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ecent operations management papers model customers as solving multiarmed bandit problems, positing

that consumers use a particular heuristic when choosing among suppliers. These papers then analyze the
resulting competition among suppliers and mathematically characterize the equilibrium actions. There remains
a question, however, as to whether the original customer models on which the analyses are built are reasonable
representations of actual consumer choice. In this paper, we empirically investigate how well these choice
rules match actual performance as people solve two-armed Bernoulli bandit problems. We find that some
of the most analytically tractable models perform best in tests of model fit. We also find that the expected
number of consecutive trials of a given supplier is increasing in its expected quality level, with increasing
differences, a result consistent with the models’ predictions as well as with loyalty effects described in the

popular management literature.
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1. Introduction

In many business contexts, customers switch among
suppliers. This switching is often observed in service
industries, where it is called customer “defection” or
“churn.” It is also a common phenomenon in the con-
text of consumer products, where brand switching
is a widely studied phenomenon. Among the factors
responsible for this switching is random variation in
the utility or value that a customer obtains each time
he or she patronizes a supplier.

More specifically, in many settings, the quality of
service offered to customers has an inherently ran-
dom component. Competing suppliers’ quality distri-
butions, in turn, jointly determine customer switching
behavior and market shares. By installing extra capac-
ity or instituting additional quality-control measures,
a service provider can improve—at a cost—the distri-
bution of its service quality.

The mechanism by which customer switching oc-
curs is naturally modeled as the solution to a multi-
armed bandit problem. While the bandit problem is
a straightforward means of representing a customer’s
repeated choices, it is difficult analytically to work
with, and this difficulty raises two sets of questions.
Customers faced with bandit problems need practical
characterizations of optimal (or near-optimal) behav-
ior so that they make better decisions. Companies—
the “arms” in consumers’ bandit problems—need
to better understand how customers actually make
choices in a bandit setting so companies can effec-
tively respond to their needs.

A number of recent operations management papers
have recommended actions to companies that are
arms in bandit or bandit-like problems (e.g., Hall
and Porteus 2000, Gans 2002a, Gaur and Park 2003).
These papers begin by positing that customers use
a particular heuristic for making repeated choices
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under uncertainty. They then derive aggregate statis-
tics regarding customers’ choices, such as each sup-
plier’s “customer share,” as a function of a given set
of supplier quality distributions.! Finally, these papers
model suppliers as competitively choosing quality
distributions, and they characterize suppliers” result-
ing equilibrium choices.

A common feature of these papers is the analytical
tractability of their choice models. That is, the rules
customers are assumed to follow are not complex,
and this allows the resulting expressions for aggregate
choice statistics to be simple functions of firms” qual-
ity distributions.? While this simplicity facilitates the
papers’ competitive analyses, there remains a ques-
tion as to whether or not the underlying customer
models are reasonable representations of actual con-
sumer choice.

In this paper, we report one effort’s results at val-
idating these models of consumer choice. We view
the models we test as representing a variety of trade-
offs between analytical tractability and richness of
the representation of customers’ learning processes.
To the extent that more stylized, tractable models
adequately capture customer choice behavior, they
may be valuably used in the type of competitive
analysis described above. Alternatively, if more com-
plex models—whose statistics are more difficult to
derive—are significantly better predictors of customer
behavior, then the use of highly stylized models needs
to be rethought.

We consider two sets of models. One set includes
three models that represent successive approxima-
tions of a normative analysis of the problem. The
first is a Gittins index model, which posits that sub-
jects make choices to maximize the expected dis-
counted value of their outcomes and use Bayes’s rule

! Customer share refers to the fraction of all purchases that a cus-
tomer makes at a given supplier.

21t is worth noting that a model’s analytical tractability can be
viewed in at least two ways. On the one hand, one may view as
more tractable a model that requires less computation or memory
on the part of subjects. On the other hand, one may view a model
as more tractable if aggregate measures of a subject’s performance
are simple functions of system parameters, preferably with simple,
closed-form mathematical expressions. We are primarily concerned
with the latter, and when we write “tractable,” this is what we
mean. Nevertheless, typically, the two meanings go hand in hand.

to incorporate learning from past experience. The
next is a Myopic analogue to the Gittins index rule,
in which subjects are Bayesian but choose to max-
imize the expected value of only their immediate
choice. The last model, which we call Simple, further
reduces the model of myopic behavior by assuming
that subjects categorize arms as being either “good”
or “bad.”

The second set includes three related models of
choice that are outgrowths of the literature on statis-
tical learning and decision making under uncertainly.
The first is a version of the myopic rule, described
above, in which subjects remember the outcome of
only the last n trials. A further simplification is a hot
hand (HH) rule, in which subjects stay with the cur-
rent arm until it loses in n consecutive trials. The
last is an exponential smoothing (ES) model, in which
subjects update their beliefs about the quality of an
arm by taking a weighted average of their past beliefs
with the current outcome. In §2, we review the liter-
ature related to the proposed models and their tests,
and in §3, we formally define the two sets of models
to be analyzed.

We use experiments to test the performance of the
models, and we analyze the results in two ways. First,
we consider a prediction consistent across the rep-
resentations: The expected switching time (expected
number of trials that a subject consecutively sam-
ples from a given arm before switching to an alterna-
tive) should be increasing and convex in the expected
payout of the arm. The increasing-convex property
is also consistent with the claim, made in the popu-
lar management literature, that marginal increases in
service quality can have increasingly dramatic bene-
fits in customer loyalty and lifetime value (Jones and
Sasser 1995).

Second, we distinguish among the various mod-
els’ ability to match subjects” behavior, choice by
choice. The use of experiments to distinguish among
models in a horse race like this is common (Roth
1988). The experimental setting must be carefully con-
structed so that all models make clear predictions and
a dimension exists along which they can be evaluated.
Our experiments, described in §4, are designed to do
just this.

Our findings, presented in §8§5 and 6, are as follows.
First, the expected switching time behaves as pre-
dicted as a function of the expected payout of an arm;
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the behavior is consistent with the increasing and con-
vex properties implied in the literature. Second, more
analytically tractable models provide the best fit to
subjects’ observed choices. In contrast, the more com-
plex Gittins index model—which maximizes expected
discounted rewards—fares most poorly in tests of
model fit.

Our experimental results also suggest that no single
model dominates the others. That is, there exist signif-
icant subgroups of subjects for whom different choice
models perform best. This finding suggests that sup-
pliers’ choices of service-quality distribution(s) should
explicitly account for various market segments, each
segment characterized by a different model of choice.
These conclusions and other extensions are discussed
in §§7 and 8.

2. Literature Review

Bandit-like models have been used in a wide vari-
ety of contexts. Classic examples include clinical
drug trials and petroleum exploration (e.g., Gittins
1989, Banks et al. 1997, Anderson 2001), and in con-
sumer product or service settings (e.g., Meyer and
Shi 1995, Erdem and Keane 1996). For a more com-
plete description of the multiarmed bandit problem,
see Appendix A.?

Because of its importance in many different fields,
normative aspects of the bandit problem have re-
ceived considerable attention over the years, and we
briefly describe previous work devoted to settings like
ours—an infinite-horizon, discounted version of the
problem. Perhaps most widely known is the work
of Gittins and Jones (1974) who proved the follow-
ing: From each arm’s Markov chain and current state,
an index may be calculated, and at any stage it is
optimal to choose the arm with the highest index.
Gittins (1979) went on to develop explicit expressions
for this so-called Gittins index, though in the context
of Bayesian bandits (with arms that are members of
exponential families of distributions), the index has
proven to be tremendously difficult to calculate. In
turn, Chang and Lai (1987) developed approximations
to the Gittins index for Bayesian bandits, which they

®All appendices are available on the Manufacturing & Service
Operations Management website (http://msom.pubs.informs.org/
ecompanion.html).

proved to be asymptotically optimal as the discount
rate approaches one, so that the decision maker sam-
ples infinitely before switching away from an arm (see
also Brezzi and Lai 2002).

The difficulty in calculating optimal choices has
also led to suggestions for simpler, heuristic solutions
to the bandit problem. An early paper by Schmalensee
(1975) analyzes the use of the Bush and Mosteller
(1955) linear learning model for solving the prob-
lem. In the computer science literature, various other
forms of reinforcement learning have been applied to
the problem as well (Sutton and Barto 1998).

This difficulty naturally leads one to wonder how
well people actually solve bandit problems. Surpris-
ingly, however, relatively little positive work inves-
tigates how people make choices in bandit settings.
In particular, we are aware of only four such papers.
Horowitz (1973), Meyer and Shi (1995), and Banks
et al. (1997) use Bernoulli bandits, whose arms
have simple win-lose payout distributions. Anderson
(2001) uses arms with more complex payout distri-
butions, such as simulated dice rolls and normally
distributed rewards.

Results from these studies suggest that people’s
behavior is roughly consistent with predictions from
the Bayesian model, but with important and system-
atic deviations. Horowitz (1973) and Meyer and Shi
(1995) offer exploratory analyses, using experimental
data to generate hypotheses concerning the heuris-
tics used by subjects. Both papers find that subjects’
choices reflect a Bayesian updating of priors, but also
a bias toward choices more myopic than are optimal.
Horowitz (1973) also finds that subjects oversample
from inferior arms (overexperiment), a bias that is dis-
tinct from that of myopic behavior. Banks et al. (1997)
and Anderson (2001) devise experiments that provide
sharp tests of specific hypotheses concerning the pres-
ence of certain heuristics or biases in choice behavior.
Anderson (2001) finds that subjects experiment less
than optimally and provides evidence that risk aver-
sion associated with more diffuse priors is the likely
cause of the effect. Banks et al. (1997) manipulate the
arms’ prior distributions so that, in some cases, opti-
mal choice behavior is myopic and in others it is not,
and they find that subjects’ behavior is consistent with
these normative predictions.

The intent of our analysis differs from the work
described above. Rather than using the data either
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in an inductive fashion, to propose new models
of choice, or to construct sharp tests of hypothe-
ses concerning specific biases away from expected
utility-maximizing behavior, we take an “engineer’s”
view of the problem. Our aim is to identify models
of choice behavior that can easily render aggregate
statistics useful in the context of competitive analysis
(such as expected switching time or fraction of times
chosen). Thus, we judge a model’s value along two
dimensions: its analytical tractability (for operations
management professionals) as well as its ability to
represent a wide variety of people’s choices.*

Our approach is similar in spirit to recent work
in the economics literature by Harless and Camerer
(1994) and Camerer and Ho (1999). In the former, the
authors consider generalizations of expected utility
theory along two dimensions: “fit” with the observed
data, as well as “parsimony” (parallel to our notion
of tractability). In the latter, the authors apply tools
from marketing research to judge the fit of models to
subjects’ choices in experiments, much as one would
fit brand-choice models to panel data. We will pursue
a similar strategy here.

