does not diminish their prime

importance, however. For example, revisits to a retail
call center for subsequent purchases may indicate sat-
isfactory service, which is the opposite for revisits to
technical support—and both constitute central perfor-
mance measures of their respective operations.

6.3.4. System Performance. Given assumptions
on primitives—arrivals, service times, abandonment,
retrials—and the relationships among them, queueing
models derive measures of system performance such
as the distribution of the number of calls in queue,
the distribution of delay in queue faced by a typical
arriving customer, and the overall abandonment rate.

Roberts (1979) estimates the virtual wait, the distri-
bution of the time that a customer would have to wait
for service, given infinite patience. (His plots are consis-
tent with Kingman’s exponential law of congestion.
See (11) and the line that precedes it.) If one assumes
that customers are familiar with the system, based
on prior service experience, the actual delay would
also coincide with the distribution of the time that
a customer expects to wait, as explained in Mandel-
baum and Shimkin (2000), Shimkin and Mandelbaum
(2002), and Zohar et al. (2002).

Indeed, one may think of two dimensions of cus-
tomer patience: The first is the time that a customer
is willing to wait, and the second, the time the cus-
tomer expects to wait. Mandelbaum et al. (2001) divide
the expectation of the former by the latter to develop
a “patience index.” They find, for example, that cus-
tomers with Internet questions are willing to wait 528
seconds, on average, but their expected (virtual) wait
is roughly half that, and their patience index is 1.98.
In contrast, customers calling to make stock trades are
willing to wait even longer (678 seconds), but they are
served much more quickly, and their patience index is
much higher (4.74). Thus, the index reveals that stock-
trading customers are relatively more patient, while
customers with Internet questions are relatively less.
Furthermore, this view of relative patience would not
be captured by either expected wait or willingness to
wait, alone.

Brown et al. (2002a) demonstrate that, given expo-
nentially distributed times to abandonment and vir-
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tual waits, the patience index for a set of customers
should equal the empirically observed ratio

# customers served
# customers abandoned

� (27)

They then analyze the data from Mandelbaum et al.
(2001), comparing a patience index to the ratio
above. To avoid problems of censoring, the patience
index is calculated using first quartiles, rather than
means. Nevertheless, the two measures of patience—
theoretical patience index and empirical abandon-
ment ratio—are shown to have a remarkable linear
relationship, with R2 = 0�94. (This despite the fact
that, for these data, patience is not exponentially dis-
tributed.) Thus, the results suggest that simple counts
of services and abandonments can be used to estimate
customer patience.

The call center analyzed in Brown et al. (2002a)
and Mandelbaum et al. (2001) has 15%–20% abandon-
ment rates. Brown et al. (2002a) also use these data
to demonstrate that measures of system performance
predicted by the Erlang A model fit the center’s actual
performance well. Again a good fit emerges, despite
the fact that neither service times nor patience are
exponentially distributed, as assumed in the Erlang A
model. Our experience suggests that such robustness,
perhaps surprisingly, is not uncommon. This is clearly
a phenomenon worthy of further research.

Performance measures are, of course, correlated. An
example is the remarkably linear relationship between
the fraction of abandoning customers and average
waiting time, theoretically justified in (25) and dis-
played in Figure 21 (Mandelbaum and Zeltyn 2002).
This implies that one need measure only one of the
two statistics; the other can be arrived at through infer-
ence. More subtle is the fact that, in these data, arrival
rates, service times, and delay in queue all tend to
peak at the same times of day (Brown et al. 2002a).
This correlation could be the result of any of several
phenomena: That peak hours are the most convenient
hours for customers with longer service times to call;
that CSRs “pace” themselves during busy periods by
slowing down; that during periods with longer delays,
customers with the more pressing problems—hence
longer service duration—are more likely to not aban-
don. Analysis in Brown et al. (2002a) suggests that the
first hypothesis is the one most likely to be true.

6.4. Future Work in Data Analysis and Forecasting
There has been recent progress in the analysis of call-
center data. Call-by-call data from a small number of
sites have been obtained and analyzed, and these lim-
ited results have proven to be fascinating. In some
cases, such as the characterization of the arrival pro-
cess and of the delay of arriving calls to the system,
conventional assumptions and models of system per-
formance have been upheld. In others, such as the
characterization of the service-time distribution and of
customer patience, the data have revealed fundamen-
tal, new views of the nature of the service process. Of
course, these limited studies are only the beginning,
and the effort to collect and analyze call-center data
can and should be expanded in every dimension.

