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Formal Choice Models of Informal Choices:  

What Choice Modeling Research Can (and Can’t) learn from Behavioral Theory 

Abstract 

 In this paper we illustrate the benefits of forging a better alliance among 

behavioral, economic and statistical approaches to modeling consumer choice behavior.  

We focus on the problems that arise when building descriptive models of choice in 

evolving markets, where consumers are likely to have poorly-developed preferences and 

be influenced by beliefs about future market changes.  We illustrate how understanding 

the actual process that is driving preferences can provide analysts with both better a 

priori insights into the model structures that are likely to provide the best descriptive 

account of choices in such settings, as well as how stable these structures are likely to be 

over time. We show, for example, that analogical reasoning heuristics—a common 

strategy for making decisions under preference uncertainty—can produce choice patterns 

that resemble the output of complex nonlinear, non-additive, multi-attribute utility rules.  

Likewise, because novice consumers are likely to display strong individual differences in 

the variance of unobserved components of utility, methods that fail to recognize such 

differences will tend to overstate the actual extent of taste heterogeneity that exists in a 

population.  We also illustrate the benefits of a reverse dialogue, how economic theory 

can lead behavioral researchers to more parsimonious explanations for apparent 

anomalies in choice tasks where preferences are uncertain.  We show, for example, that 

some ad-hoc models that have been used to statistically describe the compromise effect 

in choice can be deduced from first principles of rational risky decision making. 
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Introduction 

 Choice modeling research in marketing has evolved through the interplay of three 

different approaches to the study of human decision making.  One is an economic 

perspective by which consumers make choices in a manner that is consistent with random 

utility maximization.  Consumers are viewed as having well-developed preference 

functions defined over product attributes, and they choose those options whose attributes 

offer the most attractive tradeoffs either at the time of choice or in the short or long run 

(e.g., McFadden 1981).  A second approach is exemplified by behavioral researchers and 

psychologists, who argue that actual choice processes may be far removed from the 

rational mechanisms assumed by economists. That is, to the extent that preferences exist 

at all, they discontinuous and imprecise, with choices being the outcome of heuristic rules 

that are uniquely constructed in response to the external appearance of options in choice 

sets (e.g., Payne, Betman, and Johnson 1993).  A third and final view has grown rapidly 

since the late 1980s, which is a statistical approach to modeling choices. Adherents of 

this approach claim ideological neutrality in the debate over preferences and processes.  

That is, choices are simply viewed as data; any model of choice is fair game as long as it 

passes tests of descriptive and predictive validity in a given context (e.g., Abe 1996; ter 

Hofstede, Kim and Wedel 2002; Rossi, Allenby and McCulloch 2005; Kamakura and 

Wedel 2004).  Not surprisingly, the statistical paradigm is less concerned with whether 

any given model can be deduced from first principles of utility maximization or cognitive 

theory.  

Although the three approaches differ philosophically and to some extent 

methodologically, intuition suggests that that they might usefully converge over time as 
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our understanding of choice behavior evolves and progresses. Yet, the academic reality 

appears to be very different.  For example, behavioral researchers have tended to focus on 

laboratory demonstrations of failures of the assumptions of standard economic models 

(e.g., context invariance) and given limited attention to developing alternative modeling 

paradigms that might account for these failures (for exceptions, see, e.g., Kivetz, Oded, 

and Srinivasan 2004; Tversky and Simonson 1993).  Adherents of the economics view of 

choice modeling, for their part, have frequently been dismissive of behavioral findings, 

arguing that lab settings exaggerate the size of errors that would be observed in real 

markets or that they can be captured through complex generalizations of standard models 

(e.g., Machina 1982).  Finally, statistical modelers have done little to resolve theoretical 

gaps between the behavioral and economic camps.  While there is much to be learned and 

gained from incorporating statistical advances from discrete multivariate and Bayesian 

statistics in choice modeling (e.g., Rossi and Allenby 2003), there is also much to be lost 

by adopting a purely statistical view of what is inherently a human behavioral process. 

 The purpose of this paper is to take a small step toward fusing these different 

perspectives in the analysis of choice data.  We take a limited first step by exploring one 

dimension of this fusion, namely what empirical economic and statistical modelers can 

constructively learn from behavioral researchers when building models of consumer 

choice in evolving markets—a setting where applications of traditional methods have 

often been seem as problenmatic. 

Choice and Market Evolution 

 Let us begin by with a thought experiment that illustrates the types of modeling 

challenges that we try to address in this paper.  Consider a simple market with one 
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(monopoly) provider of a good, such as a monopoly provider of cable or broadband 

services or another public utility market. In this market consumers must decide whether 

or not to choose the good. At some point the good in question is launched into the market, 

and we assume that prior to launch information is available about the good, its features 

and price(s) and the likely launch date. Thus, prior to launch some consumers in the 

market are aware that the service will be provided, and have reasonably complete 

information about its features and likely prices. Another, probably much larger, 

proportion of consumers is “vaguely aware” that the service will be provided, and has 

incomplete information about features and possible prices. Finally, a third proportion is 

unaware of the good or that it will be launched. 

 This market is thus characterized by three stylized groups of consumers, who can 

be viewed as being on a continuum of being aware and informed about the good, or they 

can be viewed as three discrete segments. Initially, the most aware and informed are 

likely to be a small minority; the vaguely aware and informed, while probably a larger 

proportion, also are likely to be a minority; with most of the market more likely to be 

unaware and uninformed. Then, the good is launched, and things begin to change. To the 

extent that the good is of interest to consumers and they are capable of buying and 

consuming it, which allows them to receive the associated benefits or problem solutions 

the good provides, we expect the proportion of consumers who are aware and informed to 

grow over time. Likewise, consumers who are unaware and uninformed gradually will 

move into the vaguely aware and informed group, and in this way the market will evolve 

from the “bottom up”. 
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 A marketer who wishes to model the decision of whether consumers choose the 

good in this market would typically begin with the tools of random utility theory.  Each 

consumer n in the population would be assumed to associate with the new service i a 

utility nititnnit XU εβ += ' , where Xit, is a vector of the measured attributes of the service 

(e.g., price), βn is an associated parameter vector describing the consumer’s tastes for 

these attributes, and εnit is an unobserved component of utility.  The unobserved 

component εnit would typically be assumed to follow an independently and identically 

distributed extreme value distribution (over consumers, choice alternatives, and service 

characteristics). If this assumption is satisfied, the individual choice probabilities can be 

represented by the well known multinomial logit model 
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where θnt is the consumer’s utility for unmeasured outside goods.  To extend expression 

(1) to the study of population or market choices, analysts typically make assumptions 

about how tastes βn vary over the population.  For example, if βn can be assumed to have 

a stationary parametric distribution, then population choice can be modeled by a random-

coefficients or mixed logit model that assumes nitnititnit XU εηβ ++= ' , where ηnit is a 

random variable that captures unobserved individual departures from a common strict 

utility β’X (e.g., Hensher and Greene 2003). 

It should be clear that while the above approach might provide a good statistical 

description of the association that exists between choices and service attributes at a 

particular point in time (or over a series of points in time) for a particular sample of 

people during the course of market evolution, it captures few of the behavioral features of 
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service-choice dynamics mentioned above.  For example, it does not characterize how 

parameter heterogeneity might be associated with factors that underlie differential levels 

of awareness and information possessed by consumers, the provider’s decisions about 

communications and access, and beliefs held by consumers about the market’s future 

(e.g., the possibility of new entrants or expectations about how the technology will 

evolve).  While analysts may acknowledge that these associations are likely to change as 

a market evolves, exactly how the changes will occur or their trajectories typically lies 

outside the purview of the analysis.  Thus, it is fair to say that the overwhelming majority 

of these types of models are purely descriptive with little real explanatory capability. 

 In the sections below we try to illustrate more precisely how real behavioral 

processes underlying choices in markets can manifest themselves in the data that are used 

to estimate reduced-form statistical models, and how overlooking behavioral processes 

may lead analysts to erroneous conclusions about both the nature of preferences in 

markets and how markets will evolve over time.  More specifically, we explore what 

behavioral theory would predict about the empirical appearance and stability of typically-

estimated random utility models when they are used describe the choice behavior of 

consumers who:  

1. Have high levels of uncertainty about their preferences for goods in a market;  

2. Use heuristic short-cuts that do not utilize all the product-attribute information 

available to them at the time of choice; and 

3. Have strategic foresight; that is, consider how the current choice will affect 

the utility gained from future choices. 
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Modeling Choice by Naïve Consumers 

 One aspect of random utility theory that elicits few quarrels is the assumption that 

consumers are guided by a desire to choose the option that will give them the most utility 

or pleasure.  But for many consumers, particularly those in newly evolving markets, the 

ability to achieve this maximization goal is inhibited by the simple fact that preferences 

are uncertain.  For example, if a novice consumer were forced to decide whether it was 

worth $10 a month to adopt a broadband service that would increase download speeds by 

100 kilobytes, the axioms of utility theory would not help her much to make this decision.  

