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FIRST-PASSAGE TIME FOR A PARTICULAR 

STATIONARY PERIODIC GAUSSIAN PROCESS 

L. A. SHEPP AND D. SLEPIAN*, Bell Laboratories, Murray Hill, New Jersey 

Abstract 

We find the first-passage probability that X(t) remains above a level a 

throughout a time interval of length T given X(O)= Xo for the particular 
stationary Gaussian process X with mean zero and (sawtooth) covariance 

p(7) = 1 - a 1 71 , 17 I- :51, with p(7 + 2) = p(7), -oo < 7 < 00. The desired proba- 
bility is explicitly found as an infinite series of integrals of a two-dimensional 
Gaussian density over sectors. Simpler expressions are found for the case a = 0 
and also for the unconditioned probability that X(t) be non-negative through- 
out [0, T]. Results of some numerical calculations are given. 

FIRST PASSAGE; LEVEL-CROSSING PROBABILITY; GAUSSIAN PERIODIC PROCESS 

1. Introduction 

Let X(t) be a stationary Gaussian process with EX(t) = 0 and 

E[X(t)X(t')] = p(t - t'). Denote by Qx(a, TI xo) the conditional probability 
that X(t) a for all t satisfying 0 - t _ T, given that X(O) = xo. The first-passage 
time probability Qx(a, TI xo)dT, namely the probability that X(t) first cross the 
level a in the interval T -5t -T+ dT given that X(0)= Xo, can be obtained 

simply from Qx (a, TI xo) by differentiation: 

Qx (a, T Xo)= - (dldT)Qx(a, TI Xo). 

Other quantities describing the excursions of X(t) about the level a, such as 
the distribution of the interval between a-crossings, can also be derived from 

knowledge of the a -level exceedence Qx (a, TI xo). See [1] for a general review of 
the level-crossing problem. 

The determination of Qx is not an easy matter in general. To the best of our 

knowledge it is known in only three non-trivial cases: (i) when p(r)= el-t-; (ii) 
when the covariance is the triangular function p(r)=1-7rI for I7 -1, p(r)= 0, r 1 1; (iii) p(r)= 2exp[- r7 1/3] [1 -l exp[-2 I /r1V3]]. References 
for these cases can be found in [1]. A recent extension of the work cited there for 
Case (iii) is given in [3]. 

This note points out the solution (16) and (20) for Ox for a new case--the 
periodic 'sawtooth' covariance 
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28 L. A. SHEPP AND D. SLEPIAN 

p(r)= p(- r) = p(r + 2) 

1 - a r, 0 
_-< 

r 
_-< 

l (1) p(7) 
a +1-2ar, 

O1 2 

0 
_: 

a 
_2. 

Simpler expressions for Qx(0, TI xg) and the unconditioned probability that 

X(t) be non-negative in [0, T] are given in (23)-(25) and (28) respectively. These 
results may be useful in connection with inequalities given in [5] to find bounds 
for the first-passage probability of more general Gaussian processes. 

2. The deterministic nature of half of X(t) 

The Gaussian process with covariance (1) is periodic with period 2 and satisfies 
the following curious relation: 

(2) X(t + 1)= X(O)+ X(1)- X(t), -00< t <00. 

Thus in any period of the process, X(t) is completely determined in one half of a 

period by its values on the other half of the period. 
Actually (2) holds for a wider class of periodic processes than the one just 

described. Let 6o, 4,, ., n = 1, 2, 
. . ., 

be independent random variables with 
mean zero and variance one. Let the periodic process Y(t) be defined by 

(3) Y(t) = ao 0 + 
a. [. 

cos 7rnt + 
rl. 

sin 7rnt] 

where we assume that X a, 2 < oo. For this process, 

(4) p(r) = a' + a'cos 7rnr, 

and from (3), it follows directly that 

(5) Y(t)+ Y(t + 1)= 2ao o+ [1+ (- 1)"]a.[?. cos 7rnt + r. sin 7rnt]. 

The odd terms in the summation vanish identically so that if 

(6) a2n = 0, n = 1,2, 
. 

then 

Y(t) + Y(t + 1)= 2ao5o = Y(O)+ Y(1) 

which is of the form (2). The condition (6) means that p(r)- p(?) has odd 

symmetry about 7- = . 
For the covariance (1), one finds the Fourier series expansion 
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a 
0 4a 

p(r)= 1 Z 
2,2(2n +1) COS (2n + 1) , 

so that X(t) has a representation of the form (3) with ao = V(1 -a), a2n+1 = 

V(4a)/rr(2n + 1), a2n = 0, n = 1,2, , and the ?'s and q 's Gaussian, so that 
indeed (2) holds for this process. A direct proof of (2) can also b6 obtained by 
merely verifying that E[X(t + 1) + X(t) - X(1) - X(0)]2 = 0. Since X(t) can be 
taken sample continuous, it then follows that (2) holds almost surely. 

