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FIRST PASSAGE TIME FOR A PARTICULAR GAUSSIAN PROCESS 

BY L. A. SHEPP 

Bell Telephone Laboratories, Incorporated 

We find an explicit formula for the first passage probability, Qa(T I x) = 
Pr(S(t) < a, 0 < t < T I S(O) = x), for all T > 0, where S is the Gaussian 
process with mean zero and covariance ES(T)S(t) = max (1 - It- Tj, 0). 
Previously, Qa(T I x) was known only for T ? 1. 

In particular for T = n an integer and -coo < x < a < oO, 

1 
Qa(TI x) = SD f det (Yi-Yj+1 +a) dY2 . ddYn+l, 

where the integral is an n-fold integral on Y2, , + 1 over the region D 
given by 

D = {a-x < Y2 < Yl < < Yn+ 

and the determinant is of size (n + 1) x (n+ 1), 0 < i, j _ n, with 'O- 0, 
Y -a-x. 

1. Introduction. Let S = S(t), 0 < t < T be the Gaussian process with mean 
zero and covariance 

(1.1) ES(T)S(t) = 1-|It- T, It-z| < 1 
-0, It-T,> 1. 

As observed in [5], S can be represented in terms of the standard Wiener process 
W by 
(1.2) S(t) = W(t)-W(t+1), t > 0. 

The first passage probability 

(1.3) Qa(T I x) = Pr(S(t) < a, 0 < t < T I S(0) = x) 

was studied by Slepian (1961), Mehr and McFadden (1965), and Shepp (1966). 
Application to a signal shape problem in radar was found by Zakai and Ziv (1969). 
We give an explicit formula for Qa(T x) as an integral ((2.15) below) in T- 
dimensional space when T is an integer, and an integral ((2.25) below) in 2[T] + 2 
dimensional space when T is not an integer. 

Slepian found Qa(T I x) for T < 1 by deriving a recurrence equation from a 
certain Markov-like property of S which was later called the reciprocal property by 
Jamison (1970). Shepp found an equivalent form of Slepian's result by using the 
Radon-Nikodym derivative of S with respect to the Wiener process and integrating 
in function space. Both of the above methods break down for T > 1: (a) The 
reciprocal property is not valid for T > 1; (b) S is not absolutely continuous with 
respect to the Wiener process for T > 1. The present method relies instead on an 
identity of Karlin and McGregor (1959). 
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In Section 2 we derive the formula for Qa(T I x). When Tis an integer the formula 
is seen to be very similar to the Fredholm formula for the resolvent kernel. We study 
this similarity in Section 3, showing that the generating function of EQa(n I S(O)), 
n = 0, 1, 2, can be given in terms of a resolvent kernel. Unfortunately the 
resolvent kernel does not seem to be easily obtainable and all attempts to find the 
generating function in simple form have so far been unsuccessful. 

2. Derivation of the formulas. Let X(t), 0 ? t < J, be a real-valued Markov 
process with continuous sample paths and let XO, , Xn be independent copies of 
X. Suppose ao < < an and bo < < bn and let dbo, ..., dbn be infinitesimal 
intervals about bo , bn respectively. The result of Karlin and McGregor ([2] 
page 1149) becomes 

(2.1) Pr(Xo(t) < < Xn(t), 0 _ t < , and Xi(z) E db , i = 0, * n I Xi(O) 

= ai, i = 0, , n) = det p,(ai, b1) dbO, *, dbn 

where p,(a, b) db = Pr(X(T;) e db I X(O) = a) and det stands for the determinant 
of the (n + 1) x (n + 1) transition probability matrix. Specializing (2.1) by taking 
X = the Wiener process, dividing both sides of (2.1) by Pr(Xi(,r) e db , i = 0, , 

n I Xi(O) = ai, i- 0, ..., n) we obtain 

(2.2) Pr(WO(t) < < Wn(t), 0 < t < T I Wi(O) = ai, Wi(T) = bi, i = 0, ., n) 
- (detpjai, bj))/Hn= 0p,(ai, bi), 

where WO, , Wn are independent Wiener processes. The transition probabilities 
p,(a, b) are given by the well-known formula 

1 F (a-b)2 
(2.3) p,(a, b) = 2 exp (p(a-b). 

For simplicity we first consider the case when T is an integer, T n, and argue 
as follows. From (1.2) and (1.3), 

(2.4) QJTIx) =Pr(W(t) -W(t+ 1) < a, 0 < t ? n W(O) 

= 0, W(O)- W(1) = x) 

= Pr(W(t) < WY(t+1)+a < W(t+2)+2a < < W(t+n) 

+na, 0 < t < 1 I W(O) = 0, W(O)- W(1) = x). 