The models we test come from a variety of sources.
Two (Myopic and Simple) are simplifications of the
original Gittins index model. These models are moti-
vated by two sets of findings from empirical work
on perception and decision making. The first obser-
vation is that people tend to choose more myopically
than is optimal (e.g., Horowitz 1973, Meyer and Shi
1995). The Myopic model explicitly incorporates this
bias. The second is that people appear to systemat-
ically categorize as they make sense of their expe-
riences. That is, they maintain mental examples of
how entities in the world behave, and they inter-
pret an experience with an entity by comparing their
perceptions with the typical or exemplary character-
istics of their mental picture of how that category
behaves. This structure appears in Kahneman and
Tversky’s well-known “representativeness heuristic”

* Hutchinson and Meyer (1994) suggest that a formal positive the-
ory of sequential choice is likely to include combinations of simple
rules or strategies, each of which optimizes a limited or restricted
version of the task at hand. In this context, one may view our anal-
ysis as explicitly considering the efficacy of various simple policies,
while postponing the larger issue of how people use the rules in
concert.

(1973, Tversky and Kahneman 1974), and it forms the
basis of category and exemplar theory in cognitive
psychology (e.g., Henderson and Peterson 1992). The
Simple model assumes that subjects categorize arms
as “good” or “bad” and that subjects exhibit the same
myopia present in the Myopic model.

Models in the second set we tested are variants of
those with origins in behavioral decision theory. Our
“Last-n” model is based on the finding that bounds
on memory limit subjects’ ability to recall long his-
tories of previous outcomes (Miller 1956). The “HH”
model, described in Gilovich et al. (1985), posits that
subjects erroneously ascribe positive serial correlation
to the outcomes of repeated trials. (The mirror of this
is the negative correlation implied in “gambler’s fal-
lacy” rules; e.g., Burns and Corpus 2004.) The classic,
exponential smoothing model—first developed in the
early 1960s (Brown and Meyer 1961)—was introduced
into the marketing literature in Guadagni and Little
(1983) and more recently proposed as a choice model
in March (1996).

3. The Bandit Problem and Choice
Models

In this section, we formally define the multiarmed
bandit problem and the models of choice that we
will test. For more detail on the bandit problem, see
Appendix A (online).

3.1. The Multiarmed Bandit

The multiarmed bandit problem used in our study
is defined as follows. There exist m arms, indexed
i=1,...,m. When sampled, arm i yields a randomly
distributed reward (or value or utility) with fixed dis-
tribution, U’. Formally, we describe U’ as uniquely
defined by a parameter § € ® and as having cumu-
lative distribution function F(u | 6), so that U’ ~
F(u|6"). Let my=E[U | 6] = [ udF(u|0).

A subject must repeatedly choose among the m
arms, and let t =1, 2, ... be the time index of his or
her choices. While the subject knows that each arm
has a fixed distribution 6’ € ®, he or she does not
know what the various 6'’s are. The task is to repeat-
edly choose among the arms in a way that maximizes
the aggregate value of choices.

Let a policy m = {mw(1), w(2), ...} be a sequence of
choices of arms, and let Il be the class of policies
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that is nonanticipating with respect to future rewards.
Next, we formally define the subject’s problem as
that of finding (and executing) a policy, = € II, that
will maximize the expected discounted value of the
future stream of rewards, sup__,, E,[>"2, a'U,], where
a € (0,1) is the one-period discount rate.

3.2. The Gittins Index for the Bayesian Bandit and
Related Models

A Bayesian subject may view each arm’s §' as a ran-
dom variable with support on ®. For arm i, he or she
maintains a cumulative distribution function, P/(6),
that represents the understanding at time t of the
quality distribution, 0" € ©, under which he or she
believes the arm to be operating. Let {P], ..., P"} be
the “prior” information the subject has before he or
she begins the sequence of choices.

After each choice, the Bayesian subject uses the new
sample, U,, and Bayes’s rule to update his or her
beliefs. Specifically, if he or she uses arm i at time ¢
and receives reward u, then the new (posterior) belief
distribution will be

dpP! (0)dF(u| )
fe dpti—l(e) dF(u|0)

dPl(0 | u) = voe®. (1)
If he or she does not sample from i, then dP}(0) =
dP}_(0) V0 € ©.

3.2.1. Gittins Index Model. The so-called Gittins
index of arm j describes the expected discounted
reward per unit of expected discounted time,

{ E[E[X L e 'UPL) [F]]
E[E[X e [P]]

where T is a stopping time with respect to the his-
tory .of the process through time, ¢t — 1. The notation,
U(P._,), emphasizes that the marginal (subjective) dis-
tribution of value at (s — 1) is a function of the distri-
bution of the subject’s belief at the time. To maximize
the expected discounted reward, a subject should
choose the arm with the largest Gittins index, i =
arg max j{G(Pt] )} (Gittins and Jones 1974, Gittins 1979).

3.2.2. Myopic Model. In practice, I and the
Gittins index are extremely difficult to compute, and
experimental evidence suggests that people behave
more myopically than is optimal (Horowitz 1973,
Meyer and Shi 1995). In contrast, a myopic customer

G(P]) 2 sup

T >t

|

significantly simplifies the determination of the pre-
ferred arm by ignoring the option of future switching.
For each arm j, he or she more simply calculates the
expected discounted reward, given he or she remains
on arm j for all time,

o X E[UPL)]

Yt
= E[U(P)] = [ 1y dP;(6). 3)

He or she then chooses the arm i that maximizes this
long-run expected reward: i = arg max;{M (P))}. From
the right side of (3), we see that this is equivalent
to choosing the arm that myopically maximizes the
expected reward at t.

Like the “rational” counterpart, the myopic sub-
ject uses the reward realized at i and Bayes'’s rule (1)
to calculate her posterior beliefs, Pf .1, concerning i’s
quality distribution. Again, for all j #1, Ptj = P.

M(P]

3.2.3. Simple Model. While the myopic subject’s
task is significantly simpler than that of the Gittins
index counterpart, it still may be quite complex. He or
she must maintain a prior distribution over the set, 0,
and also perform potentially difficult integrations to
update the prior distributions (1) and to calculate the
indices (3).

Indeed, a common finding in behavioral research
is that people may substitute simpler heuristics for
these complex, integrative tasks. Perhaps the best-
known example of this type of simplification is
Kahneman and Tversky’s “representative heuristic”
(1973, Tversky and Kahneman 1974). The Simple
model uses categorization to further simplify the inte-
grative aspects of the myopic model.

In addition to using (3) to myopically choose the
arm that maximizes immediate expected reward, a Sim-
ple subject partitions the arms’ possible quality levels
into two categories—good and bad—with respective
reward distributions F; = F(u | §°) and F, = F(u | 6°).
That is, he or she further simplifies the choice process
of the Myopic subject by reducing the set of distribu-
tions that he or she recognizes to be © = {6%, §°}. In
turn, P/, the prior distribution he or she maintains for
each arm’s 6, collapses to be pi, the probability that
i is good rather than bad. Thus, rather than judging
how good or bad an arm is, the subject’s problem is
more simply to decide whether an arm is good or bad.



—_~
&,
p—

o
s
S

5 E
© o
Ke)
o c
9
©
2
>
el
23
> 2
O +
o <
",
@ @©
nQ
o
b
&
O ®©
_Q.‘Q
£y
32
S
.-QQ-
T c
@ 9
S 3
52
2 E
c O
02
o2
T ©
T

i)
0 £
c .2
=

()}
2c
- O
£ >

O O
T S
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Gans, Knox, and Croson: Simple Models of Discrete Choice

388 Manufacturing & Service Operations Management 9(4), pp. 383408, ©2007 INFORMS

Let uc £ E[U | 6°] and uyz £ E[U | 6%]. Using (3) we
can define the index used by the Simple subject in
terms that are exactly analogous to M(P/):

S(p) = E[U(P)] = pcpi + pp(1 = p)).- 4)

Again, S(p}) is the expected reward of sampling from i
at t. Then, given a realization, u, the Simple subject’s
use of Bayes’s rule (1) to update the prior probability
that i is good reduces to

piz 4 p;_ldFG(u)
Y pidF (1) + (1 — pi_y)dFy(u)

(L 1P R
_<1+ pi ch(u)> ' ©

Algebraic manipulation shows that the index de-

fined by (4)-(5) is equivalent to

~ -1

S =Xo+ 2 Um(s)=i}- X, (6)

s=1

where X, =1In(p)/(1 —p})) is a log-likelihood that re-
flects the subject’s initial belief concerning the proba-
bility that arm i is good (p}), X, = In(dF;(U,)/dF,;(LL))
is the log-likelihood that the sth trial comes from a
good arm, and 1{-} is the indicator function. That is,
S(pi_,) > S(p,_,) if and only if 5| , > S ,.

Note that (6) is a random walk that has an intuitive
interpretation. In it, X, is an initial level of satisfac-
tion that a subject has for arm i. Each time a subject
samples from i, the experience leads an immediate
response to the quality of the interaction, X;. In turn,
this immediate response is integrated into the sub-
ject’s overall satisfaction with i in a straightforward,
additive fashion: Better outcomes increase and worse
outcomes decrease overall satisfaction.

Conversely, one can view the Simple model as
being defined as (6), an additive model of “satisfac-
tion” in which the arm with the highest cumulative
satisfaction is chosen in each trial. This is precisely
the model of “cumulative discrete choice” proposed
in Gilboa and Pazgal (2001). Given this second defini-
tion, we then note that the Simple model is also con-
sistent with the behavior of a myopic Bayesian who
categorizes arms as good or bad.

The Simple model is also consistent with the be-
havior of a so-called “satisficing” subject. That is,
rather than seeking the arm that maximizes expected

rewards, the Simple subject will be satisfied with any
arm that meets some target level of average reward
per trial, u*. If E[U'] < u* then arm i does not
meet the subject’s required satisfaction level, and the
expected number of times he or she will sample from i
before switching is finite. If, however, E[U'] > u*, then
arm i meets the subject’s so-called “aspiration level,”
and he or she is expected to continue sampling from i
indefinitely. The twin notions of satisficing and aspi-
ration levels have a long history, dating back to Simon
(1959) and beyond.

The Simple model was used in Gans (2002a) in the
context of models of service competition, and this
paper provides a general, closed-form, representation
of u* for exponential families of probability distribu-
tions. In §6, we also provide an explicit representation
w* in the context of our experimental setting.

The models described above form a hierarchical
family. Most complex is the Gittins index model,
which derives from the rational behavior of Bayesian
subjects. Less complex is the Myopic model, and then
least complex is the Simple model, which may be
viewed as a categorical version of the Myopic model,
as well as an additive, “random walk” index of a sub-
ject’s satisfaction with a given arm.

3.3. Other Choice Models

There exist many other possible representations of
choice under uncertainty that can be tested in our
bandit setting. In this paper, we concentrate on three:
A “Last-n” model, which is analogous to a Myopic
model with limited memory of past trials; an ES ana-
logue to the Simple model; and an HH model that
reacts to recent wins and losses on the currently sam-
pled arm.

3.3.1. Last n. It is well known that individuals
have only limited memory. For example, a long stream
of research in psychology documents that individuals
can remember roughly seven pieces of information,
such as digits of telephone numbers, after which they
need record-keeping or other external aids (Miller
1956).

The Last-n index explicitly incorporates the effect
of limited memory, using only the results of the last
n trials on a given arm. Formally, it is calculated in
the same fashion as the Myopic index, the difference
being that the Last-n index for an arm corresponds to
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a Myopic index in which only the previous 7 trials on
that arm are remembered.