3. The Markov-like nature of X(t), 0 < t _ 1 

Let 0_ - 
to < t < ... < tk < ... < tn 1 be n + 1 points in the unit interval. The 

joint density of X(to), 
X(t,), 

- - -, X(t,) is given by 

px(Xo, 
X, 

"'" 
Xn)= 

2 exp{ - ?(x,, 
+ 

x.)"/2[2 
- a 

(t. - to)]} x(x, (2rr2[2- a(t, - to)]) 
(7) 

x exp{- (x, - x,)2/2a(t - t_,)} 

, 
V(2ir2a, (t - 

t_,)) 
This can be established readily by considering the Gaussian random variables 

Zo- X(to) + X(t.), Z - X(t,) - X(t,), j = 1,2, . , n. Direct calculation using 
(1) shows that the Z's are independent and that 

EZ = 2[2 - a(t - to)], EZ = 2a(t, - t,_,), j = 1,2, - , n. 

The Jacobian a(Zo, ... , Z,)/(X(to), , X(t,))= 2, whence (7) follows. 
From (7) one computes directly that 

px (x,. .-1 
, x- , Xk- . I , Xn-X+ - I X, x k, , 

x,) (8) = px(x,, x2, ... x- I x , Xk )px(Xk+,, k +,... 2, 1Xn-I Xk, Xn). 
Here px(xi, x2, , xk -O, Xk) is the joint density of X(t,), X(t2), 

. 
- -, X(tk_,) 

given that X(to) = xo and that X(tk)= Xk, with a similar meaning for the other 
factors in (8). From (8) it follows that if 0 < T < 1 and A is an event defined on 
(0, T) and B is an event defined on (T, 1), then 

(9) Pr[A n B X(O), X(T), X(1)J]= Pr[A (X(O). X(T)]Pr[B IX(T),X(1)]. 

This Markov-like property will be of use to us in the next section. 

4. The a-level exceedence probability, Ox(a, T xo) 

It is convenient to introduce the notation 

(10) Ox(a,b, T(I,7,) Pr[a X(t)? b,O t T X(O)= 4,X(T)= 7] 
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qx (a, b, r, T I) drl 

Pr[a < X(t)< b,O0< t - T, r -- 
X(T)< rq + dl IX(0)= ]. 

Now let W(t) denote a standard Wiener process, i.e., a Gaussian process with 
EW(t)W(t')= min(t, t'). Then provided 

0<- 
T 1, it is true that 

(12) Ox(a, b, T I ) = V(2r2aT)exp [( - r )2/4aT]qw(a, b, ,2aTI (). 

This can be seen as follows. Divide the interval (0, T) into n equal parts by the 
points t jT/n, i = 0, 1, , n. Then 

b (b 

Qx(a,b, Tl IIf,7)= 
lim. 

dx,.., dx-Ipx(xi,,..,x-uIX(O)=fX(T)= 
rn) 

(13) 

= b 
fd 

b d expI[ - [xi - x1]2/(2aT/n)] 
V'(27r2aT)eY-'n"r'im d dx, 

d_.. 
dn-1 H- n-*ao Ja a i- V(27r2aT/n) 

as is seen from (7). Here we write xo = , x, = r. But the integrand now is seen to 
be the conditional density pw(xi, 

x2,. ., 
x, [ W(O)= f) for the sampled Wiener 

process W(j(2aT/n)), j = 1, 2, - - 
., 

n, given that W(0)= f. The indicated limit in 
the last member of (13) is thus qw(a, b, r, 2aT 

s) 
and (12) follows. 

The quantity qw(a, b, r, TI ) is known [2]: 

qw(a,b,, TIT ) = 
V(2T)- 

[exp(- [ - + 2k(b - a)l]2T) 
(14) 

- exp(- [t + - 2a + 2k(b - a)]/2 T]), 

a Y , rl - b. 

We proceed to express Ox(a, TI Xo) in terms of it. 
We have for all T - 0, 

(15) Qx(a, TI Xo) = 
fdrpx(rI xo)Ox (a,oo, T xo, ). 