Perhaps the most pressing practical need is for
improvements in the forecasting of arrival rates. For
highly utilized call centers, more accurate, distribu-
tional forecasts are essential. While there exists some
research that develops methods for estimating and
predicting arrival rates (Andrews and Cunningham
1995, Brown et al. 2002a, Jongbloed and Koole 2001,
Massey et al. 1996), there is surely room for addi-
tional improvement to be made. However, further
development of models for estimation and prediction
will depend, in part, on access to richer data sets.
We believe that much of the randomness of Poisson
arrival rates may be explained by covariates that are
not captured in currently available data.

Procedures for predicting waiting times are also
worth pursuing. Hopp and Sturgis (2001) analyt-
ically demonstrate how the form of the service-
level constraint—such as the probability of meeting
a quoted delay or the expected tardiness beyond a
quoted delay—affects the point forecast of delay that
should be quoted in a single-server system. The paper
also uses simulation to test the robustness of these
single-server results in the context of multiple-server
systems. Whitt (1999b) develops methods for predict-
ing delays in a variety of FCFS, multiple-server sys-
tems. The extension of these types of methods to more
complex, priority and networked systems requires
additional work, however. (For example, see Armony
and Maglaras 2002.) Field-based studies that charac-
terize the performance of different methods would
also be of value.
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More broadly, there is need for the development of
a wider range of descriptive models. While a charac-
terization of arrival rates, abandonment from queue,
and service times are essential for the management of
call centers, they constitute only a part of the complete
picture of what goes on. For example, there exist (self)
service times and abandonment (commonly called
“opt-out”) behavior that arise from customer use of
IVRs. Neither of these phenomena is likely to be the
same as its CSR analogue. Similarly, sojourn times
and abandonment from web-based services have not
been examined in multimedia centers.

Parallel, descriptive studies are also needed to val-
idate or refute the robustness of initial findings. For
example, lognormal service times have been reported
in two call centers, both of which are part of retail
financial services companies. Perhaps the service-time
distribution of catalogue retailers or help-desk oper-
ations have different characteristics. Similarly, one
would like to test Figure 20’s finding that the waiting-
time messages customers hear while telequeueing
promote, rather than discourage, abandonment.

It would also be interesting to put Palm (1943),
Roberts (1979), Kort (1983), and Mandelbaum et al.
(2001) in perspective. These studies provide empiri-
cal and exploratory models for (im)patience on the
phone in Sweden in the 40s, France in the late 70s, the
United States in the early 80s, and Israel in the late
90s. A systematic comparison of patience across coun-
tries, for current phone services, should be a worthy,
interesting undertaking.

There is the opportunity to further develop and
extend the scope of explanatory models. Indeed,
given the high levels of system utilization in the
QED regime, a small percentage error in the forecast
of the offered load can lead to significant, unantic-
ipated changes in system performance. In particu-
lar, the state of the art in forecasting call volumes is
still rudimentary. Similarly, the fact that service times
are lognormally distributed enables the use of stan-
dard parametric techniques to understand the effect
of covariates on the (normally distributed) natural log
of service times (Brown et al. 2002a).

In well-run QED call centers, only a small frac-
tion of the customers abandon (around 1%–3%), hence

about 97% of the (millions of) observations are cen-
sored. Based on such figures, one can hardly expect
any reasonable estimate of the whole patience distri-
bution, nonparametrically at least. Fortunately, how-
ever, the analysis of Mandelbaum and Zeltyn (2002),
as represented in (26), suggests that only the behavior
of impatience near the origin is of relevance, and this
is observable and analyzable.

Indeed, call-center data are challenging the state
of the art of statistics, and new statistical techniques
seem to be needed to support their analysis. Two
examples are the accurate nonparametric estimation
of hazard rates with corresponding confidence inter-
vals, and the survival analysis of tens of thousands,
or even millions, of observations, possibly correlated
and highly censored.

Finally, in the following section we will also argue
that a broader goal should be, in fact, the analysis
of integrated operational, marketing, human resources,
and psychological data. That is, the analysis of these
integrated data is essential if one is to understand and
quantify the role of operational service quality as a
driver for business success.

7. Future Directions in
Call-Center Research

The work described above constitutes only a begin-
ning. Below, we describe what we believe to be
some natural next steps in the evolution of call-center
research. In all cases, both empirical and theoretical
work are needed to develop the depth of understand-
ing required.