Although the model represents subjects as hav-
ing limited memory of past events, in a significant
sense, its use is more demanding of subjects’” mem-
ory than the related Myopic rule. More specifically,
let k;(t) = X!_, 1{m(s) = i} be the number of times
a subject has sampled arm i by time t, and let
s;(k) =min{t | k;(t) =k} be the time of the kth sam-
ple from arm i. Then, a subject who uses the Last-n
model must always recall each of the last n samples
on each arm; that is, given he or she has sampled
j > n times from arm i, he or she must recall sam-
ples {U,;_ns1),---, Uy} In contrast, to update the
analogous Myopic index, a subject need only recall
the prior distribution, P/ ,, along with the outcome at
time ¢, U,.

3.3.2. Hot Hand. A subject that uses the HH
model ascribes positive serial correlation to the trials
of a repeated random sample. The rule’s underlying
premise is that an arm that has recently won is more
likely (than average) to win again.’

We define an “HH-n" rule in our experiments as
follows. If the subject experiences #n consecutive losses
in the last n trials on an arm, he or she should switch
to the other arm; otherwise, he or she should con-
tinue to sample from the current arm. Thus, another
way of stating an HH-1 rule is “stick on a winner and
switch on a loser.” Similarly, an HH-n rule could be
described as switch only on 7 consecutive losers. Like
the Last-n rule, the HH-n rule requires that a subject
maintain a detailed record of the outcome of each of
the last # trials on a given arm.

The HH-n family of rules differs significantly from
the other rules that we test in two fundamental ways.
First, as far as we can tell, it is only directly applica-
ble to Bernoulli outcomes. While outcomes with more
complex distributions can be reduced to Bernoulli tri-
als by applying a threshold—so that outcomes above

5 The name “hot hand” derives from basketball, in which there is a
common belief that players have “hot” hands, so that their success
probabilities in making free-throw attempts exhibit positive serial
correlation. In the context of problems of repeated choice under
uncertainty, we say a belief in the “hot hand” implies that a subject
(erroneously) believes that a future payout is (positively) serially
correlated with recent performance (Gilovich et al. 1985).

the threshold are considered to be wins and those
below the threshold, losses—all the other rules imme-
diately generalize to arbitrarily complex distributions,
without having to be transformed in this manner. Sec-
ond, the HH-n family is not an index rule. All the
other rules that we test calculate an index for each
arm and recommend that the subject sample from the
arm with the higher index. In contrast, in the HH-n
rule, the decision to stay on or switch away from the
current arm is based only on that arm’s performance.
Information concerning the past performance of alter-
native arms is not used in the switching decision.

We note that Hall and Porteus (2000) use a variant
of the HH-1 rule in their analysis of service competi-
tion. In this model, a customer who receives satisfac-
tory service remains with the current supplier, while a
customer who receives unsatisfactory service switches
to a competitor with a fixed probability p.

3.3.3. Exponential Smoothing. Exponential
smoothing is a weighted analogue of the Simple
model’s additive random walk. Formally, we define
the ES model as follows. At t =0 the subject’s prior
estimate of the average reward to be gained by
sampling from arm i is ES;(0). Then, at each trial ¢,
at which the subject samples from arm i, we let

ESi(t) =yU, + (1 - y)ES(t-1), 7)

where 0 < y < 1. Again, for all j # i, ES;(t) = ES;(t —1).
In contrast to the index for the Simple model,
S.(t), for which each previous trial carries an equal
weight, ES;(t) is more strongly affected by recent tri-
als at i. To see this, again let s;(k) denote the time
index of the kth trial at arm i. Then, given arm i has
been pulled j times by time ¢, we can write ES(t) =
oo Y(L— ) *U, ), where U, g = y'ES(0). Thus,
for a fixed 0 < y <1, the weight of the s;(k)th trial
at i declines geometrically (roughly exponentially)
quickly with each new sample from i, hence, the name
exponential smoothing. The higher the weighting fac-
tor, y, the more quickly the weight declines. For y =0,
the index remains constant, ES;(t) = ES;(0) for all .
Conversely, for y =1, a subject’s index is defined by
his or her most recent trial: ES;(t) = maxs<;| ()i Us-
Exponential smoothing models have a long his-
tory of use in a number of fields related to learning.
An early reference from the forecasting literature is
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Brown and Meyer (1961). Guadagni and Little (1983)
is a well-known application from the marketing liter-
ature, which applies smoothing to a bandit-like brand
choice problem. A recent example from the learn-
ing literature in psychology is March (1996), which
uses simulation to analyze properties of smoothing
models.

Of particular interest to us is a generalization of
a smoothing model that appears in Gaur and Park
(2003)—a paper that analyzes service-level competi-
tion among inventory systems. Here, outcomes are
Bernoulli—either a customer order is filled or not—
and the model is extended so that the smoothing con-
stant, y, may differ, depending on whether or not an
order is filled. (This also echoes asymmetric elements
of the stochastic learning models that date back to
Bush and Mosteller 1955.)

It is also worth noting that the smoothing model is
consistent with the belief that an arm’s reward distri-
bution is Markov modulated, rather than i.i.d. across
trials. In this case, it can be shown that smoothing
is analogous to the use of a Bayesian procedure in
which prior trials” results are discounted (for details,
see Matsuda and Sekiguchi 1971). In the context of
our bandit problems, one may interpret a subject’s
use of exponential smoothing as “not believing” that
arms are i.i.d. and, therefore, discounting earlier sam-
ple information, because it is more likely to have been
obtained from a reward distribution that differs from
the one currently being sampled.

3.4. Additional Models

There is a potentially vast array of additional models
that one might also consider. For example, we have
not analyzed models of reinforcement learning that
can be found in the computer-science and economics
literatures (e.g., Erev and Roth 1998, Sutton and Barto
1998). Nor have we considered the use of various
combinations of the current models.

Nevertheless, there does exist one model that we
have analyzed but do not include in the body of the
paper. This is the so-called “probability-matching”
model that has a long history within the research lit-
erature on human and animal choice (e.g., Robbins
and Warner 1973).

The reason we do not explicitly include the results
is twofold. First, the model is not directly applicable

to the bandit setting. Second, when a natural variant
of the model (which is applicable to the setting) is fit
to subject data, it performs quite poorly. For more on
the model and results, see Appendix J (online).®

To better understand how well these models apply
to the bandit problem, we conduct two sets of tests.
The first considers a general prediction consistent
across all models: That the expected number of con-
secutive trials on an arm is increasing and convex in
the average quality (reward) of the arm. The second
is a more detailed discrimination among the various
models, based on the choices that they recommend for
a given observed history. Before we provide the details
of the tests, we describe the experimental setup.

4. Experimental Setup and

Preliminary Results

To empirically test the models of customer response,
we have developed and run experiments in which
subjects face the bandit problems described above.
The experiments are designed to allow us to perform
the more general test for convexity, as well as the
more detailed, trial-by-trial analysis of each model’s
consistency with subjects” observed choices.

In this section we describe, in detail, how the exper-
iments are structured. We also provide some descrip-
tive statistics that give a general sense of the subjects’
performance in the experiments.

4.1. The Value Distribution
The models we test are, ultimately, meant to represent
customer switching due to variation in product or ser-
vice quality. The hedonic nature of these experiences
is difficult to control or monitor, however. For exam-
ple, the same physical measures of service quality—
such as speed, accuracy, or courtesy—may be per-
ceived or valued differently by different people.
Therefore, we operationalize differences in per-
ceived value with money; that is, the dollar reward
received when sampling an arm is a proxy for the
value received. This payment procedure is standard
practice in experimental economics and is intended to
induce participants to take their task seriously because
real money is at stake (Friedman and Sunder 1994).
We define the payout distributions of the arms
to be Bernoulli random variables: With probabil-

¢ To interpret the appendix’s Figure 22, first read §6.
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ity P{i wins}, arm i pays $0.10, and with probabil-
ity P{i loses} =1 — P{i wins}, it pays nothing. Note
that the shifting or scaling of outcomes {$0.00, $0.10}
does not affect the choices the models recommend.”
Furthermore, the use of two-point payout distribu-
tions allows us to avoid problems associated with
subject utilities that may vary nonlinearly with out-
comes, controlling for risk preferences that vary across
subjects.

One concern about the magnitude of the payments
is the steepness or flatness of the resulting curve of
total rewards obtained by subjects (Harrison 1989). In
addressing this issue, we considered a spectrum of
alternatives, from running hypothetical experiments
(as in previous research), in which the reward func-
tion is everywhere zero, to those in which individuals
make very few, high-stakes choices. Previous research
has demonstrated that the move from hypothetical
decisions (with no payment) to real decisions (with
small payments) produces a significant change in sub-
ject behavior, while the move from small payments to
large payments does not significantly affect behavior
(Camerer and Hogarth 1999).

Thus, our payment scheme has sought to balance
the need for payoffs that are responsive to subject
choices with that for collecting enough data to ade-
quately distinguish among models. The $0.10 per win
reflects a small but significant reward for making
careful choices, and it has allowed us to collect ample
data to fit our models (347 choices per subject). Fur-
thermore, a number of descriptive statistics (reported
below) suggest that most participants understood the
experiment and paid attention to the task at hand.

4.2. The Number and Nature of Arms

Every subject plays a series of three two-armed
Bernoulli bandit problems. We will sometimes refer
to each problem as one of three “sessions” in which a
subject participates. Participants are informed that, in
a given session, each of the two arms has a fixed, but
unknown, probability of winning; that is, the proba-
bility of success may vary from arm to arm but will
remain constant over time for an individual arm.

7 Theoretically, we can normalize the reward from winning to one
and that from losing to zero. The expected reward from choosing
an arm is the probability of winning on that arm.

4.3. Prior Information

Before they begin, participants do not know the two
arms’ probabilities of winning. We do, however, show
participants some prior information about the arms.
Specifically, we report (in writing) that each of the two
arms has been sampled from three times and that two
of the three trials were successes.

Given this information, subjects know that the prior
performance of the two arms is equivalent and that
the arms have P{win} € (0, 1), so they are not degener-
ate. By communicating that there were two successes
in three prior trials, we explicitly provide subjects
with the same prior data that we use when fitting the
various models to observed behavior. For details on
how we fit the models, see §6.

4.4. Discounting

Recall that the form of the Gittins index result (2)
for rational subjects depends on an infinite horizon
setting with constant discounting. In experiments,
a common method operationalizing a constant dis-
count rate is to generate a constant probability (1 — «)
that any given round of the experiment will be the
last. In our experiment a =0.99, and our instructions
communicated to subjects that there would be a 1%
chance that any given trial would be the last (equiva-
lently, a 99% chance that it would not be the last).

To determine the number of trials to be run, we
then implemented the randomized procedure only
once, before any of the experiments were run, and we
used the same three sample outcomes for all subjects:
95, 117, and 135 rounds. In this fashion, the proce-
dure ensured that results would be directly compara-
ble across participants.

4.5. Subject Recruitment
Participants in the experiment were undergraduate
and graduate students at a large university on the
east coast of the United States. Signs were posted on
campus, offering money for participating in an exper-
iment. There were tear-off slips on the bottom of each
sign containing the URL for the experiment, and high-
lighting that only university students were eligible.
A student arriving at the website was asked for a
university ID number. Having entered the ID number,
the student then proceeded through the experimental
instructions and tasks. At the end of the experiment,
the student’s Web browser generated a receipt that
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included his or her earnings from the experiment and
the university ID number that was entered at the start
of the session.