When 0 
_ 

T 
_ 

1, (7), (12) and (14) permit explicit expression of the integrand 
and elementary manipulation yields 

Ox(a,TIxo)=Oc[ 
a + xo(aT-1)] e J- [a xo+a(aT- 1) 

(1)L V(aT(2 - aT))J LI(aT(2 - aT)) ' 
(16) 

0? T I1, a xo, 

where the complementary error function is given by 
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(17) ) (x) = 1( 
O 

e dt. 

When a = 1, (16) agrees with previous results. 
To compute the a-level exceedence probability for intervals of duration 

greater than one, we use the Markov-like property (9) and the relationship (2). 
Let 1 denote the condition X(O)= xo, X(T)= xT, X(1)= x,, and as before 
assume that 05- T - 1. Then 

Pr[X(t)_- a,0 _ t - 1+ T1J 
= Pr[{X(t) _ a, 0 -5 t T} n {X(t) a, T 5 t 5 1} 

n {X(t) _a, 
1 -t _I 

+ T} I•] 

(18) = Pr[{X(O)+ X(1)- a X(t n{X a,0 t T n X(t)a, T t 1} ] 
= Pr[xo+ x, - a 

- 
X(t) a,0 5 t T I X(0) = xo, x(T)= xT] 

x 
Pr[X(t)-_ a, T_-I t 1 X(T) = xT, X(1) = x, 

= QOx[a, xo+ x -a, Txo, xr] IQ [a, o, 1 - TI xT, x1]. 

Here we have used (2) to obtain the third member of (18), (9) to obtain the fourth 
and (10) and the stationarity of X(t) to obtain the final member. Now 

Qx(a, 1 + TIxo)= dxT fadx,Pr[X(Qt)? a,O05 t 
5 1 + T ( px(xT, x,Ixo) 

2e 
2 M X1 +xo-a 

'2dx, dxe -•of.dXl2)/(2(2-a)) -\(2(2 - a)) a 

a 

(19) 
X qw(a, xo + x, - a, xT, 2aT I xo)qw (a, oc, x,, 2ar(1 

- T)I xT) 

xo - 
a, O < T < I, 

on using (7), (18) and (12). Finally, (14) can be used to express the integrand of 
(19) in terms of elementary functions. The resultant form for the exceedence 
probability is 

QX(a, Ti xo) = e'e J dx dy e 
-rA,,xd'2+B,•v2+2c,vx 

(20) 

0--a 
<2, 1? T<2, xo?ao. 

Here the various constants are polynomials in x0. While not very enlightening for 
theoretical purposes, the form (20) is useful for computing since only a few terms 
of the k sum give an appreciable contribution to the results. 
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When T = 2 and a < 2, (19) must be replaced by 

x (a, 2e d le -t~j+x F/2(2-a) 

,(a, 21Xo)=V(2(2 
- a)) dxa, (21) 

X qw(a, xo + x, - a, x,, 2a I Xo). 

By using (14) this result can be expressed as an infinite sum of terms involving 
elementary functions and complementary error functions. Again, the answer is 

complicated in form, but suitable for use in numerical calculations. 

4. The probability that X(t) be non-negative 

From the preceding formulas one can find more manageable expressions for 
the unconditioned zero exceedence 

Qx(T; a) Pr[X(t) 
= 

0, O 0 t 5 T] 

(22)eIxg 
= dxoOx(0, T Io) 

(2, 
From (16), a straightforward calculation gives 

(23) Qx(T;a)= (1/2rr)[arccos(aT- 1)- V(aT(2- aT))], 05 T 5 1, 

while from (14) and (20), after a calculation indicated in the appendix, we find 
that 

(24) Qx(T; a) = [1 + e"V('"/(2-a))]-', T_ 2. 

For the remaining T values we have the more complicated expression 

Qx (1+ T; a)= 

(25) 

VC 

2_' 

[ 
(x + k + 1)(1- T)+(1-x)T 

2'7rr 
_ 

dx,' 

[c + (2x + k)2] [cT(1 - T)+(x + k + 1)2(1 - T)+(1 - 
x)2T] 

(x + k + 1)(1- T)+ (x + 1)T 
(c + k 2) [cT(1 - T) + (x + k + 1)2(1 - T)+(1 + x)2 T] J ' 

0_ 
T 5 1, c a /(1 - a), 

where the sum is over all odd values of k. 
While the integral indicated here can be carried out in elementary terms, the 

result is quite complicated and for numerical purposes the form (25) is 
satisfactory. 
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A graph of Qx(T; a) for a = 1 is given in Figure 1 computed from (23), (24) 
and (25). In using the latter, 20 terms of the sum were taken and the integration 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 02 0.4 0.6 0.8 1,. 1.2 1.4 1.6 1.8 2.0 
T 

Figure 1 

Ox(T; I) Pr[ X(t) = 0, 0 -O! t 
=! 