7.1. A Broader View of the Service Process
The service process at most call centers takes place
over multiple stages. Aside from a few exceptions,
however, the work we have described thus far has
been geared to a simple, single stage of service; there
currently exists little analysis directed at the broader
service process.

For example, many large call centers use IVRs,
but an understanding of how they function is far
from complete. There exist some theoretical papers
that explicitly or implicitly model the use of IVRs
in certain circumstances. Srinivasan and Talim (2001)
analyze a two-station network model of an IVR, pos-
sibly followed by CSR service. They show that indus-
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try practice—which first uses an Erlang B model to
fix the number of trunk lines, then an Erlang C model
to set the number of CSRs—can lead to problem-
atic recommendations, such as having more agents
than trunks. (Cleveland and Mayben 1997 describe
this industry practice.) Other examples of models that
explicitly include the use of IVRs include Brandt et al.
(1997), Brandt and Brandt (1999a), and Armony and
Maglaras (2001, 2002). The only empirical treatment
of IVR service-time distributions of which we are
aware, however, is the brief description provided in
Mandelbaum et al. (2001).

Furthermore, IVR technology is rapidly evolving.
The current generation of speech recognition and arti-
ficial intelligence (AI) technologies have increased the
range, as well as the speed, of IVR-supported self-
service. These advances are likely to make IVR-based
service increasingly important, and study is required
to understand how the technologies can best improve
the service process.

The service that CSRs provide to customers may
also be thought of as occurring over multiple stages.
Calls may be “escalated” from a front-line CSR to a
supervisor or problem specialist. In some operations,
such as insurance claims, service requests commonly
require several phone calls to be resolved. It is also
often the case that, having satisfied the customer’s
service request, a CSR has the opportunity to “cross-
sell” another product or service.

Furthermore, customer transitions among IVR,
CSR, and other “nodes” of a call-center’s internal net-
work can exhibit strong interdependencies. For exam-
ple, the time customers spend interacting with an
IVR is fundamentally related to the time required
for agents to serve them. Indeed, many businesses
encourage customers to use IVRs as a means of self-
service, with the specific hope of reducing the time
spent with a CSR.

Other technologies can also affect the nature of
service durations in a systematic fashion. As noted
before, the “screen pops” enabled by CTI can
reduce and standardize service times. Similarly, the
automatic greetings and farewells used by telephone
operators reduce both the service duration and its
stochastic variability.

Because of the shared nature of many call-center
resources, customers affect each others’ service times.

For example, Akşin and Harker (2001) develop a theo-
retical model in which the corporate information sys-
tem is a bottleneck. Customers’ service durations with
agents are driven by agent queries to the shared sys-
tem, and as congestion increases, service durations
increase as well. Numerical examples in the paper
demonstrate how this can lead to counterintuitive
phenomena: For example, performance levels may
decrease as the number of agents increase. As far as
we know, there exists no empirical work that system-
atically investigates the claim.

7.2. An Exploration of Intertemporal Effects
Just as the process by which a given call is served
may be complex, there also exist interdependencies
that exist over time. We believe that a fuller descrip-
tion and modelling of these interdependencies are
essential for a complete understanding of call-center
behavior (as well as of service-delivery systems more
generally).

At the most basic level, primitives used in queue-
ing models systematically vary over time. For arrival
rates, which exhibit regular, seasonal patterns, this
fact is well accepted. It also appears to be true for ser-
vice rates although in this case the documentation is
far less complete and the reasons far less clear.

There are many sources of systematic variation in
service times that should be better described and
analyzed. For example, Gustafson (1982) documents
“learning-curve” effects: As they gain experience,
CSRs become systematically faster on the job. Simi-
larly, Sze (1984) describes a phenomenon (sometimes
called “shift fatigue”) in which “operators may ini-
tially work faster during periods of overload to work
off the customer queue, but may tire and work slower
than usual if the heavy load is sustained and if no
relief is provided” (p. 230).

Again, there exists limited work that addresses
some of these effects. The data analysis of Brown
et al. (2002a) (described in §6.3.4) shows that ser-
vice times at one call center are longer during peri-
ods with higher arrival rates. The hiring model in
Gans and Zhou (2002) accommodates learning-curve
effects, should they exist. In both cases, however, our
understanding of what drives the duration of service
times and how these effects should be modelled is
only rudimentary.
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Similarly, over the course of the day or week, cus-
tomer patience may vary because customers have
learned to expect more or less congestion during cer-
tain intervals. Again, Zohar et al. (2002) describe and
model this type of behavior, but work must be done
to understand this effect at a more fundamental level.