Integrating out over the values xi of W at times i = 0, , n+ 1, and letting Q 
denote the event of the last term in (2.4) we have, 

(2.5) Qa(TIx) = f fPr(Q, W(O)edxo, , W(n+1) edXn+I | WI(O) 

= 0, W(O)-W(1) = X). 
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Restating (2.5) in terms of conditional probabilities, and noting that in (2.5) we 
mlust have xo = 0, x, = -x because of the conditioning, we get 

(2.6) Q,(T I x) = f - f P W(Q W(0) = xo, W(n+ 1)-X ffW(0) 

-0, W(O)-W(l) = x)Pr(W(O) e dxo, ..., 

W(n+l)edx,1 I I J(0) 0, W(0)-W(l) x). 

We introduce the processes Wi, i = 0, 1, * , n 

(2.7) Wi(t)= W(t+i)+ia, 0 < t < 1. 

We have 

(2.8) Q {Wo(t) < W1(t) < - < Wn(t), 0 ?t 1} 

and under the conditioning involved in the first probability on the right side of 
(2.6), 

(2.9) Wi(0) = W(i)+ia = xi+ia, Wi(l) = W(i+l)+ia = xi +I +ia. 

Thus 

(2.10) QrJ(TI x) = f * f Pr(Q I Wi(O) = xi+ia, Wi(l) = xi+I +ia, 

i = 0, I, n, W(O) = 0, W0(0)-WO() = x) 

x Pr( W(O) d clxo , W(n + ?I) e dx +1 W(O) 

= 0, W(O)- W(l) = x). 

The range of integration is the set where the first probability under the integral 
is nonzero, that is where the inequalities in (2.8) hold for t = 0, t = 1 and Wi(0) = 
xi+ia, Wi(l) xi+1+ia. The range is therefore the set where x,+ia < xi+t+ 
(i+ l)a, i = 0, .,t. Since W(0) = 0 and W(l)- W(0)-(W(0)- W(1)) = 0- 
(x) = - x we must have 

(2.11) xO 0, x1 = -x. 

The first probability under the integral in (2.10) is given by (2.2) since xo 0, 
x, = -x, and the conditioned Wiener processes Wi are independent. Thus 

(2.12) Pr(Q I Wi(0) = xi+ia, Wi(1) xi+1+ia, i 0, ,n) 

= (det p(xi + ia-xj + i -ja))/H%o p(x ?a - x + -ia), 

where from (2.3) 

1~~~~~ (2.13) y(u) = (2 ) = 
2 exp 

The second probability under the integral in (2.10) is sitnply 

(2.14) fJ7= y(xi-x1+1)/9(x-x1), x( = 0 x1 = -x. 
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Putting (2.12) and (2.14) into (2.10) we obtain after the change of variables 
yi=x? + ia, i = 0, **, n + 1, the following formula for Qa(T I x), - o < x < a < 
00, T = n an integer. 

(2.15) Qa(T Ix) Jdetg(Yi-Yj+i+a)dY2 dY + 

where the integral is an n-fold integral on Y2, Y, Yn+ over the region D given by 

(2.16) D = {a-x < Y2 < Y3 < *-- < Yn+11 

and the determinant is of size (n + 1) x (n + 1), 0 < i, j < n, with y O-, y I a-x. 
Of course, Qa(t I x) = 0 for a < x. 
It is easily verified that for T = 1 we have 

(2.17) (~~~~~~~~p(a) 
(2. 17) QQa(1 x) = 4P(a) - -( (P(x) 

q/(x) 

agreeing with ([4] page 349). For T > 2, the integral does not seem to be simply 
expressible. 

Next we derive the formula for Qa(T I x) in case T is not an integer say T = 
n+0, 0 < 0 < 1, and integern > 0. We have 

(2.18) Qa(T I x) = Pr(W(t)-W(t+ 1) < a, 0 < t < n+0 W(0) = 0, W(0) 
- W() = x) = Pr(W(t) < W(t+ 1) 

+a < < W(t+n+1)+(n+l)a,0 < t < 0, and 

W(T+0) < W(T+0+1)+a < < W(-c+O+n) 

+na 0 < T < 1-0 j W(O) = 0, W(O)-W(1) = X). 

Integrating out over the values tui and vi of W at times i and i+0, i = 0, 1, 2, *, 
n + 1, we have, letting Q' denote the event of the last term of (2.18), 

(2.19) Qa(T I x) = f ... f Pr(Q IW(O) duo, , W(n + 1) e dun+ 1, W(O) dvo, 
.. I W(n+ I+0) C-dVn+ 1 1W(O) =0, W(O)- W() = x). 