TJ vs T for the case a = 1. 

was effected by Simpson's rule with 40 points. It is interesting to observe that 
Qk?(T; a) (d/dT) Qx (T; a) appears to be continuous at T = 1 and T = 2 even 
though the slope of the covariance (1) is discontinuous there. This continuity is 
verified analytically by the formulae 

(26) QO(1 + ;a) = QO(1 - ; a) = - (1/21r)V/(a(2 - a)) 

(27) Q (2 + ; a)= Q•(2 - ; a) = 0. 

We indicate the derivation in the appendix. 
A graph of Q k(T; a) for a = 1 is given in Figure 2. It was computed by taking 

finite difference quotients of Ox(T; a) at 200 points in the interval (0.9, 1.1). We 



34 L. A. SHEPP AND D. SLEPIAN 

-0.10 

-0.11 _ 

-0.12 

-0.13 

- 
0.14/ 

-0.15 

-0.16 

-0.17 

0.9 0.92 0.94 0.96 0.96 LOO L02 L04 1.06 1.08 1.10 
T 

Figure 2 
d 

used Simpson's rule with 200 points in the integral in (25) to compute Qx(T; a) 
for T in (1.0, 1.02) to retain sufficient accuracy for the difference quotient; in 

(1.02, 1.1) only 20 points were needed to effect the integration. Figure 2 

convincingly indicates that the second derivative of Qx (T, a) is discontinuous at 
T= 1. 

Another well-studied stationary Gaussian process having a covariance with a 

discontinuity in slope at T = 1 is the zero mean process Y(t) with triangular 
covariance pvy(7)= EY(O) Y(7)= max(1 - I7,0). We use the continuity of 

Q?(T; 1) at T = 1 just established to show that the zero exceedence probability 
for the Y process, 

Q•(T) 
Pr[Y(t) 0O, 0 < t T], also has a continuous 

derivative with respect to T at T = 1. To prove this, we make use of an 

inequality ([5], Theorem 1) which states that for zero mean stationary Gaussian 
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processes Y,(t) and Y2(t) with EYi(t)2 = EY2(t)2, Q?y(T) OQY2(T) if py,(t) 
EY,(O) Y,(t)E py,2(t) EY2(O) Y2(t) for 

0- 
t 5 T. We apply this inequality to 

three zero mean Gaussian processes: (i) X(t) with covariance (1) with a = 1; (ii) 

Y(t) as described above; (iii) Z(t) with covariance pz(T)= 1 -I for I I<2, 

pz(r + 3)= pz(r). We note that px(t)= p-,(t) 
= 

pz(t), O t < , with strict 

equality for 0 5 t 5 1. Thus 

Ox(T; 1)Q O,(T)? Qz(T), 005 T-5, 
with strict equality for 0 5 

T- 1. Since both Qx(T; 1) and QOz(T) have 

continuous derivatives at T = 1, it readily follows that Ov(T) must also have a 

continuous derivative there. That QOz(T) has a continuous derivative at T = 1 

I.0 

(.51xo)) 

0.8 _ 

0.6 

0.4 

0.2 
1 0(1.51 xo) 

0.0 
0 I 2 3 4 5 6 8 9 10 

Xo 

Figure 3 

O(a Ixo) Pr[X(t) 0, O t < ool X(O)= x,)] vs xo for a = 0.5, 1, 1.5. 
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can be seen from (23), since it is clear that for T <, QOz (T) = Ox (? T, ) = (1/21r) 
[arccos(T - 1)- V(T(2 - T))]. An exact expression for Qv(T) was found in [4] 
but it is awkward to use in computations and the continuity of Q (T) at T = 1 
had been conjectured but not established. 