7.3. A Better Understanding of
Customer and CSR Behavior

Most of the operational primitives of call-center
queueing models—arrivals, services, abandonment,
retrials—are functions of human behavior. For exam-
ple, the need to view intertemporal changes in these
primitives is intimately related to the fact that peo-
ples’ behavior changes according to circumstances
and over time.

Indeed, one of the most challenging aspects in
developing queueing models for call centers is the
incorporation of human factors, for both customers
and agents, in a practical manner. This opens up a
vast agenda for multidisciplinary research.

We note that there exists a substantial body of
research, which originates in psychology and market-
ing, that studies people’s behavior while waiting in
queues. The articles in §III of Mandelbaum (2002),
entitled “Consumer Psychology,” have ample leads.
Most of this work concerns physical queues such as
those found in a bank or a clinic. As we noted in §2.4,
however, telequeues are phantom, hence the experi-
ence of waiting in them is likely to differ significantly
from that in physical queues.

The subtlety of human factors can make their effect
on telequeues difficult to properly quantify, measure,
and model. Consider, for example, human impatience
while waiting for a teleservice. It surely depends
on the communication channel—telephone, Internet,
IVR—and on the type of customer. But who is more
patient, a regular customer or a VIP? (See Figure 20
and §6.3.4.)

Furthermore, CSRs’ and customers’ experiences are
linked. For example, Schneider et al. (1998) show that
employees’ perceptions of working conditions and
customers’ perceptions of service quality affect each
other over time. (For more on this interaction, see also
the references within Schneider et al. 1998.)

Customer and CSR Behavior as Equilibrium Phenomena.
Both customers and employees have the ability to
adjust their expectations based on experience, and to
adjust behavior based on expectations. In call cen-
ters, this adjustment can also be seen in response to
management practice, which sometimes dramatically
affects behavior. For example, an incentive scheme
that rewards agents for maintaining a low AHT can
lead CSRs to hang up on customers. (The empirical
distribution displayed on the left side of Figure 19
reflects a similar pattern, though in this case agents
were taking small “rest breaks” by hanging up on cus-
tomers.) Similarly, announcements made to customers
waiting “on hold” can lead them to abandon the tele-
queue, as noted in §6.3.3 and manifested in Figure 20.

The CSR and customer phenomena described above
suggest that an appropriate framework for including
human behavior is that of a game-theoretic or eco-
nomic equilibrium, arrived at through learning and
self-optimization. This is the perspective of a number
of recent papers. Shumsky and Pinker (2002) consider
settings in which front-line CSRs act as “gatekeepers”
who may attempt to solve customers’ problems or
send them on to a specialist, and they use principal-
agent models to analyze the impact of incentive com-
pensation schemes.

Mandelbaum and Shimkin (2000) develop a theo-
retical equilibrium-analysis of rational customers who
compare their expected remaining waiting time with
a subjective value they ascribe to service. This is
equivalent to assuming a linear cost structure, and it
implies that additional factors, such as the likelihood
of “never” being served, are required to motivate a
waiting customer to abandon the queue. Such a moti-
vation is not needed in Shimkin and Mandelbaum
(2002), who show that when waiting costs are non-
linear, an analogous equilibrium can be achieved.
Zohar et al. (2002) provide empirical evidence for
the thesis of rational, adaptive customers, and they
present a simpler and more analytically tractable form
of the original, linear model. Armony and Maglaras
(2001, 2002) and Whitt (2001) both develop similar
notions of abandonment and congestion as equilib-
rium phenomena.
Multiple Levels of Equilibria.Furthermore, the notion

of an equilibrium exists simultaneously at a num-
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ber of levels. In real time, system congestion inter-
acts with customers’ patience to engender balking
and abandonment behavior, and these behaviors help
to stabilize the system. Over longer periods, balking
and abandonment behavior during one interval can
be seen to lead to retrials during another. Thus, one
might think of arrival rates, service times, patience,
and the propensity to redial at any point in time as
being jointly dependent on queueing system perfor-
mance over the course of the week.

That is, system performance may more properly be
modelled as depending on arrival-rate, service-time,
patience, and retrial functions that vary systematically
over the week (see Mandelbaum et al. 2000). The form
of the functions represents a fixed point, arrived at
through customer and CSR experience and adjust-
ment over many weeks.