Restating (2.19) in terms of conditional probabilities, we get 

(2.20) Qa(TI x) = J fPr(' j W(o) = Uo, , Wn+1) = tn+ W(0) 

= vO, .., W(n+1+0) = Vn+1, W(O) = 0, W(O) 

W(1) = X)Pr(W(0) edUO, .., W(n+1) edun+1, 

W(O) e dvo, ., W(n + 1 + 0) e dVn + I I W(0) 

= 0, W(0)- W(1) = x). 
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We introduce the processes Wi, i = 0, ***, n + 1; Wj', j = 0, , n 

(2.21) Wi(t) = W(t+i)+ia, 0 ? t < 0 

Wj'(T)= W(r+0+j)+ja, 0 < z_ 1-0. 

We have Q' = 21rn2 where 

(2.22) Q = {WO(t) < < Wn+ 1(t), 0 < t < 0} 

Q2 = {W0A(T) < ... < Wnj(T), 0 < T < 1-0} 

and under the conditioning involved in the first probability on the right side of 
(2.20) we have for 0 ? i ? n+ 1, 0 < j < n, 

(2.23) Wi(0) = W(i)+ia = ui+ia 

Wi(O) = W(0 + i) + ia = vi + ia 

Wj'(0) = W(0+j) +ja = vj +ja 

Wj'(1-0) = W(j+ l) +ja = uj+ , +ja. 

The processes Wi(t) and Wj'(z) conditioned to satisfy (2.23) are independent and 
so the conditional probability of Q' in (2.20) is the product of the conditional 
probabilities of Q, and Q2. Thus with u0 = W(0) = 0, u1 = W(0)-(W(l)- 
W(0)) = -x, (2.20) becomes 

(2.24) Qa(TI x) = f fPr(Q I Wi(0) = ui+ia, Wi(0) = vi+ia, i = 0, n n+l) 
X Pr(K22 Wj'(0) = vj +ja, Wj'(1-0) = uj + 

+ja, j = 0, 1, , n)Pr(W(0) du d'o, 

W(n + 1?) duIn + 1, W(O) e dvo, ** , 

W(n+I+0)Edvn+1 | W(O) = 0, W(O)-W(1) = x). 

Using (2.2) to express the first two probabilities under the integral in (2.24) and 
letting xi = ui + ia, yi = vi + ia, i = 0, ,n + 1 we obtain the final result for 
T = n+0, 0 < 0 < 1, n an integer as 

(2.25) Qa(T Ip X) = 
PX) . D (det (po (xi - yj))(det (p - 0(yj i- xj + a)) 

x d2 .* dXn+ dyO ..dYn 1 

where the integral is a 2n + 2-fold integral over the region D' given by 

(2.26) D'= {a-X<X2<... <Xn+ and Yo<YI< <Y..Yn}n 

The first determinant in (2.25) is of size (n + 2) x (n + 2), 0 < i, i < n + 1 while the 
second is of size (n + 1) x (n + 1), 0 < i, j ? n. In each, x0 = 0, x1 = a-x. 

One may verify that for T < 1, Qa(T f x) agrees with the previous results found 
in [4] and [5]. 
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3. Remarks on the similarity with Fredholm theory. For large T the expressions 
(2.15) and (2.25) are unwieldy and apparently not suited for either numerical 
calculation or asymptotic estimation. For simplicity we restrict attention here to 
integral T and to the unconditional probabilities, 

(3.1) Fn(a) = Pr(S(t) < a, 0 < t < n). 

D. Slepian pointed out the strong similarity between (2.15) and the formulas 
involved in the Fredholm resolvent. Indeed, if we define 

(3.2) K(s, t) = q(s-t + a) 

then it can be seen from (2.15) that 

(3.3) F (a) = (K) f J go K.( un) dUl. dUn 

in the notation of ([6] page 70). Applying Fredholm theory [6] we find that the 
generating function 
(3.4) F(A, a) = nn-O )nFn(a) 
is given as 

(3.5) F(A, a) = f exp [-A f H(Q, u,u, u) du]H(Q, O, y, y) dy 

where H = H(Q, s, t, y) is the resolvent kernel of K, determined uniquely by the 
resolvent equation 

(3.6) H(Q, s, t, y) = K(s, t) + A fy H(Q, s, u, y)K(u, t) du, 0 < s < y, 

the parameter a being suppressed in both H and K. 
We have included this section in the hope that (3.5) could be used to obtain 

bounds on the radius of convergence of (3.4) or equivalently to find bounds on 

(3.7) lim n-o n'- log Fn(a), 

assuming the limit exists. Unfortunately, we were unable to complete this approach 
because of the difficulty of estimating H sufficiently closely. 
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