To be useful, she would need to know what a kilobyte is, the amount of additional 

pleasure that she could expect from a 100kb, increase, and how to exchange the extra 

pleasure for dollars, knowledge few novice consumers are likely to have.  The choices we 

observe in new markets, therefore, reflect an ambiguous mix of enduring preferences and 

the heuristics consumers use to overcome the lack of preferences.   

 What are the heuristics consumers use to overcome a lack of attribute preference 

knowledge?  The consensus view is that naïve choices are often made using analogical 

reasoning. That is, when a new product is encountered, consumers judge it by recalling 

products that they consumed in the past with similar attributes (e.g., Gregan-Paxton and 

Roedder John 1997; Norman 1988).  For example, this sort of pattern-matching process is 

thought to explain how people with little skill in mathematics can learn to play complex 

equilibria in games.  Instead of encoding and solving optimal strategies, most games 

allow players to discover equilibria simply by being willing to repeat the moves that 

yielded the highest payoffs in the past (e.g., Camerer and Ho 1999; Fudenberg and 

Levine 1998).  Similarly, the expertise of wine connoisseurs probably lies less in their 
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skills at using algebraic rules to predict quality and more in their possession of a rich 

memory bank of past referent examples that form the basis of evaluations (known as 

smell and taste memory).  

 The pervasive use of pattern-matching heuristics in novel product judgments was 

illustrated in work by Meyer (1987), who examined the process by which consumers 

learn to make multi-attribute judgments in a novel product category.  In his experiments 

participants were shown a series of product profiles described by several unfamiliar 

attributes and levels (copper alloys generated by different production methods), and they 

were asked to predict each product’s likely quality (strength).  Once the subjects made a 

prediction, they received feedback about the “true” quality of an option.  Consistent with 

behaviors previously observed in tasks like this (e.g., Mellers 1981), after several rounds 

of feedback participants became quite good at making forecasts. That is, they acted “as 

if” they had learned the multi-attribute rule that determined true quality, and were using it 

to make forecasts.  Yet, the surprising empirical outcome associated with this experiment 

was that in the course of making judgments a subset of respondents asked to provide 

concurrent verbal protocols gave no indication that they actually made judgments using a 

multi-attribute rule.  Instead, they appeared to make their judgments using a pattern-

matching process whereby they made forecasts about how similar any given new profile 

was to a previously-seen profiles with known qualities.  Their judgments improved over 

time not because they were developing better knowledge of a rule, but because the 

database of referent examples improved, and this data base allowed them to effectively 

mimic the outcomes of such a rule.  
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 Should choice modelers be worried by this result?  Not necessarily; in the same 

way that a game theorist would be indifferent to whether people play equilibria because 

they actually calculate the optimal strategy or they stumble their way there by trial and 

error (Fudenberg and Levine 1998), one presumes that random utility theorists would be 

happy to view multi-attribute utility theory as an as-if model of the way in which people 

evaluate options.  If pattern-matching heuristics produce judgment data that are well-

approximated by stable linear-additive models, then one clearly can build a paradigm 

around this; mathematical convenience in this case would trump behavioral realism.  But 

is there such an isomorphism, and how widespread might it be? 

 It is easy to show that a mathematical equivalence exists between pattern-

matching and linear-additive rules, but only under a limiting condition of product-class 

experience: when the underlying (or true) reward structure is linear-additive in attributes 

and decision makers have had direct experience with all of the product profiles under 

study in a given multi-attribute space.  In contrast, the more limited a person’s 

judgmental experience in any given context, the less linear-additivity will describe their 

judgments, even if the underlying reward function is linear-additive. 

 To demonstrate, consider the following pattern-matching model of expected 

valuations:  

  pVEV izzizi )1()( δδ −+=      (2) 

Where EVi is the anticipated utility of some multi-attribute profile i, δiz is a 0-1 bounded 

measure of the subjective similarity between profile i and the experienced profile z that is 
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most similar to i, Vz is the experienced utility of profile z, and p is a judgmental prior1.  

Suppose, also for the sake of simplicity, that experienced utility is given by the linear-

additive multi-attribute model  

   kk XV 'β=          (3) 

where Xk is a vector of measures of the values attributes of profile k that is linear in V, 

and β is an associated weight vector.  

 It should be obvious that expression (2) is equivalent to (3) when δiz equals 1 for 

all comparisons i,z; that is, when every profile has been experienced by the consumer.  In 

this case it truly doesn’t matter whether consumers literally calculate utilities to form 

projective judgments (expression 2) or merely act as if they do (expression 1).  But what 

about a more realistic case where consumers have limited experiences in a market; that is, 

for any given possible complete factorial array of profiles, what happens if only a small 

subset have valuations?  In such cases (2) and (3) will not be equivalent; instead 

consumers will reveal an “as if” multi-attribute judgment rule that departs from the 

asymptotic (or full-information) rule (3) in predictable ways.  Specifically, if we regress 

projected preferences (EVi) against the attributes of each option we do not recover a true 

or asymptotic utility function (2), but instead a multiattribute function whose form is 

distorted by the similarity of each i to the actually experienced profiles z, their true 

valuations, and the judgmental prior; that is, pXEV izzizi )1()'( δβδ −+= .  

 To illustrate the properties of such an approximation, consider the case of a 

simple judgment context in which consumers evaluate the attractiveness of each of a 

                                                 
1 Expression (2) can be seen as a special case of the general class of case-based decision models described 
by Gilboa amnd Schmeidler (1995) where the similarity function is defined over the maximum-similarity 
referent stored in memory.  
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number of two-attribute options on a subjective scale.  Each option is described by a pair 

of levels that represent a combination of two six-level attributes. Respondents judge all 

36 combinations represented by the factorial array.  As above, for simplicity we assume 

that the true utility that would be observed by a consumer consuming each of the profiles 

is given by the additive rule 21 iii xxV += .  Upon entering the task, however, a consumer 

has only limited experience in the category, and has directly experienced only a small 

subset of the 36 profiles.  We consider the implications of approximating a pattern-

matching judgment rule (expression 1) with a linear model in two illustrative cases: 1) the 

consumer’s previous experiences correspond to the two extremes of the attribute space 

(the 1,1 and 6,6 profiles, respectively), and 2) the consumer has experienced three mid-

valued options: the 2,2, 3,3, and 4,4 options.  To generate a numeric example we used a 

normalized similarity metric λδ )]|/||(1[
)min()max( zz zz kziz

k
iz xxxxMAX ∑∑ −−−=  

where λ=4, and assumed a prior (p) equal to the 1-12 response scale mean.  

 In Figure 2 we plot the resulting two-factor interaction graphs for each of these 

two cases (2b and 2c) to be contrasted with the normative interaction (2a). 

Figure 2a 
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Figure 2b 
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Figure 2c 
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X1*X2 Interaction when judgments are made with a pattern-matching 
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Figures 2b and 2c provide good and bad news about the ability of linear models to mimic 

pattern-matching judgment processes.  The good news is that they show as long as a 

consumer’s previous experiences are well chosen (in this case at the extremes of utility 

continua), and under an appropriate (here, neutral) prior, simple linear models can do a 

good job of describing contemporaneous preferences and yield parameter estimates that 

are asymptotically stable2.  Specifically, in Figure 1b we see that judgments generated by 

a pattern-matching process that is informed by the utility extremes will forecast the true 

valuations of unfamiliar intermediate profiles well, and should be well described by a 

linear-additive model.  

 The bad news is that if experiences (and/or priors) are not well chosen, the value 

of linear-models will be greatly reduced in stability and descriptive validity.  As shown in 

Figure 1c, when referent experiences lie in the interior of the attribute space (which may 

be more typical in practice), the revealed preference surface becomes nonlinear, 

                                                 
2 That is, recover the preferences that would be revealed under full information. 
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displaying an interaction at the more distant (relative to experience) tail.  This implies 

that not only would a simple linear model do a poor job of capturing contemporaneous 

preferences (one needs a data design that can estimate nonlinear effects and interactions), 

but it also would poorly forecast the preference structure observed at future times when 

the consumer’s scope of experience in the category expands.  

 This latter result holds two implications for applied choice analysts.  The first is 

that linear-additive models will often be ill-suited for describing the association that 

exists between product attributes and product choices novice consumers.  Differential 

knowledge of utility over any multi-attribute space will produce non-linearities and/or 

interactions that such models will fail to capture.  But care must be taken in recalling that 

these interactions would not be manifestations enduring conditional preferences (for 

example, a sustained increased sensitivity to service variations given higher paid prices), 

but rather the transient effects of limited knowledge of preferences over the attribute 

space.  As such, they would be expected to display little temporal stability, perhaps 

vanishing completely as consumers become fully knowledgeable about a product 

category. 

The effect of unspecified variability in the unobserved components of utility.  