Each participant then printed this receipt and
brought it to an on-campus office. He handed the
receipt and ID, which displayed the ID number and
a picture of the student, to an administrator who
checked that the person presenting the receipt was the
person pictured in the ID and that the two ID num-
bers matched. If everything matched, the student was
paid the earnings listed on the receipt.

4.6. Experimental Treatments

The experimental design involved three treatments,
one for each of the three bandit problems: One that
required 117 choices between arms with P{i wins}
of 0.15 and 0.40; a second that required 95 choices
between arms with P{i wins} of 0.40 and 0.40; and
a third that required 135 choices between arms with
P{i wins} of 0.40 and 0.65. This design allowed us
to test hypotheses about convexity by comparing the
aggregate frequency of choices of an arm, given its
win rate.

Treatments were run within subject, so each par-
ticipant saw all three treatments. This allowed us to
test predictions at the individual level (because each
participant saw all three pairs of arms). We used
a random number generator within the Web page
to randomly assign each participant to one of the
six possible orders in which the three sessions could
occur. Thus, roughly one-sixth of the subjects saw
each of the possible treatment orderings.

4.7. Software-Based Implementation
The experiment was implemented via computer on a
Web page that could be accessed by a typical browser.
Participants were told the website’s address, logged
into the system, and played the game.

The bandit problems were implemented as the
repeated choice between two colored decks of cards.
In each of the three sessions; the success probabilities
(0.15/0.40, 0.40/0.40, 0.40/0.65) and colors (red/blue,
green/gray, yellow /purple) assigned to the two decks
and their location on the screen (left and right) were
randomly selected for each participant.

The decks were composed of cards that state
“YOU WIN!” or “YOU LOSE!” and their composi-

tions remained constant over time. Each time a sub-
ject chose one of the available decks, an animation
played that showed the deck being shuffled, one card
being chosen at random, and the outcome of the trial,
win or lose. The card was then replaced, and the deck
reverted to its initial state.

At all times, subjects also saw the balance of their
winnings as it accumulated at $0.10 per win. Partic-
ipants could click a “history” button, which would
display summary statistics concerning total wins and
losses, as well as the entire history of their choices
and the resulting outcomes.

At the end of each of the three bandit problems,
each subject answered a short questionnaire. Demo-
graphic and other information was collected once the
entire game had ended. Appendix B (online) presents
the entire set of instructions and participant views of
the experiment.

All participants earned a $5 participation fee plus
their accumulated earnings from the experiment.
At the end of the experiment, subjects were informed
of their total earnings and asked to print a receipt from
their browsers. They brought the receipt to an assis-
tant, who checked it against their ID, obtained their
signature, and paid them their earnings.

4.8. Data Collected

There were 373 participants who logged onto the sys-
tem. Of these, 227 completed the experiment. Thus,
we have collected data on 347 (954117 4 135) choices
times 227 participants = 78,769 choices between two
options. For each of the 227 participants, we have
a complete record of each of three treatments of
the bandit problem, as well as answers to end-of-
treatment and end-of-experiment questions. An exam-
ple of one session of a subject is shown in Figure 1.

4.9. Descriptive Statistics

Of the 227 subjects who completed the experiment,
32 had at least one session in which the last “run”—a
set of consecutive trials on a given arm—is the only
run on that arm. In these cases, the sole run on that
arm is artificially truncated by the end of the experi-
ment, and tests for the convexity of the average run
length become difficult to perform. We have, there-
fore, excluded these subjects from our tests of convex-
ity and of model fit, and our final data set includes
195 subjects, 347 trials per subject, for a grand total of
67,665 recorded choices.
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Figure 1 Results for Subject 32, Session 2 jects” payoffs from the sessions ranged between $17.50
and $23.50, with an average of $20.50.

Left Right Left Right Left Right Of the subjects, 65% (n = 126) were male, and 95%
1 LOSE 46 WIN 91 LOSE (n =185) were undergraduates. Almost 90% (n =173)
2 WIN 47 LOSE 92 LOSE  were of caucasian or Asian origin. All were between
3 WIN - 48 WIN % WIN 17 and 25 years of age. Analysis of variance and ¢-
4 WIN 49 WIN 94 WIN 20y g¢e. Analys .
5 WIN 50 WIN 95 WIN tests did not reveal significant differences in average
6 WIN 51 WIN 9% WIN  winnings across these groups. For details on these
7 WIN 52 LOSE 97 WIN  demographic data, see Appendix C (online).
8 LOSE 53  WIN 98 WIN A b £ statisti t that th iati .
9 WIN 54 WIN 99 WIN number of statistics suggest that the variation in
10 WIN 55 LOSE 100 LOSE total rewards was sufficient to motivate participants
1 WIN 56 LOSE 101 WIN to understand the experiment and pay attention to
12 LOSE 57 LOSE 102 LOSE  the task at hand. Only 20 of 195 subjects reported
13 LOSE 58 WIN 103 LOSE bei fused b t of th . t
14 WIN 59 LOSE 104 WIN eing confused by some aspect of the experiment.
15 LOSE 60 LOSE 105 WIN During the experiment, 56% of the subjects viewed
16 WIN 61 LOSE 106 WIN  the history screen (which summarized their previous
17 LOSESS 62 WIN 107 WIN choices and the outcomes) at some time, and those
18 WIN 63 WIN 108 WIN . . .. .
19 LOSE 64 LOSE 109 winy  Who viewed the history visited this screen an average
20 LOSE 65 WIN 110 WIN  of 9.4 times during the exercise. After each session, we
21 LOSE 66 WIN 111 LOSE  also asked subjects which arm had the higher proba-
;g xiﬁ gg wiz E; LOSE LOSE bility of reward: left, right, or neither. Overall, subjects
24 WIN 69 WIN 114 wiNy  answered correctly more than 69% of the time; and
25 WIN 70 WIN 115 WIN when the arms had different P{win}s, more than 80%
27 WIN-- 72 LOsE 117 WIN We also considered how summary statistics varied
28 WIN 73 WIN 18  WIN ) v y >
29 LOSE 74 LOSE 119 WIN across experimental conditions. For each subject, we
30 LOSE 75 WIN 120 LOSE  calculated the average run length in a given session,
31 WIN 76 LOSE 121 WIN the total number of trials (95, 117, or 135) divided by
32 LOSE 77 WIN 122 WIN the total b : in that . d ~
13 WIN 78 LOSE 123 WIN e total number of runs in that session, and com
34 WIN 79 WIN 124 LOSE  pared average run lengths across the different arm
35 WIN 80 WIN 125 WIN  conditions. When both arm probabilities were equal
36 WIN 81 LOSE 126 WIN " (0.40/0.40) the average run length was the smallest, at
37 WIN 82 LOSE 127 WIN 76, A 1 h h he choi
38 WIN 83 WIN 128 LOSE .6. Average run length was 8.6 when the choice was
39 WIN 84 WIN 129  WIN 0.15/0.40 and 13.3 when the choice was 0.40/0.65.
40 WIN 85 LOSE 130 LOSE  On average, subjects also took slightly more time—
41 LOSE 86 LOSE 181 WIN about 0.1 seconds more per round—to complete the
42 LOSE 87 WIN 132 WIN . h h , babiliti h
43 WIN 88 WIN 133  LOSE sessions when the two arms’ probabilities were the
44 LOSE 89 LOSE 134 WIN same (0.40/0.40), rather than different (0.15/0.40 or
45 LOSE 90 LOSE 135 WIN

Note. P{left wins} = 0.40 and P{right wins} = 0.65.

The 195 subjects took, on average, 12 minutes and
53 seconds to complete all three sessions, or about 2.2
seconds per decision. As they moved from the first to
the last session, subjects also took less time to make
each decision. This may be due either to learning of
the experimental setup or to boredom or fatigue. Sub-

0.40/0.65). Thus, when the arms’ winning probabili-
ties were the same, so there was no clear best arm,
there was more switching and subjects spent more
time per trial.

8 When P{left wins} = P{right wins} = 0.40, the fraction of correct
answers—that the two arms had the same probability of reward—
dropped to 37%. Of course, to say that the two arms had the same
P{win} is a point prediction that is a less likely outcome than “left
greater than right” or “right greater than left.”
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Longer run lengths and times per arm were also
positively correlated with total earnings. Ordinary
least squares (OLS) linear regression of subjects’ earn-
ings on average run length (defined as 7 in §5) and
on average time per trial showed that a one-unit
increase in average run length was associated with
a $0.07 average increase in total winnings, and a
one-minute increase in total completion time (equiva-
lently, a 0.173-second increase in time per round) was
associated with a $0.03 average increase in total win-
nings.” Of course, the fact that larger run lengths were
associated with higher earnings may reflect that sub-
jects tended to stay on “better” arms for longer runs.'

5. The Expected Switching Time
Suppose that at some arbitrary period, t, a subject
has last sampled from arm i, and let 7 be the num-
ber of additional periods that he or she will con-
tinue to sample from i, before switching to a competi-
tor. Then asymptotic results suggest that the expected
switching time, E[7] is increasing and convex in the
average quality (reward) provided by i (see online
Appendix D).

A test of this property is interesting to us for two
reasons. First, it is a basic check of whether or not
subjects” actual behavior corresponds to a predic-
tion common to many models. Second, if true, the
increasing-convex property is also consistent with a
broader claim made in the popular management lit-
erature: that marginal increases in service quality can
have increasingly dramatic benefits in customer loy-
alty and lifetime value (e.g., Jones and Sasser 1995).
Therefore, our first set of tests focuses on E[7].

5.1. Estimation
In constructing tests for monotonicity and convexity,
we control the quality of the arm and measure the

? R? =0.15 in the regression, and both coefficients were significant
at the 0.05 level.

10 We have also calculated descriptive statistics for the subjects who
were excluded from our main analyses. The 32 subjects who com-
pleted the experiment (but had a single, truncated run on a given
arm) spent about four minutes less total time (about 0.7 seconds
less per decision) on average and won approximately the same
amount as other subjects. Subjects who did not finish the exper-
iment spent about 0.2 seconds more time per decision and won
about $0.0015 less per decision than the 195 subjects included in
our analyses.

resulting switching times. In the context of Bernoulli
arms, P{win} is the measure of quality, and in the
experiments, every subject plays three pairs of arms
with the same probabilities of winning: 0.15 ver-
sus 0.4; 0.4 versus 0.4; and 0.65 versus 0.4. The qual-
ity points we have chosen are evenly spaced, with
0.65—0.40 =0.40 — 0.15=0.25, to facilitate testing for
convexity. Furthermore, in each treatment, at least one
arm has P{win} = 0.40, so that the quality of the arm
that is not used in the convexity test remains constant
across treatments. In the 0.40 versus 0.40 treatment,
either arm may be used in the convexity tests, and for
this treatment, we report the results of both arms.

The estimate of E[7] is more difficult to calculate.
One easily calculated measure is the average num-
ber of consecutive trials—or average “run length”—
on each arm, calculated as

total number of trials on an arm

7= , ®
" total number of runs on an arm ®)

where i =1 for the left arm and i = r for the right.