The work cited above represents a promising start.
Still, little is known about the processes that under-
lie waiting and service behaviors. Just as the anal-
ysis of abandonment data have guided Zohar et al.
(2002) to simplify the theoretical model developed
in Mandelbaum and Shimkin (2000), a deeper eco-
nomic and psychological understanding of abandon-
ment and service behaviors will enable continuing
improvements in their theoretical characterization.

Finally, the hierarchy of equilibria described above
may be extended one level further. Just as cus-
tomers’ expectations concerning queueing delays may
be learned through experience, their repeated contacts
with a company—through its call centers and through
other communications channels—may lead them to
form broader expectations concerning the value the
company provides. These expectations would then
lead customers to alter their buying patterns, for
example, for better or worse.
The Impact of Other Social and Economic Phenomena.

A wide variety of social and economic phenomena
have profound effects on customer and CSR behavior,
and a detailed understanding of how they function
remains to be developed. For example, external labor
markets and “internal social networks” affect CSR on-
the-job learning and turnover rates. (See Castilla 2002
and the references therein.) Even broader factors, such
as growth of international call-center operations, can
affect how incoming customers are routed, as well as

the types of skills CSRs at various sites should have.
Thus, a full understanding of what drives customer
and CSR behavior requires work across a broad set of
disciplines in the social sciences.

7.4. CRM: Customer Relationship/
Revenue Management

The notion that service quality affects customer buy-
ing behavior—and, more broadly, his or her value to
the organization—requires one to consider elements
of quality beyond the operational measures on which
we have concentrated thus far. For example, as out-
lined in §2.5, an adequate treatment of service qual-
ity is likely to include notions of the effectiveness of
service encounters, as well as judgments concerning
the content of CSRs’ interactions with customers. It is
also likely to include financial, as well as operational,
measures of success.

For instance, it may be that calls which reduce
future rework or improve the likelihood of future
purchases are judged more “effective,” and effective
calls require longer service durations. Conversely, cus-
tomer abandonment that results from system conges-
tion can reduce the likelihood of future purchases,
and (given a fixed set of servers) shorter service times
reduce abandonment. Then, given the current state
of the system—the overall level of congestion, which
specific customers are waiting in queue, and which
are being served by what specific CSRs—one would
like to know whether it is best to have more effective
(longer) or quicker calls.

Thus, a broader view of service quality may
affect managers’ and academics’ notions of what
gets optimized during the service process. Research
that supports this view is just emerging, however.
For example, Pinker and Shumsky (2000) posit that
“learning-curve” behavior drives the quality of ser-
vice offered by CSRs, and they consider how learning
and quality are affected by CSR specialization. Gans
(2002) and Hall and Porteus (2000) offer models of
service quality affecting customer churn. These mod-
els attempt to connect operational, human resources,
and marketing decisions, but they are highly stylized.
To become practical, the analysis must capture more
detail of the service process.

In fact, Customer Relationship Management (CRM)
systems promise to enable companies to better track
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and understand how each service experience affects
a customer’s long-term buying behavior. Skills-based
routing systems provide a natural complement, in
that they allow a company to exercise much finer
control over who serves that customer, as well as
how and when. These systems only provide the nec-
essary infrastructure, however. Research is required
to understand exactly how customers respond to ser-
vice and, in turn, exactly how their service should be
controlled.

Using CRM systems to learn about the revenue
impact of operating decisions goes far beyond current
practice, however. To date, these systems have typi-
cally been used to recall individual customers’ pref-
erences and to identifying cross-selling opportunities.
Substantial investments in data analysis and statisti-
cal learning tools are required in order to transform
CRM systems into customer revenue management sys-
tems. A first step in this direction is taken in Ariely
et al. (2002), which (in the context of Internet services)
trades off short-term benefits of cross selling with
longer-term learning costs. (For more on the trade-offs
to be made when cross-selling, see Akşin and Harker
1999.)

This application of CRM technology would also
constitute a contribution to the theory and practice
of revenue management. First, the approach would
use sophisticated data-mining tools to better assess
the opportunity cost of denying (or degrading) a cus-
tomer’s service. Furthermore, the (complementary)
analysis of operating controls is naturally pursued as
an infinite-horizon problem, in contrast to the finite-
horizon framework of traditional revenue manage-
ment formulations. For a simple example, see Savin
et al. (2003).