It might be argued, of course, that because novice consumers are likely to be 

heterogeneous in the kinds of product experiences they have had, individual-level 

departures from linear-additivity due to use of naïve pattern-matching rules could well 

wash out when markets are viewed in the aggregate.  That is, one might be able to 

proceed with traditional linear-additive choice models under the assumption that transient 

individual differences in functional form would be captured by the variance of the 
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unobserved component of utility in a traditional linear-additive model.  If the effects of 

subsequent learning similarly cancel themselves out across the population, then the 

coefficients of the linear-additive model—though perhaps wrong at the individual level—

would provide good aggregate long-term forecasts of preferences.  

Is the problem solved that easily?  The answer, unfortunately, is “no”, for two 

reasons. First, because choice model estimates are perfectly confounded with the variance 

of the unobserved component of utility (see, e.g., Swait and Louviere 1993), changes in 

consumer experience that alter the structure of the unobserved component over time 

would also induce temporal changes in these estimates. Without a theory of what is 

driving the error terms, the exact nature of these temporal changes would be impossible 

to predict.  For example, consider a choice analysis that reveals novice consumers to be 

statistically insensitive to variations in service quality.  The confound of value and 

variance implies that that the meaning of this result fundamentally ambiguous: one could 

never know for sure whether it accrues to that fact that consumers have an enduring 

indifference to service, or have a sensitivity that is being temporarily masked by the 

aggregate effect of consumers using a heterogeneous mix of pattern-matching heuristics.  

If the latter is the case, parameters estimated now would be of little value for long-term 

planning purposes.  

A second, more subtle, problem is that if a population is heterogeneous in their 

category knowledge, the variance of the unobserved utility component should also not be 

constant across a sample at any given point in time.  Hence, inferences about preference 

heterogeneity derived from model parameters will be confounded with knowledge 
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heterogeneity, or variations in the standard deviation of the unobserved component of 

utility across consumers.  

 For example, consider a case in which a population is characterized by a mixture 

of experienced consumers who reliably choose products based on a given set of attributes, 

and less experienced consumers whose choices are less reliably linked to attributes (e.g., 

they make judgments by referring to one of two products with which they have had direct 

previous experience).  In both groups the consumers differ in their true sensitivity to price 

(that is, the sensitivity to price that would be observed if one controls for all unobserved 

influences on choice).  So, imagine that there are four types of consumers as shown in 

Table 1a below: 1) low choice variability combined with low sensitivity to price and high 

sensitivity to quality; 2) low choice variability combined with high sensitivity to price 

and low sensitivity to quality; 3) high choice variability combined with low sensitivity to 

price and high sensitivity to quality; and 4) high choice variability combined with high 

sensitivity to price and low sensitivity to quality.  In this table the “scale” corresponds to 

the inverse variance of the unobserved component of utility   

Table 1a: Consumer preference & variability types 
Variability 

X 
Preference 

Low price sensitivity; high 
quality sensitivity 

High price sensitivity; low 
quality sensitivity 

Low 
Precision 

1. Vi = 1.5Qi – 0.5Pi 
scale = 0.6 

2. Vi = 0.5Qi – 1.5Pi 
Scale = 0.6 

High 
Precision 

3. Vi = 1.5Qi – 0.5Pi 
scale = 1.9 

4. Vi = 0.5Qi – 1.5Pi 
scale = 1.9 

 

 Now, consider parameters estimated from these four consumer types, as shown in 

Figure 1b. It should be noted that “scale” multiples the systematic utility component, so 

the parameters in the above table are “true” parameters. Note that if we know the true 
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parameters, we can conclude that consumer types 1 and 3 are identical and types 2 and 4 

are identical, except for choice variability. Yet, with the scale confound, we would 

conclude that none of the four consumer types are alike, although we might incorrectly 

conclude that 1 and 4 share sensitivity to quality, while 2 and 3 share sensitivity to price. 

A similar result would obtain if instead of discrete consumer types/classes one had 

continuous distributions with the true parameters as means.  

Figure 1b: Estimation realization from Table 1a 
Variability 

X 
Preference 

Low price sensitivity; high 
quality sensitivity 

High price sensitivity; low 
quality sensitivity 

Low 
Variability 

1. Vi = 0.9Qi – 0.3Pi 
 

2. Vi = 0.3Qi – 0.9Pi 
 

High 
Variability 

3. Vi = 2.85Qi – 0.9Pi 
 

4. Vi = 0.9Qi – 2.85Pi 
 

 

Are variance effects on model parameters real? 

An obvious objection to the above discussion and stylized example is that they 

only establish the possibility that analyses of preference heterogeneity based on standard 

methods may be misleading.  In turn, this begs the questions as to the degree to which 

individuals indeed differ in the variance of the unobserved utility component, and the 

degree to which preference parameters are confounded by this variability.  

 An illustration of the magnitude and nature of variance effects was recently 

provided by Louviere and Eagle (2006).  They report the results of 66 choice experiments 

whereby choice models were estimated for single individuals, which allows one to 

estimate the size of the variance of the unobserved component of utility in choice.  To 

provide a flavor of these analyses, in the Appendix we report the results of twenty-one 

individual-level model estimates from two of the 66 experiments, reflecting choices 
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among hypothetical pizza products and cross-country flights. These two contexts are 

reported simply for convenience and because they have fewer parameters than other 

contexts. The two experiments used a common underlying optimally efficient design to 

estimate the main effects of a 23 x 43 factorial based on three options per set.  Participants 

were members of an Australian opt-in online panel; completion rates for both conditions 

were over 80%. 

 Tables A1-a and A1-b in the appendix display the individual-level MNL estimates 

for the subjects who participated in the experiments, and Tables A2a and A2b give 

summary statistics for the experiments. The individual-level model estimates allow one to 

calculate residuals from model predictions, in turn allowing one to regress design matrix 

codes on residuals.  This auxiliary regression allows one to determine if a) significant 

unobserved variability remains after MNL estimation, and b) the remaining unobserved 

variability is systematic (i.e., residuals systematically related to design elements).  Both 

conditions produced similar results, with 18 of the 21 individuals in the pizza condition 

and 17 in the flights condition exhibiting regression results that are significant at the 90% 

C.I.  Thus, the vast majority of individuals in both conditions have significant remaining 

unobserved variability that is systematically related to design attribute levels.  Thus, it is 

unlikely that the individuals satisfied constant error variance assumptions.  

In Figures 2a and 2b we graph the individuals’ mean squared model residuals 

against their airfare and price utility estimates, for flights and pizzas, respectively.  
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Figure 2 

Both graphs are consistent with random utility theory, which predicts that as error 

variances increase (measured by mean square residuals), model parameter estimates 

should converge to zero.  Both graphs display this result, allowing one to “see” that the 

magnitudes of the airfare and price estimates are a function of the variability in each 

individual’s choices.  Thus, in the case of airfares and pizza prices, a large proportion of 

parameter differences between individuals can be explained simply by differences in 

individuals’ choice variability.  Thus, model estimates of these effects are significantly 

confounded with individual differences in variability. 

More specific details of the breakdown of these effects are as follows: 

1. Summary of variance explained by choice variability (MSR) between individuals 
(flights) 
 

1. Travel times - 6.8% 
2. Airfares – 22.1% 
3. Airline brands – 21.1% 
4. Frequent flyer program – 0.4% 
5. Number of stops – 24.5% 
6. Free drinks – 9.1% 
7. ASCs – 20.5% 
8. Average across all individual estimates – 16.2% 
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2. Summary of variance explained by choice variability (MSR) between individuals 
(pizzas) 
 

1. Pizza chain - 1.2% 
2. Pizza prices – 21.2% 
3. Number of toppings – 23.6% 
4. Free bread – 0.0% 
5. Free drinks – 8.6% 
6. Free desert – 12.9% 
7. ASCs – 19.3% 
8. Average across all individual estimates – 13.6% 
 

 The importance of these results is that they demonstrate the danger of interpreting 

empirical variance in choice model parameters as uniquely reflective of either 

preferences or preference heterogeneity.  Specifically, if true parameters are confounded 

with error variances, choice models can forecast future choice behavior well only if the 

variances are temporally stationary and/or they do not co-vary with other factors that 

were constant in the data source used for estimation, but are not constant at times or 

places or in segments to be predicted.  As noted above, there is good reason to suspect 

that they often will not be constant, particularly in the case of developing markets, but 

also in many cases where no attempts are made to understand other possible sources of 

variability in choices (a typical case in choice modeling).  

Dealing with complex choices in mature markets: short cut heuristics and their 

representation 

 The above discussion focused on problems modeling choices in early stages of 

market evolution when the set of market alternatives is small, but the uncertainty in how 

to evaluate these alternatives is high.  As markets approach maturity, however, the 

opposite problem occurs; while there may be little uncertainty in forecasting the utility 

that consumers will derive from individual offerings, their choices may well be more 



 21

difficult if there are a large number of differentiated offerings.  In this section we take up 

what we know about how informed consumers make choices from complex sets, and the 

implications of this for standard choice analyses.  