We test that 7 is increasing and convex in P{win}
as follows. Let 7, ; be the average run length for an
arm with P{win} =p and subject j. For each subject,
we first calculate the first difference between adja-
cent quality pairs: Ay ;(T) = T4, — To.15,; and A, (7) =
Toes,j — Toao, j- Given the experimental setup, we know
that these sample differences are independent across
subjects, and we use the Wilcoxon signed rank test
to check that the median of the differences is greater
than zero (Lehmann 1975). Our test for convexity runs
along the same lines. Here, we define each subject’s
second difference as A]?(F) =4, (T) — 4, ;(7), and we
check that it is positive.

Note that there exist two potential problems asso-
ciated with using 7, as an estimate of E[7]. First,
subjects” last runs are censored. For example, from
Figure 1, we see that Subject 32’s last run consists of
trials 134 and 135 on the right arm. At this point, the
experimental treatment was ended. Had the subject
been allowed to continue sampling, the run length
might have been longer than two, however. A second
potential problem concerns the possibility that the
sequence of run lengths is not stationary. For exam-
ple, the sequence of run lengths may be (stochasti-
cally) increasing or decreasing, rather than stationary.



—_~
&,
p—

o
s
S

5 E
© o
Ke)
o c
9
©
2
>
el
23
> 2
O +
o <
",
@ @©
nQ
o
b
&
O ®©
_Q.‘L’
£y
32
S
.-QQ-
T c
@ 9
S 3
52
2 E
c O
02
o2
T ©
T
i)
0 £
c .2
=

()}
2c
- O
£ >

O O
T S
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Gans, Knox, and Croson: Simple Models of Discrete Choice

Manufacturing & Service Operations Management 9(4), pp. 383408, ©2007 INFORMS 395

Indeed, our results suggest that over the course of a
session there is a mild increase in run lengths."

The overall impact of these effects is not immedi-
ately clear to us. On the one hand, the length of the
censored run is longer than what was recorded. In
this sense, censoring biases the average downward.
On the other hand, there is an inspection bias present:
Runs that are censored are likely to be longer than
average. Even if run lengths are not stationary, to
the extent that 7 is stochastically increasing the qual-
ity of the arm, then these sample averages should be
increasing in quality as well. Nevertheless, there are
modifications that can correct for the problem.

One simple alternative, which we denote 7, elimi-
nates the last, truncated run from the calculation of
the sample average run length. As with the 7, ;’s, we
can use subjects’ 7, ;’s to calculate A ;(7), A, ;(7), and
AJZ-(?) and use the Wilcoxon signed rank test to check
for the increasing and convex properties.

A second alternative tests for convexity of a sin-
gle run, starting in a given trial of the session, and
we measure the length of the run that begins at Trial
1, which we call 7;. By choosing the first round, we
ensure that runs are not truncated. (The only sub-
jects whose first runs are truncated are those that
never change arms.) The choice of the first round
also ensures that all subjects have exactly the same
information about the arms as the run begins, so
that differences among run lengths do not result from
experience or informational differences.

In many respects, the second alternative is prefer-
able. It has the drawback, however, of not allowing
for the within-subject comparisons across the three
arms’ qualities. This is because, given our randomiza-
tion scheme, the success probability of the arm first
chosen by a subject is not controllable. When faced
with 0.15/0.4 or 0.4/0.65 treatments, many subjects
(unknowingly) first chose the arm that had a proba-
bility of winning of 0.40.

5.2. Results

While we have calculated relevant statistics for all
three measures of run length, Figure 2 displays confi-
dence intervals only for 7 and ;. Because the results

' On average, the number of switches decreased from 12.65 in the
first half of each session to 9.97 in the second half, a reduction of
about 21%.

for 7 are similar to those for 7, we omit their graphical
display.

The figure’s left panel shows confidence inter-
vals for 7, = (1/n) 31, 7, ;, p € {0.15,0.40, 0.65}. Each
interval shown in the panel is calculated as a sample
average £2 times the standard error of the estimate of
the mean. In each of the three intervals, the reported
arm competes against an arm with P{win} = 0.40, and
in the case of 0.40 versus 0.40 treatment, we report
the results of both arms.

Here, the sample averages are clearly increasing
with increasing differences, and the confidence inter-
vals do not overlap—a further indication that the
increasing property holds. Wilcoxon signed rank tests
for first and second differences are all vanishingly
small (reported as 0 in S-plus).

For 7, the confidence intervals are qualitatively the
same as for 7 (see Appendix E, which is online). Sim-
ilarly, the p-values of the Wilcoxon signed rank tests
were also negligible. Thus, the results are consistent
with hypothesis that 7 and 7 are both increasing and
convex in P{win}.

The right panel of Figure 2 shows the results for
the single run that starts at the first trial. Here, we
do not have paired data across the three treatment
conditions. Furthermore, the numbers of subjects for
which we have results varies across the conditions:
For P{win} = 0.15 the number of subjects is n = 106;
for 0.40, n = 379; and for 0.65, n = 100. In this case, the
second difference in the point estimates of the average
length appears to increasing, though the first differ-
ence is not increasing from a P{win} of 0.15 to 0.40.
Furthermore, the relatively smaller sample sizes for
P{win} of 0.15 and 0.65 result in confidence intervals
that are much wider than that for P{win} of 0.40.

Although the lack of pairing of the data makes it
more difficult to test for an increases in the second dif-
ference, we can use a Mann-Whitney test (also known
as the Wilcoxon rank sum test; see Lehmann 1975) to
check whether or not the medians are increasing from
one treatment condition to the next. While 7, is not
significantly increasing from 0.15 to 0.40, it is increas-
ing from 0.40 to 0.65, as well as over the whole range,
0.15 to 0.65.12

2The p-values were as follows: 0.34 for 7, increasing as P{win}
increases from 0.15 to 0.40; and 0.02 for 7, increasing as P{win}
increases from 0.40 to 0.65 and from 0.15 to 0.65.
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Figure 2 Convexity Results for the Average Run Length
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In summary, the results of this section are generally
consistent with the hypothesis that E[7] is increas-
ing and convex in the quality of an arm. Of course,
because the observed behavior is consistent with the
prediction does not prove that run length is increasing
and convex. We will return to this point in §7.

6. Estimating the Models’ Fit to the
Data

In this section, we consider the more difficult ques-
tion of distinguishing among the various models’ fits
to the data. We begin the section by describing how
the models of §3 are applied to the experimental data
and how we calculate the indices associated with each
of the models. We then describe our estimation proce-
dures in fitting subjects’ choices. Finally, we compare
how well the models fit subjects” actual choices.

Our results show that the ES and HH models pro-
vide the best in-sample fits, both on an aggregate
and subject-by-subject basis. We also show, however,
that the HH model’s fit may be an artifact of sub-
jects” long-run lengths. Among the hierarchy of Git-
tins index-derived models, the Simple model per-
formed best. Thus, there exist models that provide
both analytical tractability and a reasonable fit to sub-
jects” observed choices.

6.1. Calculating the Models” Indices

We first describe how the models’ indices are calcu-
lated in the context of the experiment’s Bernoulli out-
comes.

6.1.1. Gittins Index Model. For the Gittins index
model (2), we use results from Gittins (1989) that
explicitly calculate Gittins indices, G, for Bernoulli
bandits with conjugate (beta-distributed) priors.
Specifically, given a beta-distributed prior, a discount
rate, @, and numbers of wins and losses prior to ¢,
o), and ¢ |, the index for an arm is a function of
the triple (@, w!_,, ¢i_,). Table 11 in Gittins (1989) lists
G(a, ®! 4, £ ) for arms in which a =0.99 and !,
and ¢!, range from 1 to 40.13

In calculating each arm’s Gittins index for any ex-
perimental trial, we assume the prior is beta dis-
tributed and use the results from Gittins (1989). Given
the prior information we communicate to subjects—
that « =0.99 and that both arms had won twice and
lost once in three prior trials—we further assume that
(@=0.99, w)=2, ¢ =1). After each choice of an arm
and outcome, that arm’s w, or ¢, is updated and its G
recalculated.

Note that the use of beta-distributed priors is
purely for computational tractability, and in the exper-
imental sessions, we did not inform subjects that the
prior distribution was of this form. Thus, our exper-
iment does not provide a sharp test of whether or
not subjects are rational. Rather, it tests how well the
“rational model” with the given beta prior fits sub-
jects’ choices. This is in keeping with our original aim
of validating models for use in the context of compet-
itive analysis. To emphasize the distinction between

BFor wi_, or ¢_, greater than 40, Gittins (1989) provides
an approximation—Equation (7.16), fitted with parameters from
Tables 12-14—that allows for calculation of indices that are typi-
cally precise within four decimal places.
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a test for rationality and a test for model fit, we call
the model “Gittins” (rather than “rational”) when we
report our experimental results.

Furthermore, even if we had informed subjects, in
words or through pictures, that the prior is of a beta
(0 =2, € = 1) form, neither the prior distribution
nor the discount rate implicitly used by the subject is
observable. In theory, we might estimate ), ¢, and
a to accommodate subjects’” unobserved, idiosyncratic
priors and discount rates. The result would be a
generalized model with three free parameters, and
we would search over all feasible triplets (a, wj), £))
to find the initial parameters that generate the least
inconsistency between model and experimental data.
In practice, however, the calculation of the Gittins
index is burdensome in and of itself, and we have
not attempted to search among this broader class of
Gittins index policies.'*

6.1.2. Myopic Model. For the Myopic model we,
again, use beta priors for convenience, and the re-
sulting calculations are straightforward. Specifically,
(3) does not require a discount rate, &, and given a
beta prior, the index is a straightforward function of
previous wins and losses:

i
Wi

M(0) ,, b )= ——L
t—1 t—1 wt71+et71

©)
Given this form, it is not difficult to incorporate the ef-
fect of changes in the prior distribution on the indices.

Therefore, we test two versions of the Myopic
model. The first includes no free parameters and
assumes (0} =2, £;=1). We call this the “Myopic-0”
model. The second incorporates one free parameter.
Specifically, we define a common w), for both arms
and let it range between 0.01 and 2.99, in increments
of 0.01. We then define a common ¢ = 3.0 — wj,. Thus,
the second version still requires that both arms have
the same initial prior, but it allows the shape of the
prior to vary. We call this model “Myopic-1.”

Two elements of the parameter range are worth
noting. First, to be consistent with the prior win-loss

" There exist closed-form approximations to the Gittins index that
could be used to fit idiosyncratic subject prior and discount-rate
information (Chang and Lai 1987, Brezzi and Lai 2002). The expres-
sions are not accurate for discount rates that are significantly less
than one, however.

information we report to subjects (two wins in three
prior trials), we bound w) away from 0 and 3, which
respectively reflect beliefs that the probability of a win
is zero and one. Second, by requiring ) + ¢, = 3.0, we
fix the “strength” of the initial prior to be consistent
with the quantity of prior information we report to
subjects: the results of three prior trials."