From Equation (21) we can determine the conditional excursion probability 
Q(a I xo) = Pr(X(t) • 0, 0 - t < ool X(O) = Xo) as the infinite series 

Q(a 1 o)= 1 
(2/Xo)=V(a(2- a)) (28) C 

,ID A x eXV [e x4)-;.ay2^Q(xo(Bn - 
An)/VAn) - (D(- xoVA/)] 

where An = (2(2 - a))-' + (2n + 1)2/(2a), Bn = (2n + 1)/a, and QD is the standard 
normal distribution function. Using (28) we have graphed in Figure 3 Q(a I xo) 
for a = 0.5, 1, 1.5 as a function of Xo. Note in Figure 3 for a = 1.5 we have 

plotted 10 times Q(1.5 I Xo) instead of Q(1.5I xo) itself. For a = 1.5, we see that 
for large increasing Xo, the probability that X(t) remains positive decreases. This 
apparent paradox is easily explained by noting that for a > 1, X(O) and X(1) are 
anticorrelated, E(X(1) I X(O)= Xo)= (1 - a)xo-+ - -o as Xo--*oo, while the condi- 
tional variance of X(1) remains bounded. Thus as xo--oo, X(O) is positive but 
X(1) is more likely to be negative. 
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X(t + 1)= Y- W(2at)+1W(2a), 0<t -1 
X(t + 2)= X(t) 

is a zero-mean Gaussian process with covariance (1). The basic property (9) can 
be easily derived from this representation using the known Markov nature of 

w(t). 

Appendix: Outline of computational detail 

A. Derivation of (24). Use (22) with T = 2, (21) with a =0 and (14) to 
express Q(2; a) as a double integral of an infinite sum. A change of integration 
variables from 

Xo,X• 
to u, t defined by u = xo+ x1, Xo = tu yields 



First-passage time for a particular stationary periodic Gaussian process 37 

1 ' f" 
Qx,,(2; a) = 2r(a(2- a)) dt duu exp(- u2/(2- a)) 

x 1 { exp[-(u2/a)(k+ -t)2'-exp[-(u2/a)(k +!)2}. k=--• 

Carry out the u integration and use the identity 

S1 -1+ 2(1 - q cos 2rt) 
rr k= -S 

2 + (k + t)2 (1 - q cos 2rt)2 + (q sin 2rt)2' 

q = e-2,. The integration on t can then be carried out to yield Qx(2; a)= 
[1 + e (a/(2-a))]-'. Since X(t) has period 2, Ox(T; a) = Ox(2; a) for 

T= 
2 and 

(24) follows. 

B. Derivation of (25). Use (22) and (19) to write 

Qx(1 
+ T; a)a= - dxo Ldx, f dxe 

xo)+x2(2-a) 

x qw(O, xo + x, xT, 2aTIxo)qw(O, oo, x,,2a(1 - T)IXT). 

Use (14) noting that for b = oo only the k = 0 term is to be taken there, so that 

qw(0, oo, x,, 2a (1- T) XT)= 

I1 {exp[ - (Xi - XT)2/(4a(1 - T))] -- exp[ - (x, 
+ XT)2/(4a(1 - T))J}. 

V(4 ra (1- T)) 

Change variables of integration to x, y, u through the transformation x0 + x, = u, 

Xo 
= xu, XT = yu. In the terms having exp[u2(1 - x + u)2/4a(1 - T)J as a factor 

change y to - y' and k to - k'. One then has 

Ox(l+ T; a)= 
(1 T;a) 

/(rr(2 
- a)T(1 - T)) 

1I 
OD 

x dxf dy duu2'Y [exp(- u2Ak)- exp(- u2Bk ) 

with Ak and Bk quadratic expressions in x and y. Carry out the u integration. 
Replace x by 1 - x and in the negative terms of the integrand replace k by - k 
and y by - y. Next carry out the y integration. Equation (25) results. 

C. Derivation of (26). To obtain Q0(1 +; a) we differentiate (25) with 
respect to T and evaluate at T = 0 +. The derivate with respect to T of the 
expression in brackets in (25) vanishes at T = 0 + if x + k + 1 Z 0. Since Ix 

I- 
1 

in (25) and the sum is over odd k, only the term k = -1 need be retained. 
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Working with only this term it is convenient to calculate f'(0+) as 

limT-.-O[f(T) - f(O + )]/T and so obtain 

Q(1+; a) 

Sc % dx' x(1 - T)-(x -1)T 
T-.O+fT2I r - [c + (2x - 

1)•] 
[cT(1- T)+ x2(1- T)+(x - 1)2T] 

x(1- T)+ (x + 1)T sgnx sgnx] 
(c +I)[cT(1- T)+x2(1 - T)+(x + )2T] c +(2x -1)2 c+1J 

Now substitute x - u VT and let T- 0 +. Straightforward but tedious calcula- 
tion yields 

1 Vc -4u 2u2 
du 

21T+a)2 c+l u+ V(u2 +c+) u +c+1V(u2+c+ 

1 

27r V(a(1 - a)) 

A similar calculation gives (27). 
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