 A pervasive finding of work that has studied processes associated with complex 

choices is that decisions are often guided by non-compensatory screening rules that act 

either to produce unique choice outcomes or to sequentially reduce choice sets to 

cognitively-manageable sizes (e.g., Payne, Bettman, and Johnson 1993).  For example, 

individuals may eliminate alternatives if they a) fail on a critical product attribute (a 

conjunctive-elimination rule), b) fail to offer at least one a distinctive benefit across 

attributes (a disjunctive elimination rule), or c) are unattractive by virtue of their rank-

order position in a set (a rank elimination rule; e.g., Einhorm 1970).  In theory, the use of 

such decision rules could be problematic for random utility models because they imply 

that indirect utility functions are not strictly linear and additive. Instead, options are 

evaluated using non-compensatory rules that make only limited use of attribute 

information.   

 As we earlier showed, under some conditions linear models can provide a 

reasonably close first approximation to decisions made by pattern-matching rules.  

Fortunately, they also can provide a reasonably close first approximation to non-

compensatory screening or elimination rules--as long as willing to consider non-additive 

forms that admit interactions among cues (see, e.g., Einhorn 1970).  For example, 

consider a consumer who makes a series of binary judgments about whether each of 

several products described by two attributes, X1, and X2, is acceptable or not. The 
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consumer makes her judgments using a non-compensatory conjunctive screening rule, as 

follows:  

 Acceptable if [X1>α] and [X2>δ].     (4) 

It is easy to show that a continuous algebraic analog to (4) exists as long as there 

is imprecision in the attribute thresholds α and δ that drive judgments in a given data set 

(e.g., due to momentary changes in tastes; or when calibrated from data from a sample, 

heterogeneity in thresholds).  If α and δ act as random variables, the probability that a 

product profile (Xi1, Xi2) will be judged as acceptable is given by the product of the 

marginal probabilities that the realized (and unobserved) values of α and δ are less than 

Xi1 and Xi2 at the moment of choice; i.e., 

 Pr(i| Xi1,Xi2)=Pr(Xi1>α)Pr(Xi2>δ).     (5) 

The continuous-functional analog of (1) that follows depends on the assumed functional 

form of the distribution of errors associated with the acceptance thresholds α and δ.  For 

example, if the cumulative densities of the errors associated with α and δ can be 

approximated by a linear probability model of the form.  1101 )Pr( ii XaaX +=> α  and 

211 )Pr( ibi XbbX +=> δ , then data generated by a conjunctive process for generating 

acceptability judgments would correspond to the bilinear utility function  

Pr(i| Xi1,Xi2)= ))(( 210110 ii XbbXaa ++  

         = 21322110 iiii XXkXkXkk +++  .   (6) 

(e.g., Keeney and Raiffa 1976).  Expression (6) contains an important implication, 

namely that if the errors are associated with thresholds and the distribution of these errors 

is approximately linear, conjunctive screening processes are mathematically equivalent to 

a linear probability model that recognizes linear-by-linear interactions between attributes.  
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By extension, the finding of fan-like (linear-by-linear) interaction among a pair of 

attributes in a multi-attribute judgment experiments (e.g., a full-factorial conjoint design) 

has long been seen as suggesting the likely use of noisy screening rules in judgment by 

decision makers (e.g., Louviere 1988).  

 Note that we can extend this idea to any arbitrary set of conjunctive or disjunctive 

screening rules and error distributions.  Specifically, for a set of independent acceptability 

judgments generated by a general family of stochastic screening rules of the form 

(X>,<,or=ζ), it should be clear that there will always exist an equivalent continuous 

algebraic counterpart of the form: 

 )()()|Pr( ininn XXgXfXi +=      (7) 

where )( iXfn  is a general polynomial expansion about the attribute vector Xi, viewed by 

decision maker n, and )( in XXg is a similar expansion over the vector of cross-products 

or interactions among of the elements of the vector X3. 

The costs of misspecification: an empirical illustration 

Expression (3) seems to provide a simple remedy for capturing choice behavior if 

one suspects that consumers use an unobserved array of non-compensatory screening 

rules. That is, simply construct an appropriate design that allows one to estimate a 

generalized set of interactions among product attributes.  Such designs should allow 

analysts not only to capture the average effect of using non-compensatory rules on 

decisions, but also heterogeneity in the structure of these rules across a population.  So, it 

is surprising that there has been few attempts in choice-model applications to estimate 

                                                 
3 Expression (3) follows by allowing the error distribution for any screening parameter to be represented by 
a generalized polynomial, and by assuming that the heuristic process corresponds to a series of independent 
condition-act statements.  
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such general forms.  There appear to be two reasons why this is the case.  The first is 

pragmatic, namely that ecological data like a panel are rarely rich enough to support 

identification of complex models like (3).  The second is that laboratory choice 

experiments that allow estimation impose significant data requirements that involve 

obtaining observations from (potentially) large factorial arrays, which historically has 

been seen as impractical in most field settings (although, as noted by Louviere, Hensher 

and Swait, 2000, this in fact is not true). 

 However, a more likely reason why more complex indirect utility functions are 

not more commonly estimated is the long-standing result by Dawes and Corrigan (1974), 

namely that estimating higher-order interactions adds little to model fit or out-of-sample 

predictive ability.  Specifically, as long as attributes are monotonic in their effect on a 

criterion and attributes across alternatives in choice are not maximally negatively-

correlated (i.e., form a perfectly efficient Pareto set), it will be the case that a strictly 

linear-compensatory choice model will mimick many non-compensatory choice rules 

(e.g., Dawes and Corrigan 1974; Einhorn, Kleinmuntz, and Kleinmuntz 1979; Johnson, 

Meyer, and Ghose 1988).  In short, if one only cares about statistical description and 

prediction, simple linear models will often be good enough for who they are for.  

 But what if analysts are interested in more than prediction, and want to use choice 

models to derive insights about processes and/or the substantive nature of preferences in 

a population?  Now, robustness no longer applies, and omitting interactions from the 

indirect utility function not only can lead to biased estimates, but it also can lead analysts 

to misleading conclusions about how product attributes influence market choices.  
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 As an example, consider what happens if one designs a typical conjoint 

experiment, but instead of asking individuals to rate or rank the experimental product 

profiles, one asks them to evaluate each option and state if they would (yes) or would not 

(no) choose each.  To make the example concrete, we consider pizza delivery services 

described by four attributes (price, brand name, number of toppings and type of crust); 

each attribute has two levels, and each individual is asked to evaluate and respond to the 

entire factorial (24). 

 We constructed 15 hypothetical individuals, each of whom is represented by a 

particular deterministic decision rule to say “yes” or “no” to each pizza profile.  For 

example, an individual might use the rule “say yes if price is low and crust is thin”, or 

“say yes if brand is Dominos, crust is thick and number of toppings equals 4”, or “say yes 

if price is low and brand is Pizza Hut”. We apply the 15 rules to generate the yes’s and 

no’s associated with each of the 16 experimental profiles.  Thus, the dataset produced by 

this process contains 16 scenarios x 15 individuals, or 240 observations. In the interests 

of space we omit typical preliminary analyses that one should conduct on the dataset, 

such as calculating marginal frequencies (conditional means) for each attribute level.  We 

can summarize these analyses by noting that like almost all choice experiment datasets, 

the marginal frequency counts indicate that all effects are large and have acceptable signs 

(preference directions). 

 To begin our analysis of these data, we first estimate a simple, one-size-fits-all 

binary logit model.  Model estimates and associated statistics are shown in Table 2 below. 

By and large all the effects are significant, although crust type is marginally significant. 

Instead of standard log-likelihood results, consider how well the estimated model predicts 
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observed response probabilities.  That is, each hypothetical individual faces the same 16 

scenarios; hence, we can calculate the observed proportion of yes’s for each scenario, and 

compare this with the predicted proportion of yes’s from the estimated model, allowing 

calculation of conventional r-square values.  The simple model fits the estimation data 

fairly well, with an r-square value of 0.73.  If presented such a set of results many 

analysts would likely conclude that their work was done; the model fits well, and yields 

intuitively reasonable insights about how attributes affect choice.  

Table 2 

Effect Estimate StdErr Wald P(wald)
Pizzaname -0.4911 0.1887 6.7697 0.0093
Pizzaprice -0.5585 0.1916 8.4994 0.0036
Crusttype 0.2933 0.1832 2.5631 0.1094
Ntoppings 0.3588 0.1847 3.7758 0.0520
Constant -1.8146 0.2067 77.0804 0.0000
 

 But suppose we estimate an auxiliary regression on the residuals in the design 

matrix.  Given the nature of the data generating process, it is not surprising that we obtain 

a highly significant regression result (F = 3.5, P(F)<0.000), with each main effect 

significant at the 90%C.I., and at least one interaction (price x number of toppings) also 

significant.  So, it should be clear that something is wrong with the binary logit model. 

 To address this, we add all the two-way interactions to the one-size fits all binary 

logit, and re-estimate. This model fits the estimation data significantly better, although 

the price x number of toppings interaction is not significant.  But there is still a problem, 

namely an auxilliary regression analysis of the residuals from this model again produces 

a significant result (F=2.5, P(F)<0.002); the main effects again are significant, and the 

price by number of toppings interaction again is significant.  At this point, if we were 
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presenting this finding to a conference, we would expect to hear the typical refrain of 

“you need to take preference heterogeneity into account”. Of course, in the present case, 

it is not preference heterogeneity that is the source of misspecification, but rule 

heterogeneity; we have overlooked heterogeneity in the array of interactions that 

represent different non-compensatory rules.  