6.1.3. Simple Model. Recall that the Simple
model hypothesizes that customers think of arms as
being good or bad, with expected rewards of us and
wp. Algebraic manipulation (provided in Appendix F,
which is online) demonstrates that we can write the
index for arm i at time f as

g(wi—ll zi—l) = wi—l “U— gi—l -, (10)

the result of a series of w| ; “up steps” (%) and ¢! ,
“down steps” (%). Furthermore, without loss of gen-
erality, we can normalize % = 1. The result is a model
with one free parameter, %.

For arm i with probability u; (not necessarily .
or ug) of winning, the expected “drift” of the ran-
dom walk S at time ¢ equals w;U — (1 — u;)%. Then
given % =1 and some fixed ¥, the subject’s “aspira-
tion level”—the average quality level required of i so
that the drift is nonnegative—is

. )
H= F+1
and once a Simple subject begins sampling from an
arm with w; > u*, his or her expected switching time
is infinite (see the discussion in §3.2, as well as Gans
2002b). When estimating the fit of subjects” choices
with the Simple model, we systematically vary & so
that u* ranges from to 0.0033 to 0.99 in even incre-
ments of 0.0033.

We bound % away from zero so that the model is
required to penalize arms for bad outcomes. In con-
trast, for =0, the Simple model recommends an
arm with the greater number of wins—without regard
to numbers of losses—and would provide (perhaps
unfairly) good fits for subjects that never change
arms, no matter how many losses. (For example, see
the results for HH-n in §6.3.2, below.)

15 This setup implicitly assumes that, before being informed of two
successes in three prior trials, subjects have noninformative priors.
An alternative, which we have not tested, would be to let ), = y+2
and ¢} =y + 1 for both arms, where y > —1 is the model’s single
free parameter.
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6.1.4. Last n. As with the previous models, for
convenience we use beta prior, so at trial f the index
for arm i is the ratio of the number of wins and losses
in the previous 7 trials on the arm. Formally, we let
w'(n) and ¢/(n) be the number of wins and losses in
the last n trials on arm i, so that wi(n) + ¢i(n) = n, and

“’Ll ()

P T e M

L(w}_1(n), € (n)) =
While we have tested models forn=1, 2, 3, 4,5, we
report results only for n =1, 3,5. This allows the fig-
ures to be less cluttered and easier to read, and the
omitted results (for n =2, 4) are consistent with the
broader trends seen across n =1,3,5. We have also
tested a “meta” model that treats n as an additional
free parameter and uses the n associated with each
subject’s lowest Bayesian Information Criterion (BIC)
score. The results of this meta-model are not funda-
mentally better than those of the basic Last-n family.
Finally, we note that, at t = 0 the Last-n model
requires data for periods t =—1, -2, ..., —n. For sim-
plicity, we have initialized the record of all these prior
outcomes to be wins. While this assumption is not
consistent with the prior information shown to the
subjects, it is consistent with the initial conditions
required for fitting the HH family of models (see
below). As we will see in the next subsection, differ-
ences in fit are substantial across models, and we do
not believe that these initial conditions have signifi-
cantly affected our results.

6.1.5. Hot Hand. Recall that the HH family of
models uses only the results of the most recently sam-
pled arm to decide which arm to sample next. Specif-
ically, if the n previous trials on the current arm were
all losses, then the HH-n model recommends switch-
ing to the other arm; otherwise, the model recom-
mends continuing to sample from the current arm.

While the HH rule is not index based, when fit-
ting the model to subjects” observed choices, it will be
convenient for us to define it as an index rule. There-
fore, we formally define HH-n indices as follows. For
a subject that sampled from arm i at time (t —1), we
define the indices for arms i and j#1i to be

HH'(¢;_;(n)) =1{¢;_(n) <n} and

o . (12)
HH/(¢,_y(n) =1—-HH'(¢,_,(n)),

where ¢i_, (1) denotes the number of losses in the pre-
vious 1 contiguous trials on arm i. The rule then rec-
ommends choosing the arm with the larger of the two
indices.

If at time t a subject chooses an arm, i, that
she had chosen in the previous trial, then ¢i(n) =
1{i loses at t} + ¢i_,(n). Because the counter ¢! ,(n)
only tracks the number of losses in the previous 1 con-
tiguous trials on arm i, we reset € ,(n) = ¢ ,(n) =0
whenever the subject switches arms: that is, whenever
HH(¢_,(n)) # HH'(¢i(n)). This implies that HH-n
recommends staying on the current arm whenever the
current run on an arm is less than » trials.

Because the prior information we provide to sub-
jects at the start of each session does not distinguish
the order in which “prior” samples of the two arms
were made, it is not well determined whether a sub-
ject’s first trial in a given session represents a switch
to a new arm or the continuation of a run on the cur-
rent arm. Therefore, for simplicity, we assume that the
first trial represents a switch, and we reset the associ-
ated loss counters, ¢i(1) = €)(n) =0, accordingly.

6.1.6. Exponential Smoothing. The ES model (7)
is implemented in a straightforward fashion. We test
two versions of it. The first model (ES-1) has the
smoothing weight, vy, as its one free parameter. The
initial index of each arm is fixed at ES} =2/3, so that it
matches the win-loss ratio reported as prior informa-
tion. Note that, for y =1, ES-1 corresponds to a Last-1
model, so to better distinguish between the two mod-
els, we bound y away from 1. Similarly, for y =0, both
arm’s indices would equal 2/3 for all f and would
not be informative. Therefore, we vary 7y from 0.01 to
0.99 in increments of 0.01.

The second model (ES-2) also treats the initial index
ES] as a free parameter. In this case, we vary both y
and ESS from 0.01 to 0.99 in increments of 0.01, for a
total of roughly 10,000 possible combinations of free
parameter values.

6.2. Fitting the Models to Subjects” Choices

Let the generic index, I, represent the index of the
model being used, and suppose that, at trial t in a
given session, a model’s indices are I} and I/ for the
left and right arms. If I/ > I/, then a subject whose
choices are dictated by the model will choose the
left arm. In fact, at t, the subject will either choose
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the left arm or not, and a straightforward and read-
ily observable measure of consistency would simply
record whether or not the subject’s choice matches the
prediction.

An aggregate measure of consistency over all 347
trials would then be the total number of incorrect
model predictions, the smaller the number the better.
The determination of this number is trivial for the Git-
tins, Myopic-0, Last-n, and HH-n models because they
have no free parameters. For the Myopic-1, Simple,
ES-1, and ES-2 models, one can search for the values
of the respective free parameters that minimize the
total number of errors across all 347 trials.

Alternatively, at any given trial, one might further
judge how well a subject’s choice matches that pre-
scribed by a model, rather than simply whether or not
the observed choice is consistent. A common means of
judging the degree of consistency is through the use
of random utility models (Anderson et al. 1992). Here,
one posits that the value of a left or right choice at a
particular trial is randomly distributed and that only
the mean of the distribution is captured by the model
indices I and I/. In the context of our experiments,
the random fluctuation might be ascribed to errors (or
“trembles”) in judging the value of the choice.

If, from trial to trial, this random noise is inde-
pendently and identically distributed according to a
Gumble (double exponential) distribution, then we
have a so-called logit model. In this case, the proba-
bility of choosing the left arm at trial ¢ is

Bl

P{choose left} = (13)

eBll 4 eBL
Similarly, P{choose right} =1 — P{choose left}.!®
Note that, by nesting the original choice models
within the logit framework, we have imposed an ad-
ditional (and unobservable) level of complexity, as
well as the addition of a free parameter, 8. The ben-
efit is that we have a means of judging how well
each observed choice matches a model’s prediction.

16 Thus, the probability a subject chooses an arm increases in the
index associated with that choice and decreases in the other index.
As Allison (1982) has shown, this procedure is equivalent to that for
estimating a discrete-time hazard model with a logistic regression
function; that is, the likelihood scores generated by these models
are equivalent. (See the section on discrete-time methods, particu-
larly the discussion surrounding Equation (22).)

Furthermore, that measure is a probability, and we
can easily add the 347 choices’ log-probabilities to cal-
culate an aggregate log-likelihood (LL) of observing
each subject’s outcome.!”

A likelihood measure of consistency is particu-
larly appealing in that it also lets us naturally cor-
rect for differences in the numbers of free parame-
ters used by the models, something which is not eas-
ily accomplished when counting the total numbers of
errors. We account for free parameters using the BIC;
BIC = —2LL +d.f. x In(347), where d.f. is the num-
bers of degrees of freedom used by the model’s free
parameters. Indeed, BIC scores have the appealing
property that they can be used to approximate Bayes
factors, the posterior odds the data being explained
by one nonnested model, rather than another (Kass
and Raftery 1995).

In contrast, a straightforward count of the number
of inconsistent choices can become problematic if the
index takes on only a few values. For example, in the
extreme case that a choice model has I! = I/, regard-
less of a subject’s observed choices and outcomes,
the number of inconsistent choices is always equal to
zero, and the model “perfectly” fits the observed data.
In contrast, the likelihood approach would record that
each choice is completely random (P{choose left} =
P{choose left} = 0.5, without regard to ), and the
associated BIC score would, more appropriately, suf-
fer. For this reason, we emphasize results obtained
from using the logit model.'®

The calculation of each model’s LL requires the
solution of a nonlinear optimization problem. For
models with no free parameter, the LL is concave in 3,
and the optimal 8 can be found using standard opti-
mization software. While the LL’s of the Myopic-1,
Simple, and ES models are also concave in 3, they
are not necessarily jointly concave in 8 and their free
parameters. Therefore, for these models, we perform
a nested optimization procedure: The top level is a

7Our implementation of the HH model defines the index of the
recommended arm as one and that of the other arm as zero. While
this choice appears to be somewhat arbitrary, we note that it is
without loss of generality, since the B of the superimposed logit
model acts as an independent scaling factor. Therefore, the LL
derived from the HH model is independent of the scale of its
indices. (Thanks to Ed Kaplan for pointing this out.)

8 For more information on this effect, see Appendix G (online).
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grid search over each model’s original free param-
eters; then, for each of these grid values, we use a
solver to find the optimal 8 and LL. We then record
the best LL among all of the top-level grid values.

We implement this procedure for each subject
to find one best set of free parameter values
across all 347 trials. For each subject, we use the
same free-parameter values across all three sessions.
This approach reflects our assumption that each sub-
ject’s parameters should be stable across treatment
conditions, and it reduces the possibility of model
overfitting.

Given the large quantities of data that we analyze,
the use of BIC scores is also computationally appeal-
ing. In total, we have calculated more than 2 million
scores for model fit—more than 10,500 free-parameter
values associated with the various models for each of
195 subjects—and this task has been facilitated by the
straightforward optimization required by LL and BIC
scores.

6.3. Results

For each of 195 subjects, we have used the optimiza-
tion procedure described above to find free parame-
ters that minimize each model’s BIC score for each
subject, and we report the fit results below. Because
of the numerous models considered, we report the
results of the various models by family: first those that
are derived from the Gittins index, then the Last-n
group, then HH models, and finally ES.

6.3.1. Models Derived from the Gittins Index.
Figure 3 presents two pictures of the BIC results for
the Gittins index family of models. The left panel dis-
plays an aggregate, across-subject view of the models’
performance, and the right panel shows the results of
within-subject rankings of BIC scores.