7.5. A Call for Multidisciplinary Research
The research required to support this scheme falls
across several disciplines. In broad terms, expertise in
marketing, data mining, and statistics are required to
segregate customers into classes and to develop those
classes’ cost or index functions, as in the Gc� rule
of (22). Knowledge of human resources is required to
design agent skill sets, as well as to develop effective
hiring and training plans. Operations-based research
is needed to understand how best to route customers
and their work to CSRs. Information systems exper-

tise is required to ensure that the underlying CRM
and routing systems are capable of performing the
required functions.

Furthermore, because customers, CSRs, and sys-
tems jointly interact, much of the required research is
inherently multidisciplinary. We highlight a few of the
many elements of call-center design and management
that would benefit from such an approach:

• In skills-based routing, operational decisions
determine the duration of time that calls wait on hold,
as well as the nature of the CSR who serves the call.
These, in turn, affect the caller’s experience, hence
short- and long-term behavior. Thus, a solution to the
problem requires an integrated view of both opera-
tional and marketing issues.

• Skills-based routing decisions also affect customer
abandonment from queue, and impatience is, funda-
mentally, a psychological process. Similarly, the cus-
tomer’s perception of service depends on his or her
interaction with a CSR. Thus, operating policies should
also be informed by a proper understanding of the
psychology of individuals and of social interactions.

• The numbers of different CSRs, as well as the
types of “skill sets” that they have, affect how the
weekly scheduling and real-time routing problems can
be solved. Thus, these HR problems of organizational
design and management are linked to marketing out-
comes through operational, call-routing controls. They
also have an operational element themselves.

• Incentive schemes complement skill sets and job
ladders in the design of CSRs’ work. Tools from
microeconomics, such as principal-agent models, can
provide insight into possible or likely outcomes of
proposed system designs.

• Advances in automation technologies, such as
speech recognition and AI, affect the design of IVRs,
Web-based interaction, and call scripting—as well as
how they are integrated. These changes will have a
direct effect on the time required to complete tasks.
More subtly, and as importantly, they will also affect
system performance through their impact on cus-
tomer satisfaction and behavior.

• The design of information flows also affects both
CSR and customer behavior and, in turn, system per-
formance. A simple example for CSRs is the use of
flashing panels to provide real-time feedback on the
length of the queue. An analogous example for cus-
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tomers is the communication of information concern-
ing expected delay in queue.

• The need for statistical tools arises everywhere
in the analysis of call-center operations. Examples
include: The forecasting of arrival rates and service
times; the characterization of the hazard rate of aban-
donment (impatience function); and the validation or
refutation of queueing-theoretic performance models.

• Data mining and statistical analysis will also
be essential in developing the link between operat-
ing decisions and their marketing consequences. For
example, they should be used to determine which
customers have high (potential) value and should
receive better service.

8. Conclusion
Telephone call centers are an economically important
new form of operation. They employ a growing frac-
tion of the work force and mediate a significant vol-
ume of trade in developed economies.

While tools from operations management and oper-
ations research have proved to be essential for their
management, many problems related to call centers’
most basic operational characteristics have yet to be
thoroughly tackled. In particular, the forecasting of
arrival rates, the characterization of customer and
agent behavior, and the analysis of the time-varying
nature of these systems need to be more fully devel-
oped, and they represent challenges for academics
and managers alike.

Furthermore, a number of new opportunities also
exist for extending call-center capabilities. Skills-
based routing, networking, and speech recognition
are examples of promising technologies for which an
understanding is just beginning to be developed. A
broad range of multidisciplinary work is needed to
help them fully realize their potential.

We believe that this research is exciting because
it will also have impact beyond call centers them-
selves. Indeed, the service sector represents 70% or
more of most developed economies, and this fraction
continues to grow. In many parts of the sector, opera-
tional, marketing, and human resource issues are also
tightly intertwined. Thus, the research frameworks
and insights that are derived from multidisciplinary
call-center research are certain to apply more broadly.
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Appendix A. Glossary of Call-Center Acronyms

Acronym Description Definition

ACD automatic call distributor p. 84
ANI automatic number identification p. 83
ASA average speed of answer p. 86
CRM customer relationship management p. 85
CSR customer service representative p. 83
CTI computer-telephony integration p. 85
DNIS dialed number identification service p. 83
IVR interactive voice response unit (also called

VRU)
p. 83

PABX private automatic branch exchange (also
called PBX)

p. 83

PBX private automatic branch exchange (also
called PABX)

p. 83

PSTN public switched telephone network p. 83
TSF telephone service factor (also called the

“service level”)
p. 87

VRU interactive voice response unit (also called
IVR)

p. 83

WFM workforce management p. 90
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