 As discussed above, each decision rule that was constructed can be represented as 

a Linear Probability Model (LPM).  Each individual has a different LPM, and the LPMs 

generally will contain interaction terms.  Table 4 below displays each of the 15 LPMs 

representing the decision rules.  Most rules (individuals) contain one or more zero 

estimates, indicating that these particular effects are not part of the rule.  The table is 

divided into two parts: a) the left-hand side contains estimated main effects, with r-

squares for each individual in column seven; and b) the right-hand side contains all two-

way interactions, with associated r-squares for all main effects and two-way interactions 

in the last column.  It should be obvious that all r-squares increase substantially when we 

add interactions. Individuals with an r-square value of 1.0 are fully described by a rule 

that requires only main effects and two-way interactions; individuals with r-square values 

less than one require additional interactions that we omit to save space. 
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Table 4: LPM Estimates for 15 Rules 

     
Num 

of
Main

Effects brand brand brand price price crust 
Main

Eff+Int

Ind Const Brand Price Crust Tops R-Sq price crust ntops crust ntops ntops R-Sq

1 0.13 -0.13 -0.13 -0.13 0.00 0.43 0.13 0.13 0.00 0.13 0.00 0.00 0.86

2 0.25 -0.25 0.00 0.00 -0.25 0.67 0.00 0.00 0.25 0.00 0.00 0.00 1.00

3 0.25 -0.25 -0.25 0.00 0.00 0.67 0.25 0.00 0.00 0.00 0.00 0.00 1.00

4 0.06 0.06 -0.06 0.06 0.06 0.27 -0.06 0.06 0.06 -0.06 -0.06 0.06 0.67

5 0.06 -0.06 -0.06 0.06 0.06 0.27 0.06 -0.06 -0.06 -0.06 -0.06 0.06 0.67

6 0.13 0.00 -0.13 -0.13 0.13 0.43 0.00 0.00 0.00 0.13 -0.13 -0.13 0.86

7 0.25 0.25 0.00 0.25 0.00 0.67 0.00 0.25 0.00 0.00 0.00 0.00 1.00

8 0.13 -0.13 0.00 -0.13 0.13 0.43 0.00 0.13 -0.13 0.00 0.00 -0.13 0.86

9 0.25 -0.25 0.00 0.25 0.00 0.67 0.00 -0.25 0.00 0.00 0.00 0.00 1.00

10 0.13 0.00 -0.13 0.13 0.13 0.43 0.00 0.00 0.00 -0.13 -0.13 0.13 0.86

11 0.25 0.00 -0.25 0.00 0.25 0.67 0.00 0.00 0.00 0.00 -0.25 0.00 1.00

12 0.25 0.00 -0.13 0.00 0.00 0.08 -0.13 0.00 0.25 -0.13 -0.13 0.00 0.67

13 0.25 0.00 0.25 0.25 0.00 0.67 0.00 0.00 0.00 0.25 0.00 0.00 1.00

14 0.13 -0.13 -0.13 0.00 0.13 0.43 0.13 0.00 -0.13 0.00 -0.13 0.00 0.86

15 0.06 -0.06 -0.06 -0.06 0.06 0.27 0.06 0.06 -0.06 0.06 -0.06 -0.06 0.67
 

 This analysis gives us a much richer and more accurate view of what drives 

choices in this market.  For example, it highlights that various product attributes affect 

choice not as independent main effects but rather as interactions with other attributes, and 

also that the pattern of these interactions varies considerably within the population.   

Other approaches to capturing rule heterogeneity. 

It is important to emphasize that this is but one of a number of approaches that 

have been suggested over the years for representing individual non-compensatory choice 

process in choice models, each having its own comparative strengths and weaknesses 

(e.g., Gilbride and Allenby 2004).  For example, a major downside of representing non-

compensatory heuristics using generalized families of interactions as illustrated above is 
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that interaction parameters do not have a direct translation to specific noncompensatory 

heuristics.  Moreover, interpretability of parameter estimates is further confounded by the 

existence of other more mundane sources of interaction effects on choices, such as levels 

of quality being interpreted differently depending on the observed price.  

 Alternative proposals for capturing rule heterogeneity that could avoid these 

ambiguities have been provided by (inter alia) Elrod, Johnson, and White (2005), 

Gilbride and Allenby (2004), and Swait and Adamowicz (2001), who describe 

generalized choice models that recognize the existence of a mix of compensatory and 

non-compensatory choice heuristics.  However, a limitation of these proposed approaches 

is that they capture variation in only a small set of pre-specified heuristics (e.g., 

compensatory versus conjunctive screening rules).  If consumers make decisions using a 

mix of rules other than those assumed by these models (likely to be the case), their value 

as descriptive (and possibly predictive) tools would likely be less obvious.  

The problem of consumer foresight 

 The final topic we take up is a challenge to choice modelers in all phases of 

market evolution, namely that consumers make choices with knowledge of and 

expectations about future consequences.  An often-cited limitation of standard choice 

analyses is that they assume consumers are not only utility maximizers, but myopic utility 

maximizers whereby their goal is to choose that option that offers the highest expected 

pleasure at the time of choice, without thinking about how this choice may affect the 

utility/pleasure associated with future choices (e.g., Erdem and Keene, 1996).  Thus, few 

standard analyses allow for the possibility that a consumer may choose an option for the 

mere purpose of gathering information about it, delay choice out of a belief that a better 
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choice set will be available at a later point in time, or elect not to choose an obviously 

superior option in order to savor the anticipation of its later consumption.  Naturally, 

standard models have no problem describing choices in such settings; a decision to delay 

consumption, for example, can be well described by a model that posits low utility for the 

good at the time of choice.  But such a mere statistical description clearly is dissatisfying 

because it ignores dynamics that produce the behavior (the distinction between not 

choosing and delaying choosing); and such a model only can predict behavior well in 

contexts identical to that in which it was estimated.  

 A perhaps more serious consequence of overlooking dynamics is that reduced-

form or cross-sectional models of dynamic processes often will yield parameter estimates 

that suggest that consumer decisions are less rational than they really are.  For example, a 

classic finding involves upward sloping contemporaneous demand curves.  If consumers 

believe that prices set by sellers will be higher tomorrow than they are today, short-term 

price increases may display positive elasticities (see, e.g., Erdem, Imai, and Keane 2003).  

The reason is not that consumers prefer higher prices to lower prices, but instead their 

buying decisions are made in light of their beliefs about what future prices will be, which 

can give the appearance of a positive short-term reaction to observed price increases. 

 Due to increased recognition of these concerns, a major growth area in choice 

modeling research in marketing has been dynamic structural models that explicitly 

assume that consumers are multi- rather than single-period choice optimizers (e.g., Erdem 

and Keene 1996; Gonul and Srinivasan 1996; Erdem, Imai, and Keane 2003; Song and 

Chintagunta 2003).  General acceptance of this work, however, has been limited by two 

factors.  One factor is the pragmatic problem of computational complexity, such that 
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efficient ways to empirically solve complex dynamic optimization problems have become 

available only recently, and are not part of the standard set of estimation tools familiar or 

available to applied choice modelers.  This limitation may only be temporary, but the 

second factor is more basic, namely, the complexity of such models is viewed by some as 

an unreasonable behavioral description of consumer planning (Houser, Keane, and 

McCabe 2004).  Specifically, given the well-known finding that individuals find it 

difficult to make once-off decisions in an optimal manner (e.g., choosing gambles in the 

way prescribed by expected utility theory), intuition suggests that they would have little 

chance to optimally solve more complex dynamic programming problems.  Yet, this is 

exactly what dynamic structural models assume that consumers are able to do. 

 But is this intuition correct?  It is important to remember that in economics the 

acid test of whether a given model is theoretically tenable is not whether it is cognitively 

realistic (probably few are), but instead whether it describes equilibrium behavior that 

could be reached by evolutionary processes.  That is, boundedly-rational decision makers 

need only be more prone to repeat actions that tend to give higher payoffs.  The fact that 

consumers make little attempt to plan ahead or have no idea what “backward induction” 

means does not preclude them from acting as if they do.   

 As an example of this, Hutchinson and Meyer (2005) recently reported the results 

of a study examining the ability of people to make accurate judgments about the expected 

maxima of distributions, an ability assumed in most optimal dynamic decision models 

(e.g., job search models).  They studied this in two related experiments.  The first was a 

paper-and-pencil task in which participants asked to provide intuitive estimates of the 

expected value of the largest number that would be realized from N draws form a 0-100 
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uniform distribution, where N varied from 2 to 10. Perhaps not surprisingly, participants 

did not perform this task well, displaying a consistent tendency to underestimate the true 

maxima.  For example, for the case of two draws (the simplest case), where the normative 

answer is 67, the mean estimate was 58 with individual guesses ranging from 50 to 65.  