More specifically, the curves in the figure’s left panel
represent cumulative distributions of BIC scores.!
From the plot, we see that Simple and Myopic-1, the
models with an extra free parameter, nearly domi-
nate Myopic-0 and Gittins, even after the BIC score

¥ To derive a given model’s curve we sort its 195 BIC scores from
lowest to highest—that is, best to worst. Then we plot the number
of subjects with BIC scores less that or equal to each value listed
on the x-axis. Models whose curves are farther “up and to the left”
are interpreted as better fitting the observed data.

penalizes these models for the added parameter. Care-
ful inspection shows that the Simple model does not,
in fact, dominate the rest of the models in the 310-
to-340 and the above-440 range. In the above-480
range, where the absolute fit of any of the four mod-
els is very poor, Myopic-0 outperforms Simple and
Myopic-1 because its BIC score is not penalized for an
extra free parameter.

The total BIC scores shown in the left panel’s inset
are consistent with these curves. When individual BIC
scores are summed across individuals, we find that,
in aggregate, the Simple model has the best perfor-
mance, then Myopic-1, then Myopic-0, and finally the
Gittins index itself.

We can also judge the quality of fit at the individ-
ual level. For every subject, we rank each model’s fit
by BIC score. For each model, the first shaded bar is
the number of subjects for whom it was the first-best
fit. The next white part is the number of subjects for
whom it was the second-best fit, and so on. The right
panel of Figure 3 displays these results.?’

The results show that, on a subject-by-subject basis,
the Simple model fits the observed choices best most
often, in about 41% of all subjects. Again, the Sim-
ple model has roughly twice the number of first place
fits when compared to Myopic-0 or Myopic-1. In this
case, however, the Myopic-0 model slightly outper-
forms Myopic-1.

We also performed pairwise comparisons of the
models across subjects using paired-t and Wilcoxon
signed rank tests. In all but one case, the differences
were significant, with desired p-values vanishingly
small. For the one-sided (alternative) hypothesis that
the Myopic-1 BIC > Simple BIC, the results were
somewhat less strong, however. Here, the t-test
resulted in p-value of 0.08, while the signed rank test
resulted in a p-value of 0.11.%

2 We note that, in the figure, a tie for equal BIC scores results in
all relevant policies receiving the higher rank. Thus, while each
policy’s rankings add up to n =195, adding up a given ranking
(e.g., first place) across models may lead to a total that exceeds or
falls short of 195.

2 Of the 195 subjects included in the test, there was one extreme
outlier, Subject 127. After removing this outlier from the data, the
p-value for the t-test improved to 0.03, and that for the signed rank
test to 0.08.
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Figure 3 BIC Scores for Models Derived from the Gittins Index
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6.3.2. Other Choice Models. We next present
analogous results for the Last-n, HH, and ES models.
To facilitate comparison with the Gittins index family
of models described above, the figures include results
for the Simple model as well.

Last n. The left panel of Figure 4 shows that the
BIC scores associated with the Last-n family of mod-
els tend to be higher than those associated with the
Simple model. Both the cumulative distributions and
the aggregate BIC scores of the Last-5 and Last-3
models are dominated by the Simple model’s scores.
The Last-1 model outperforms the Simple model only
when BIC scores are high and none of the models fits
particularly well.

In contrast, the figure’s right panel shows that, on
a subject-by-subject basis, Last-1 appears to perform
nearly as well as the Simple model. While a one-

Figure 4 BIC Scores for Last-n Model
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sided paired t-test, with an (alternative) hypothesis
that Last-1 BIC > Simple BIC, was significant at nearly
the 0.01 level, an analogous Wilcoxon signed rank test
returned a weaker p-value, of 0.111.

As the left panel suggests, however, subjects with
lower Last-1 BIC scores are those for whom neither
model fits very well. For example, for the 88 subjects
for whom the Simple model ranked first, the average
Simple model’s BIC score was 328.7, while for the 79
subjects for whom the Last-1 model ranked first, the
analogous score was 392.4. In fact, in cumulative dis-
tribution of the first-ranking BIC scores, the Simple
model also dominates Last-1.

Hot Hand. Figure 5 details the BIC scores of the
HH family of models. One sees that, in contrast to
the Last-n model, the HH models’ fit to subjects’
choices improves with larger n. HH-5, in particular,
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Figure 5 BIC Scores for the HH Model
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appears to perform extremely well on both an aggre-
gate and an individual basis. The left panel shows
that the model’s aggregate BIC score dominates that
of the other models, as does the cumulative distri-
bution of its BIC scores. The right panel shows that,
on a subject-by-subject basis, HH-5 significantly out-
performs the Simple model as well. Both a one-sided
paired t-test and a Wilcoxon signed rank test that
compare HH-5 and Simple BIC scores returned van-
ishingly small p-values.

Note also that, within the HH family, the perfor-
mance of the models is well ordered. In both of Fig-
ure 5’s panels, HH-5 outperforms HH-3, and HH-3
outperforms HH-1. Indeed, while we do not report
detailed results here, the results for HH-4 and HH-2
also fit within this ordering.

To better understand why the rankings appear to
be ordered with n, we compared the models” BIC
scores to subjects” average run lengths. The results,
shown in Figure 6, are informative: the HH-5 model’s
BIC scores are strongly associated with average run
length, with a nearly linear relationship between BIC
and 7 for 7 < 10.* Close inspection shows that a more
attenuated form of the same type of relationship also
holds for HH-3, and plots that include the results for

2To quantify the strength of the relationship, we also created a
binary variable that took on a value of 1 for a subject if HH-5 was
ranked first and zero otherwise. Tests for the probability of HH-5
obtaining a first ranking showed that 7 has, in fact, a significant
positive impact. In a logit regression with an intercept, the coeffi-
cient for 7 was positive with a t-statistic greater than 4.6. A similar
probit regression returned the same direction and significance.

HH-5 129 E .ﬂ

HH-3 | 20 | 101

HH-1 [16 |6- 149 | O4

0 50 100 150 200
Number of subjects

the HH-2 and HH-4 models show a consistent pro-
gression: The larger the n, the more strongly average
run length is associated with low BIC scores. This
leads us to question the quality of the HH model’s fit
to the data.

More generally, consider a sample path in which
an arm with a probability of p of winning is pulled
over and over again. Then it can be shown that the
expected fraction of trials in which a HH-n model
recommends switching is of order O((1 — p)") (see
Appendix D, which is online). As n — oo, the fre-
quency of recommended switches approaches zero
exponentially quickly.

Now suppose that in T trials, a subject switches
arms m times. If an HH-n with very large n is fit
to the data, it will register roughly m inconsistencies,
perhaps fewer. In turn, if m is small then the fit asso-
ciated with the HH-n model will be very good, no

Figure 6 Relationship Between BIC Scores and 7 in the HH Model
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matter what the relative winning probabilities of the
two arms. Therefore, in a significant sense, the HH-n
model may be obtaining good fits simply by pick-
ing up long run lengths, and we suspect that the BIC
scores of HH-6, HH-7, etc. would keep improving.

As a Simple test of this hypothesis, we tested a
HH-o00 model that recommends never switching. Its
aggregate BIC score was 61,659, much better than that
of HH-5. Furthermore, as the plot of BIC on 7 in Fig-
ure 6 confirms, HH-co displays a more extreme ver-
sion of the pattern seen in the other HH models. Thus,
we believe that the low BIC scores obtained by HH-5
are largely artifacts of subjects’ long run lengths.

In contrast, there is some evidence against this phe-
nomenon holding for the other models. Analogous
plots for the other models do not show the same
strong relationship between BIC scores and 7 (see
Appendix H, which is online). Rather, BIC scores tend
to be higher for small average run lengths and then
drop for average run lengths above 7~ 7. Above this
cutoff, there appears to be only a mild, negative rela-
tionship between the two. An exception to this gen-
eral statement is the Last-1 model, whose BIC scores
are best for subjects with very low 7s. Again, these are
the subjects who also have high BIC scores and whose
switching behavior seems to be nearly independent
of prior outcomes.

One might also hypothesize that the HH-5 model
accurately reflects the behavior of subjects who may
switch early in a session but then settle on an arm
and stop switching all together. As Figure 7 shows,
however, this does not appear to be the case. The fig-
ure sorts subjects by best-fitting model and then plots
the length of each subject’s last runs as a percentage
of total trials. For each subject, the percentage is cal-
culated by adding the lengths of the last runs of the
three sessions and then dividing by the total number
of trials in the session, 95+ 117 + 135 = 347. (Note that
the ES family of models is discussed below.)

Observe that average percentage was 42% for sub-
jects for whom the Simple model fit best. In contrast,
the average percentage was only 20% for subjects best
described by HH-5. Thus, it does not appear that
HH-5’s BIC results reflect the fact that the model best
captures the behavior of subjects who settle down
early on an arm.

Exponential Smoothing. Last, Figure 8 compares the
performance of ES to that of the Simple and Myopic-1
models.

The figure’s left panel shows that, in the aggre-
gate and for most of the range of the BIC scores, the
ES-2 model outperforms the ES-1, the Simple, and the
Mypoic-1 models. In the upper range of BIC scores—
the cases in which model fit is poor—the ES-2 model

Figure 7 Length of Last Runs as a Percentage of Total Trials, by Best-Fitting Model
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Figure 8 BIC Scores for ES Model
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is tied with the ES-1 model. While the ES-1 model
outperforms the Simple and Myopic-1 models, both
in aggregate and in the above-325 range of BIC scores,
all three models are dominated by ES-2.

The rankings in the right panel show that, on a
subject-by-subject basis, the BIC scores of ES-2 dom-
inate those of other models. Similarly, a one-sided
paired t-test comparing ES-2 and ES-1 scores yielded a
vanishingly small p-value, and an analogous Wilcoxon
signed rank test returned a p-value of 0.01. Tests
among other pairs of models—ES-2 versus Simple,
ES-1 versus Simple, and ES-1 versus Myopic-1 re-
turned p-values that ranged from highly significant
(less than 0.001) to vanishingly small.

6.3.3. Summary of Results. Recall that we are
interested in two dimensions of model performance.
The first is fit to subjects’ observed choices, as mea-
sured by both aggregate and individual-level compar-
isons of models’ BIC scores. The second is tractability,
the ability to derive simple (preferably closed-form)
expressions for aggregate statistics—such as expected
switching time or fraction of times chosen—from the
models’ primitive parameters. Table 1 summarizes
our findings.

Among the Gittins index family of models, the Sim-
ple model performed best. While the BIC scores of
Myopic-1 were on par with those of the Simple model,
the Simple model is more tractable. The original Git-
tins index model of “rational” choice performed most
poorly, both in terms of fit and tractability.

100 200 300 400 500

T T
0 50 100 150 200
Number of subjects

Among the descriptive models, the HH-5 per-
formed best. Indeed, HH dominated both the Git-
tins index family and the other descriptive model in
terms of fit, and it is also easy to analyze in terms of
deriving useful aggregate statistics. The strong perfor-
mance of the HH model must be qualified, however.
As Figure 6 shows, the model’s low BIC scores appear
to be artifacts of longer run lengths.

There are other limitations to the HH model as well.
While the HH’s summary performance measures are
easy to analyze in the context of Bernoulli outcomes,
the model does not immediately apply to more com-
plex reward distributions.”® In contrast, the other
models we have tested can be applied directly to
generally distributed rewards. More fundamentally,
HH-co is not applicable to analysis of supplier compe-
tition, because it models consumers as not responding
to the quality of service they receive.