Given this result, one might think that it reasonable to question any model that assumes 

that people are good intuitive judges of maximum order statistics. But would that be 

correct?  

 To answer this, a second experiment was conducted in which participants were 

asked to play a lottery game for money that required implicit rather than explicit 

knowledge of expected maxima.  Specifically, subjects played a computer game that 

required them to place a bet on which of two sets of N draws from a uniform urn would 

yield the higher maximum.  In the game participants first observed a simulated dealer 

take N draws from the urn (N varied across tasks).  After seeing the maximum value 

drawn by the dealer, they were then asked to indicate whether this value was likely to be 

higher than that which would be realized given N new draws.  After participants made 

this prediction, N new draws were taken, and the outcome revealed.  If their directional 

bet proved correct they received a small cash payment, but they received nothing if their 

bet proved wrong.  Participants placed 30 such bets within each of three draw-size 

conditions (2, 4, and 6).  

 While participants may not be able to compute the maxima of distributions, it 

turns out that they can play as if they can. Across all three N-size conditions and trials, 

participants placed the normatively-correct bet more than 80% of the time.  In Figure 3, 
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taken from Hutchinson and Meyer (2005), we graph the proportion of correct guesses 

over trials for the N=4 condition (the others look similar):  

Figure 4 
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What is surprising about these data is that they not only reveal that subjects had a good 

implicit knowledge of maxima, but that they acquired this “as-if” knowledge quite 

rapidly. In many cases a single experience with feedback seemed to be enough to do the 

trick (Figure 4).  Hence, much like the famous example of pool players and physics, the 

requirement for behavior to be optimal is not that people can compute optima, but rather 

that they live in a world that naturally reinforces optima. 

 But such optimism about “as if” optima comes with a strong word of caution, 

namely that the world does not provide consumers with frequent opportunities to learn, or 

reliably rewards optimal behavior.  For example, in many cases the optimality of strategic 

choice policies cannot be observed in the short run, but only by their repeated application 

over a long time horizon (such as dieting).  The more short-sighted a consumer, or the 

more stochastic the short-term reward, the more she is likely to stray from optimality by 
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basing decisions on tangible short-term consequences rather than less-tangible long-term 

ones.  

 To illustrate this, Meyer and Kunreuther (2005) describe the results of a computer 

simulation designed to assess the ability of people to make optimal decisions to invest in 

long-term protection against a low-probability, high-consequence hazard, which in this 

case is an earthquake.  In the simulation participants were asked to imagine that they 

would be living for five years in a country that was prone to periodic earthquakes.  They 

were given a home with a certain fixed value, and as time elapsed in the simulation they 

had the option to invest some of this home value in permanent home improvements that 

would potentially lower the home’s vulnerability to earthquake damage or instead to 

invest it in a bank at a fixed interest rate.  At the end of the simulation they were paid an 

amount tied to original home value minus losses due to earthquake damage and 

investments in protection.  

 The central manipulation was whether or not these investments in protection were 

truly effective.  Participants were told that there was a 50% chance that the investments 

did little to reduce damage, and a 50% chance that they would be highly effective.  To 

allow learning, they played eight rounds of the simulation during which they had an 

opportunity to observe not only the damage that their own home suffered from 

earthquakes conditional on their investments, but also the investments and damage made 

associated with other players. 

 In Figure 5 we graph the actual percentage investments over each five-year block 

of the simulation by the optimal level of mitigation (conditional on knowing its true 

effectiveness).  
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The figure shows a disturbing result, namely that not only were the participants unable to 

learn the investment optimum, but the mean investment level was systematically higher 

when investments did nothing to lower earthquake losses.  

 What explains this dysfunctional pattern of behavior?  The answer is twofold.  

First, a statistical analysis of the period-by-period investment decisions indicated that the 

primary driver of decisions to invest was the magnitude of loss actually experienced in 

the previous period.  Hence, effective mitigation had a paradoxically negative effect on 

participant’s perceived urgency to invest more when it was really effective.  The second 

reason is that because quakes were infrequent, the benefits of protection were rarely 

immediately seen. Instead, it was more common for participants who invested in 

protection to find out that it was not immediately needed than to find out it was 

immediately useful, a factor that further suppressed interests in buying.  

 The contrasting nature of these two examples underscores the fact that the choices 

we observe in markets are much more a reflection of the structure of the environmental 
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feedback received by consumers than intuitive math abilities.  The optimistic implication 

of this for applications of dynamic structural models that criticism of their validity as a 

literal account of how decisions are made is largely irrelevant to their status as useful 

empirical theories.  More precisely, the fact that one the component mathematical 

assumptions of a model (e.g., that people can accurately judge order statistics) is 

empirically invalid does not imply empirical failure of the holistic predictions of an 

associated model.  Rather, that outcome depends on something different, namely whether 

consumers can observe feedback from the choices they make in markets, and whether the 

nature of this feedback in the long run will favor economically optimal behaviors over 

suboptimal ones.  

Discussion 

 This paper was motivated by a desire to enhance cross-learning among the three 

traditionally disparate behavioral, economic, and statistical approaches to studying 

individual choice behavior.  Central to the discussion was the suggestion that at best most 

current choice models offer a static snapshot of preferences in markets.  The estimated 

parameters of choice models reflect not just the enduring preferences that consumers may 

have for products and attributes, but also the momentary state of consumer learning about 

products and/or heuristic short cuts they use to deal with the complexity of markets.  That 

is, the models provide something akin to a one-dimensional view of a multi-dimensional 

process.  In our view the key to building better planning models is not to build ever-more 

complex and accurate statistical descriptions of such a one-dimensional projection, but 

instead we should be trying to better understand the multi-dimensional process that 

underlies the projection.  
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 Although this paper focused on how behavioral theory can help choice modelers 

gain better understanding, it is important to emphasize that a reverse flow can be no less 

valuable.  That is, economic theory may be useful in allowing behavioral researchers to 

build better models for explaining the simple mechanics that actually underlies choice 

anomalies or laboratory findings where behavior appears to depart from the prescriptions 

of rational choice theory.  

Reversing the dialogue: an example 

 To illustrate, consider multi-attribute choice models developed to account for an 

anomaly in choice behavior known as the compromise effect (Tversky and Simonson 

1993).  A simplified account of the effect is that when participants in choice experiments 

are shown an array of options arrayed along a Pareto frontier in a multi-attribute space, 

there is a tendency for the aggregate choice portions to be massed toward the center, 

regardless of where the choice options are aligned along the frontier.  Hence, one can 

increase the odds of an option being chosen simply by framing it as the compromise 

alternative in a set.  

 This effect is termed an anomaly because, taken at face value, it violates the 

fundamental property of random utility theory known as regularity. That is, one should 

not be able to increase the odds of choosing an alternative in a choice set by enlarging the 

set (i.e., the choice probabilities should obey regularity).  Yet, studies of the compromise 

effect suggest that just such an effect is possible, namely that one can increase the choice 

share of an extreme option by introducing a new option that is even more extreme.  

 Several researchers have observed that this effect can be reconciled within a 

random-utility framework by assuming that consumers make choices using strict utility 
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functions where attribute values are assessed vis-à-vis choice set-specific extremes (e.g., 

Tversky and Simonson 1993; Kivetz, Oded, and Srinivasan, 2006; Shen, Parker, and 

Nakamoto 2005).  For example, Kivetz, Oded, and Srinivasan, (2004) showed that 

compromise-effect data are well fit by a “contextual concavity model”: 

∑ −+=
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Where k
Sx min,  is the smallest observed value of attribute k within choice set S and ck is an 

empirical shape or concavity parameter for attribute k (Kivetz , Oded, and Srinivasan 

2004; Shen, Parker, and Nakamoto 2005 offer similar forms). 

 Does expression (8) provide a useful theoretical account of the compromise 

effect?  While there is ample evidence that it offers a good statistical description of the 

effect, its value as a theoretical explanation is less obvious.  The central issues in that the 

compromise effect not a universal phenomenon, but rather is observed only under 

restricted laboratory conditions where: 

1. Participants are uncertain how to value and trade off attributes (the effect does 

not work, for example, for choices among mixtures of monetary payoffs); and 

2. Choices are made by different groups of subjects viewing different choice sets 

with no feedback.  

Preference uncertainty, however, is not explicitly modeled in (8), making it an 

incomplete account of the phenomenon.  While the model can statistically describe 

compromise effects in laboratory tasks designed to create it, it cannot endogenously 

predict what would happen if we were to alter some of the basic conditions of the task, 

such as reducing uncertainty through learning.  
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 How might one build a model of the task where uncertainty is endogenous? One 

possible—though unlikely--starting point is to assume that participants deal with 

preference uncertainty in the way that would be prescribed by rational theories of risky 

choice.  It turns out that doing so leads to a surprising result: not only we are led to a 

model that endogenously recognizes preference uncertainty, but also reveals that the 

compromise effect may not be an “anomaly” at all.  

 To see this, imagine that you are invited to play a gamble in which you are 

offered three options, each described by a value on two attributes that are expressed in 

arbitrary units of measurement called “ps” units and “kz” units:  

    Option 

   A  B  C 

Attribute 1  75ps  50ps  25ps 

Attribute 2  2kz  5kz  8kz 

Each of the units of measurement has a linear rate of conversion to a dollar payoff, but 

the nature of this conversion is unknown.  Specifically, you only know that for each 

attribute i there is a payoff Pi=ai+biXi where Pi is the payoff in dollars, Xi is the observed 

value of i (expressed in units of ps or kz), and ai and bi are realizations of random 

variables with joint distribution f(ai,bi), such that bi≥0.  Your goal is choose the option 

that delivers the highest joint payoff across both attributes.  

 Although highly abstract, the task should be recognized as capturing the essential 

uncertainty that participants face in compromise experiments.  One is asked to make a 

choice among options in which one is unsure about the mapping that exists between 
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attribute values and utility (other than more is better), and where one has no opportunity 

to learn these tradeoffs by choice experience.  

 Is there a rational solution to this problem?  There is, and is actually quite simple.  

First, because the original units of measurement are arbitrary, and constant scale 

differences between attributes do not affect the solution to the choice problem, we can 

reduce the dimensionality of the joint distributions f(ai,bi) by rewriting the matrix above 

in an equivalent normalized form; i.e.,  

   Option 

    A  B  C 

Rank (Attribute 1)  1  .5  0 

Rank (Attribute 2)  0  .5  1 

If g(bi) is the resulting marginal distribution of bi , each option thus has expected payoff  

  ∫∫ +=
21

22221111 )(())(()(
b

i
b

ii dbbgbZvdbbgbZvPE   (9)  

   )()( 2211 bZvbZv ii +=      (10) 

Where Zij is the normalized score of option i on attribute j, and v( ) is the decision 

maker’s marginal value function over money.  

 Expression (9) makes a simple (and quite intuitive) prediction: for the current 

example were Zi1+ Zi2=1, under neutral priors (i.e., 21 bb = ), a risk-neutral decision 

maker for whom v( ) is linear would be indifferent among the options.  That is, he or she 

would recognize that there is no one best answer to the problem as long as the attribute-

payoff conversions are unknown.  On the other hand, if the decision maker were risk 
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averse; that is, the person has a value function that is strictly concave over bZ , then she 

should pick the middle or compromise option4.  

 Now, here is the critical step.  In the typical experimental set-up associated with 

demonstrations of the compromise effect (see, e.g., Kivetz, Oded, and Srinivasan 2004) 

an experimenter presents two different groups of participants different but overlapping 

choice sets in which the option that was previously the compromise is now displayed as 

either a high or low extreme.  For example, imagine in our case instead of the gamble 

above you were initially shown the set 

 Option 

  A  B  C 

    Attribute 1 50ps  25ps  0ps   

Attribute 2 5kz  8kz  10kz 

 If you had indeed initially been shown this set, which option would be the rational 

choice?  The answer is not the 50/5 option that was the compromise in the last set, but, if 

one is risk averse, the 25/8 option that is the compromise alternative in this new set.  The 

reason is this: Because the attribute scales have no absolute metric in a payoff (or utility) 

space, and since no learning is possible, the normative analysis is exactly the same for 

both the old and new choice sets.  An assumption that individuals are risk averse over 

uncertain preferences leads to a predicted bias toward choosing the middle option on a 

Pareto frontier in both cases.  

 Hence, what the compromise effect shows is not that people do not make choices 

in a way that is consistent with utility theory, but rather that one assumption that 

                                                 
4 This follows from the definition of concavity, which requires [v(.5k)+v(.5k)]>[v(0k)+v(1k)] 
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accompanies typical applied analyses may not always hold. That is, the assumption that 

attribute levels have a constant absolute meaning (and mapping to utility) across a range 

of choice sets.  If one relaxes that assumption and builds a model that formally recognizes 

uncertainty in utility exchange rates, compromise data can be easily reconciled with 

standard theory.  The effect seems anomalous only because readers have access to holistic 

knowledge about the range of attributes that participants in the experiments did not. 

 Are the models suggested by Kivetz, et al wrong?  To the contrary, the above 

analysis ironically leads us to the same conclusion we reached about how one can 

algebraically describe compromise effects. That is, their contextual concavity model 

(expression (8)) can be directly motivated as a model of risk averse preferences for 

consumers who are unsure about the scaling of attributes and subjectively normalize them 

over the range displayed in the experiment.  The critical difference is that by explaining 

the result in terms of its origins in risky decision making we can endogenously predict the 

model’s failure. Expression (10) implies that preferences for compromise options should 

vanish as uncertainty in preferences (var(b)) diminishes and/or individuals are exposed to 

choice sets with broader ranges sequentially.  

Conclusion 

 It would be wrong to conclude that the above illustration implies that rational 

models of choice enjoy any higher status as tools of explanation than any other type of 

model (behavioral or statistical), or that behavioral researchers should reject all possible 

normative benchmarks (however far-fetched) before deriving their own explanation.  In 

this case a rational model of risky choice was appropriate for entirely pragmatic reasons;   

it offered a convenient representation that satisfied the theoretical modeling requirements 
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of simplicity and endogenous recognition of uncertainty.  Were we to continue this 

modeling effort, ideally the flow of dialogue would again reverse, with behavioral 

research being asked to refine the risky choice model to better reflect the realities of how 

consumers actually deal with preference uncertainty and to incorporate lay beliefs about 

the scaling and benefits of attributes (e.g., Machina 1982).  

 As we mentioned at the outset of the paper, our goal was to foster more dialogue 

among what have become increasingly disparate approaches to understanding and 

modeling decisions and choices.  In recent years behavioral research has made significant 

advances in providing better understanding of how consumers learn preferences and 

make choices, but without a clear connection to empirical choice modeling, either in 

terms of how efforts can be improved by this knowledge or what the consequences are of 

ignoring it.  In this paper we tried to illustrate in a limited way how to begin to build such 

bridges. We hope it represents only the first words in what should prove to be a long 

dialogue.  
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Appendix: Individual Logit Estimation Results 

 

Table A1a: Individual-Level MNL Model Estimates for Flights 
ID MSR 4 hrs 5 hrs 6 hrs 7 hrs $350 $450 $550 $650 Qant Vblue Jstar AustFFlyer StopsDrinks asc1 asc2
1 0.662 -0.060 -0.150 0.200 -0.452-0.150 0.220 0.000-0.070 1.870 0.760-0.900-1.730 0.090-0.050 0.0501.6301.350
2 0.864 0.080 0.050 0.040 -0.994 1.770 0.860-0.410-2.220 0.150-0.230 0.000 0.080 0.220 0.240 -0.2301.3701.520
3 0.791 0.410 -0.030 -0.130 -1.171 1.900 0.690-0.340-2.250-0.310 0.220-0.010 0.100 0.010-0.030 0.1301.4801.350
4 0.534 0.000 0.000 0.000 -0.534 1.880 0.860-0.710-2.030 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.6001.300
5 0.534 0.000 0.000 0.000 -0.534 1.880 0.860-0.710-2.030 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.6001.300
6 0.806 0.290 -0.030 -0.290 -1.066 1.730 0.710-0.760-1.680-0.110 0.100-0.050 0.060 -0.100 0.120 -0.0101.7501.510
7 1.014 0.760 0.020 -0.070 -1.794 1.820 0.830-0.680-1.970-0.470 0.290 0.380-0.200 -0.030-0.030 0.0901.5501.300
8 1.235 0.800 0.960 -0.180 -2.995 1.170 1.020-0.530-1.660-0.120 0.120-0.010 0.010 0.130-0.020 -0.2801.2001.590
9 1.692 -0.070 0.330 0.380 -1.952 0.640 0.470-0.420-0.690 0.250 1.400-2.720 1.070 0.070 0.040 0.0401.1101.350
10 0.534 0.000 0.000 0.000 -0.534 1.880 0.860-0.710-2.030 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.6001.300
11 1.310 0.640 0.010 -0.510 -1.960 1.610 1.310-0.570-2.350 0.390-0.080 0.010-0.320 -0.080 0.080 -0.3401.4101.510
12 0.924 -0.200 -0.100 -0.110 -0.624 1.770 0.730-0.850-1.650-0.180-0.200 0.000 0.380 0.180-0.150 -0.0901.8301.400
13 0.534 0.000 0.000 0.000 -0.534 1.880 0.860-0.710-2.030 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.6001.300
14 1.520 0.700 0.330 -0.800 -2.550 0.590 0.580-0.030-1.140-0.160 0.020-0.040 0.180 -0.110 0.570 0.0102.3201.720
15 0.534 0.000 0.000 0.000 -0.534 1.880 0.860-0.710-2.030 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.6001.300
16 1.022 1.000 0.070 -0.160 -2.092 1.670 1.020-0.840-1.850-0.460 0.280 0.180 0.000 0.030 0.090 -0.0401.3601.470
17 1.057 0.500 0.230 -0.430 -1.787 1.690 0.670-0.860-1.500-0.010 0.270-0.010-0.250 0.000 0.230 -0.2001.6901.790
18 1.038 0.630 -0.190 -0.210 -1.478 1.090 0.280-0.070-1.300 0.200 0.190-0.370-0.020 -0.080 0.290 -0.6801.8301.660
19 0.911 1.410 0.920 -0.490 -3.241 1.100-0.050-0.320-0.730-0.230 0.000 0.150 0.080 0.000-0.240 -0.0801.5701.480
20 2.197 0.200 0.050 0.050 -2.447 0.160 0.600-0.220-0.540 0.510 0.990-1.940 0.440 0.010 0.610 -0.5301.4302.000
21 0.614 -0.080 0.300 -0.120 -0.834 1.500 0.810-0.500-1.810 0.270 0.060-0.090-0.240 -0.140-0.300 -0.3501.5201.690