Of the second set of models that we tested, ES
also performed quite well, both in terms of analytical
tractability and model fit. ES compares well with the
Simple model, with (roughly) the same level of ana-
lytical tractability and stronger BIC scores. We there-
fore favor the use of the ES model, and we elaborate
on this recommendation below.

% One can generalize the HH model to handle rewards that are not
Bernoulli distributed by considering “wins” to be outcomes above
some threshold and “losses” to be outcomes below. This threshold
would then become a free parameter for which to be searched.
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Table 1

Summary of Model’s Fit to the Data and Tractability

Gittins index family

Descriptive models

G M-0 M-1 S Last-1 HH-5 ES-1 ES-2
Aggregate BIC 83,236 79,344 77,304 76,776 80,278 66,910 73,493 69,018
Tractability —— - - + ++ ++ + +

7. Discussion

Our experimental results are positive on two lev-
els. First, they demonstrate that both the first and
second difference of the average number of trials sub-
jects spent on a given arm were increasing in the
arms’ expected reward. This finding is consistent with
increasing, convex behavior predicted by the mod-
els of choice we have considered, as well as with
more general industry observation (e.g., Jones and
Sasser 1995). Second, they support the use of more
analytically tractable models for use in the type of
competitive analysis pursued in Gans (2002a), Gaur
and Park (2003), and Hall and Porteus (2000). Both
the ES and Simple models, in particular, are analyti-
cally tractable, flexible enough to be used with gen-
erally distributed rewards, and robust with respect to
model fit.

We note that not all of the less elaborate models
performed better in measures of fit. For example, the
Last-n model fit the data poorly for higher n’s, and the
HH-n model performed poorly for lower n’s. Thus,
simplicity, by itself, does not appear to be a guarantee
of a model’s success.

The ES model particularly appeals to us for
a number of reasons. First, it appears to fit the
data well. Furthermore, the special case of y =1—
which was excluded from consideration in our fit
analysis—corresponds to a Last-1 model, so the model
is (marginally) even more flexible that the results
already indicate. Also, recall from §3.3 that ES is con-
sistent with a model of a Bayesian subject that faces
Markov-modulated rewards. We find this representa-
tion to be intuitively satisfying. Even though opera-
tions management papers often model the world as
being stationary it is not; the ES models implicitly
capture a subject’s belief that his or her reward sys-
tem is always changing. Still, both sets of results also
raise important questions. In the following sections,
we address two of the most visible concerns.

7.1. Tests for Run-Length Behavior

While our run-length results are consistent with pre-
dictions of convexity, there may be other explanations
for the behavior that we observed. For example, the
fact that the first difference between 0.65 and 0.40 is
greater than that between 0.40 and 0.15 may be influ-
enced by the fact that P{win} = 0.40 for the competing
arm and that subjects do not perceive gains equiva-
lently to losses.

To rule out this hypothesis, one might also test
cases in which the competing arm has a P{win} of
0.15 or 0.65, to see whether the increasing differences
property still follows. One might also randomize
treatment conditions differently, so that the runs of
the first arms chosen could be compared on a within-
subject basis.

More generally, it is worth emphasizing our first set
of analyses only tests that observed behavior is con-
sistent with the increasing-convex property. To prove
that expected run lengths are increasing and convex
in P{win}, one would need to rule out all competing
hypothesis. These types of tests await future research.

7.2. Tests of Model Fit

The fact that the HH-co model achieves the lowest BIC
scores is, at first glance, discomfiting, and one may
wonder if there is something about our experimental
setup or analysis that should be changed to penalize
this type of performance.* We believe it will be dif-
ficult to eliminate this effect. Because the BIC score
is an adjusted measure of the likelihood of observing
a given sample path, samples with low base rates of

% One may also wonder whether the Simple and ES models’ free
parameters reflect artifacts that are similar to the HH’s. We have
plotted both BIC score and average run length against free parame-
ter values, and the results do not appear to reflect relationships that
are more substantial than the original results for BIC scores and 7.
For plots of BIC scores against 7, see Appendix H (online), and for
plots of BIC scores against free parameter value, see Appendix I,
(online).
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switching tend to provide good fits for HH-co. Con-
versely, HH-oo should have a poor fit for subjects who
switch frequently. Therefore, to properly penalize the
HH-00 model’s behavior, one needs to set experimen-
tal conditions so that the observed switching rate
among arms is higher.

How does one generate higher switching rates? The
descriptive statistics reported in §4 suggest that more
frequent switching is associated with lower win rates
and small, rather than large, differences between the
two arms’ P{win}s. In addition, we hypothesize that
a smaller expected number of trials would increase
switching, since a greater fraction of a subject’s total
winnings would depend on each trial.

Shorter sessions with high overall rates of switching
would provide fewer, less discriminatory, trials over
which the models’ differences can be highlighted,
however. That is, an experimental design with lower
win rates and fewer trials is likely to push all mod-
els” BIC scores up toward that of random switching
and make it more difficult for the various models’
likelihoods to diverge. Therefore, we believe that a
design including many trials with intermediate-level
win rates that we used is a reasonable, if not perfect,
experimental choice.

The use of a large number of trials has also allowed
us to more clearly distinguish among the performance
of models with various levels of learning. With many
trials, models with more complete learning, such as
the Gittins and Myopic models, tend to converge on
an arm. Conversely, the ES, Last-n, and HH mod-
els represent a much weaker forms of learning, never
converging on an arm. The Simple model represents
something of a median, converging only in expecta-
tion, and only then if an arm meets the aspiration
level u*.

The BIC scores suggest that subjects’ choices are
more consistent with models of choice that are both
more myopic and attenuated in their form of learning.
Aggregate measures of learning are also consistent
with this finding. For example, on average, subjects
switched 11.9 times in the first half of each session and
9.2 times in the second half. While this 22.4% decrease
is important, it is far from reflecting a general conver-
gence to a single arm.

While the Gittins index fared poorest in terms
of BIC score, we recall that computational limita-
tions have forced us to fix subjects” implicit (unob-
served) discount rates to match the & =0.99 we used
in the experiments. One may ask how much bet-
ter the Gittins index would have performed had we
had the ability search for the best-fitting implicit dis-
count rate for each subject. A partial answer can be
found by recalling that Myopic-0 is simply a Gittins
index model with & =0. The fact that Myopic-0’s BIC
scores dominates the Gittins index’s suggest that sub-
jects are significantly more myopic than is optimal.
Still, the questions concerning how much better the
Gittins index would perform with an intermediate o
remains open.

Section 6’s results also suggest that there may be
multiple segments of subjects, some of whose choices
are more strongly guided by one model or another
(see Figure 7). Furthermore, demographic or other,
more easily observable data, may provide useful
information on the type of model that best matches
the pattern of her choice behavior.?® For example, one
significant difference we observed reflects subject gen-
der: The 35% of women in our sample (69 out of 195)
were much less likely than men to have their behavior
best-fit by the Simple or Myopic rule(s).

Table 2 summarizes the data. A Fisher exact test in
which counts for the Myopic and Simple model are
included in a single “M or S” category yields a p-value
of 0.006. Thus, there does appear to be a potential
gender difference in model fit, and it would be inter-
esting to do follow-up work to better understand its
nature and scope.

The existence of multiple segments, each best fit
by a different model, is an important issue for future

% Similarly, for models with free parameters, such as Simple and
ES, parameter values may also appear to be segmented.

% Fisher exact and x* tests of category differences for the other
demographic variables did not yield significant results at the 10%
level. We also ran an OLS regression of earnings on the exper-
iment’s duration and 7 —controlling for demographics provided
such as school, age, gender, ethnicity, and whether or not subjects
reported they were confused by the experiment. The results are the
same as those for a regression in which when we do not control for
demographics: a unit increase in 7 is associated with an earnings
increase of $0.07; and a one-minute increase in the experiment’s
duration is associated with an earnings’ increase of $0.03.
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Table2  Numbers of Subjects for Whom Each Model Fit Best, as (2004) provides an exciting, new method for more
Measured by BIC Score exploratory analysis.

Gender MorS HH Last-n ES Total At the same time, there exist a number of limita-
tions to our findings that bear repeating. While the ex-

Female 1 42 9 17 69 . . . .

Male 91 64 16 o5 126 perimental environment was essential for controlling

Total 99 106 25 49 195 the attributes of the arms and for generating predic-

experimental analysis, as well as for the application
of our results. The fact that various segments of cus-
tomers base their responses on different choice mod-
els affects overall market outcomes.

8. Conclusion

In this paper, we have examined the descriptive abil-
ity of Simple choice models in a bandit setting. We
first developed a hierarchy of Bayesian models that
range widely in complexity, from the Gittins index
model that most closely represents rational behav-
ior, through the simpler Myopic model, to the Simple
model in which the customer’s view of a supplier is
representative of a category. We also considered other
well-known choice models: The Last-n models, which
are limited-memory analogues of the Myopic model;
the HH models, which respond to sequences of losses
on the current arm; and ES models, which take simple
weighted averages of current and prior information.

We performed two sets of analysis, each intended
to test the correspondence between subjects’ behav-
ior and the models” predictions. The first showed
that average run lengths changed in manner that
is consistent theoretical predictions: They should be
increasing and convex in an arm’s average reward.
The second demonstrated that subjects” actual choices
more closely matched the recommendations of less
complex representations of choice.

Our results may also be of use in the larger task of
building a positive theory of dynamic decision mak-
ing, as described in Hutchinson and Meyer (1994).
They suggest that there may be segments of subjects,
some of whose choices are more strongly guided by
one model of another. Similarly, a given subject may
use more than one model of choice, perhaps shifting
strategies over time. While we have not approached
subjects” behavior in this fashion, the data exist that
may make the analysis possible. Additional models,
such as Q-learning, can be tested, as can more ex-
ploratory approaches. A recent paper by Houser et al.

tions, as in any experiment, the artificiality of setting
may lead to behavior that differs from the way peo-
ple solve real world bandit-like problems. More nar-
rowly, different experimental parameters, such as the
expected number of trials ((1 — a)™'), probabilities of
success, or reward distributions may allow us to fur-
ther discriminate among models’ performance.

As in any experiment of this nature, there also exist
more general natural limits to the external validity of
our results. First, the bandit model, itself, may mis-
specify the basis of customer choice, though this (of
course) was not a modeling problem these experi-
ments were intended to address. For example, it may
not be reasonable to assume that the quality distribu-
tions of the arms set by suppliers are independent.
Second, our subject pool was drawn from the student
population of a large university. While we have no
reason to think that our subjects are nonrepresenta-
tive of students at this university, or that the behavior
of students at the university is systematically differ-
ent from that of the general population—as with any
experiment that uses students as subjects—it is possi-
ble that our subjects chose arms differently than other
populations would have.

Nevertheless, on the whole these results are positive
for researchers in operations management. We origi-
nally viewed the models being tested as representing
different trade-offs between analytical tractability and
richness of the representation of the learning process.
The experimental results suggest that subjects’ learn-
ing is less strong than might be expected, however. It
appears that the more tractable models that have been
favored in operations management research can more
than “adequately” capture the essentials of customer
choice behavior.
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