Abbreviations: MSR=Mean squared residual; Qant=Qantas; Vblue=Virgin Blue; Jstar=JetStar; Aust=Australian Airlines; Fflyer= 
Frequent Flyer program; Stops=Number of Stops; Drinks=Free wine/beer; asc = alt-specific constant; hrs = flying time; $ = fare 
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Table A1b: Individual-Level MNL Model Estimates for Pizzas 

ID MSR Phut Dom Boys Phav $12 $14 $16 $18 ntop1 ntop2 ntop3 ntop4 bread drink desrt asc1 asc2
1 2.287 0.700 0.200-0.480-3.187 0.820 0.590 0.670-2.080-1.310 0.260 0.770 0.280-1.020-0.130-0.2201.2801.060
2 2.519 0.280-0.380 0.010-2.419 0.650 0.620 0.080-1.350-1.510 0.560 0.070 0.880-0.530-0.570-0.2901.7901.740
3 1.279-0.740 0.180 0.010-0.719 0.420 0.440 0.570-1.430-1.630-0.170 0.840 0.960-0.230-0.260 0.0001.7101.570
4 2.127-0.610 0.010 1.120-1.527-0.510 0.610-0.040-0.060-1.980 0.070 1.350 0.560 0.050-0.260-0.4301.5601.530
5 1.750-0.300 0.300 0.000-1.750 0.400-0.020-0.240-0.140-1.680-0.480 0.830 1.330-0.220-0.660 0.1801.8401.160
6 2.932 0.100-0.080-0.710-2.952 0.050-0.080 0.200-0.170-3.020-0.100 1.510 1.610 0.110-0.260 0.0301.3601.040
7 3.186-0.770 0.730 0.290-3.146-0.180 0.470 0.310-0.600-2.430 0.190 1.120 1.120-0.430-0.800-0.5201.5901.240
8 2.310 1.210 2.310-3.060-5.830-0.230 0.000 0.000 0.230 0.090 0.210-0.230-0.070-0.150 0.150-0.1000.8800.920
9 1.310-0.070-0.210 0.170-1.030 1.100 0.920-0.350-1.670-1.040 1.030 0.210-0.200-0.380 0.000-0.3301.8301.250
10 2.358-0.340-0.060-0.160-1.958-0.080 0.280-0.030-0.170-2.700-0.580 1.030 2.250-0.320-0.200 0.0501.0300.920
11 1.974-0.290-1.000-0.080-0.684-0.320-0.080 0.240 0.160-0.190 0.130 0.400-0.340-0.210-0.340-0.1402.1102.000
12 2.635 0.530-0.280-0.320-2.885 0.190 0.330 0.250-0.770-2.410 0.630 0.850 0.930-0.860-0.280-0.2901.5600.980
13 2.193-0.320 0.270-0.180-2.143 0.480 1.040 0.120-1.640-1.310 0.070 0.490 0.750-0.450-0.470-0.0901.4902.210
14 2.366-0.470 1.950 0.540-3.846-0.370-0.580 0.180 0.770-0.030-0.490-0.440 0.960 0.220 0.340-0.1401.2201.580
15 1.901 1.180 1.910-0.820-4.991 0.170-0.050-0.120 0.000-0.420-0.140-0.120 0.680 0.060-0.370-0.2001.3501.540
16 0.919-0.160 0.220 0.170-0.979 1.340 0.990-0.310-2.020-0.910 0.660 0.420-0.170-0.100-0.090-0.0601.6001.570
17 2.402-2.270 0.860 1.140-0.992-0.010 0.030 0.300-0.320-1.570-0.080 0.950 0.700 0.000-0.010-0.4101.2701.690
18 1.043-0.420 2.040 0.750-2.663 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.3701.300
19 1.084-0.030-0.480 0.300-0.574 1.090 0.060 0.130-1.280-0.010-0.030 0.160-0.120-0.260-0.070-0.7601.9001.520
20 2.850-0.250-0.190-0.150-2.410 0.460 0.660 0.130-1.250-1.670-1.370 1.260 1.780 0.020-0.340-0.1501.5201.050
21 1.232-0.280 0.110 0.160-1.062 1.010 1.060 0.290-2.360-1.150-0.020 0.890 0.280-0.270-0.300 0.0601.4901.510

Abbreviations: MSR=mean squared residual; Phut=Pizza Hut; Dom=Dominos; Boys=Eagle Boys; Phav=Pizza Haven; 
ntop=number of toppings; bread=free bread; drink=free drinks; desrt=free desert; asc=alt-specific constant; $=price 
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Table A2a: Summary Statistics for Individual MNL Models - Flights 
Effect N Mean StdError T-Stat Skewness StdError Kurtosis StdError
residual2 21 0.968 0.095 10.202 1.325 0.501 1.918 0.972
Time4hrs 21 0.334 0.095 3.525 0.862 0.501 0.076 0.972
Time5hrs 21 0.132 0.066 1.991 1.946 0.501 3.508 0.972
Time6hrs 21 -0.135 0.057 -2.362 -0.693 0.501 1.211 0.972
Time7hrs 21 -1.434 0.193 -7.429 -0.585 0.501 -0.811 0.972
Fare$350 21 1.403 0.134 10.439 -1.370 0.501 0.910 0.972
Fare$450 21 0.717 0.066 10.940 -0.799 0.501 1.403 0.972
Fare$550 21 -0.521 0.060 -8.751 0.648 0.501 -0.710 0.972
Fare$650 21 -1.598 0.137 -11.644 1.079 0.501 0.314 0.972
Qantas 21 0.076 0.105 0.719 2.687 0.501 9.752 0.972
Virgin Blue 21 0.200 0.086 2.312 1.946 0.501 3.783 0.972
JetStar 21 -0.258 0.161 -1.600 -2.646 0.501 6.726 0.972
AusAirlines 21 -0.017 0.107 -0.161 -1.710 0.501 8.365 0.972
FreqFlyer 21 0.010 0.020 0.480 0.655 0.501 0.498 0.972
# Stops 21 0.069 0.049 1.417 1.032 0.501 1.469 0.972
Drinks 21 -0.120 0.046 -2.585 -1.324 0.501 1.244 0.972
asc1 21 1.574 0.054 28.952 0.993 0.501 3.343 0.972
asc2 21 1.485 0.043 34.753 1.079 0.501 0.752 0.972
 
Table A2b: Summary Statistics for Individual MNL Models - Pizzas 
Effect N Mean StdError T-Stat Skewness StdError Kurtosis StdError
Residual2 21 2.031 0.145 13.964 -0.225 0.501 -0.969 0.972
Pizza Hut 21 -0.158 0.160 -0.985 -0.554 0.501 2.891 0.972
Dominos 21 0.400 0.199 2.009 0.992 0.501 0.075 0.972
Eagle Boys 21 -0.062 0.186 -0.333 -2.092 0.501 7.472 0.972
Pizza Haven 21 -2.274 0.310 -7.346 -0.963 0.501 0.717 0.972
$12 21 0.309 0.117 2.638 0.386 0.501 -0.867 0.972
$14 21 0.347 0.098 3.557 0.019 0.501 -0.662 0.972
$16 21 0.113 0.056 2.026 0.168 0.501 0.274 0.972
$18 21 -0.769 0.195 -3.951 -0.224 0.501 -1.136 0.972
#toppings=1 21 -1.280 0.204 -6.264 -0.065 0.501 -0.859 0.972
#toppings=2 21 0.017 0.110 0.151 -0.604 0.501 2.058 0.972
#toppings=3 21 0.589 0.120 4.905 -0.196 0.501 -0.934 0.972
#toppings=4 21 0.675 0.154 4.382 0.449 0.501 -0.300 0.972
Free bread 21 -0.237 0.067 -3.515 -1.007 0.501 1.128 0.972
Free drinks 21 -0.234 0.058 -4.035 -0.066 0.501 0.426 0.972
Free desert 21 -0.181 0.049 -3.722 -0.830 0.501 0.840 0.972
Asc1 21 1.512 0.065 23.411 -0.119 0.501 0.090 0.972
Asc2 21 1.399 0.077 18.172 0.498 0.501 -0.140 0.972
 


