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t the heart of any contractual or subscription-oriented business

model is the notion of the retention rate. An important managerial task is to

take a series of past retention numbers for a given group of customers and

project them into the future to make more accurate predictions about

customer tenure, lifetime value, and so on. As an alternative to common

“curve-fitting” regression models, we develop and demonstrate a probability

model with a well-grounded “story” for the churn process. We show that our

basic model (known as a “shifted-beta-geometric”) can be implemented in a

simple Microsoft Excel spreadsheet and provides remarkably accurate

forecasts and other useful diagnostics about customer retention.We provide a

detailed appendix covering the implementation details and offer additional

pointers to other related models.
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INTRODUCTION

A defining characteristic of a contractual or subscrip-
tion business setting is that the departure of a cus-
tomer is observed. For example, the customer has to
contact the firm to cancel a mobile phone contract;
similarly, a local theater company can observe that a
patron has not renewed an annual subscription.1

As such, it makes sense to talk of metrics such as
retention and churn rates: The retention rate for
Period t (rt) is defined as the proportion of customers
active at the end of Period t � 1 who are still active at
the end of Period t, and the churn rate for a given
period is defined as the proportion of customers
active at the end of Period t � 1 who dropped out in
Period t.2

As we seek to understand the nature of customer
behavior in a contractual setting, it is useful to draw
on the survival analysis literature. One particularly
useful concept for characterizing the distribution of
customer lifetimes is that of the survivor function,
denoted by S(t), which is the probability that a cus-
tomer has “survived” to Time t (i.e., is still active at t).
Recalling the definition of a retention rate, it follows
that

S(t) � r1 � r2 � . . . � rt

(1)

which implies 

(2)

Several quantities of managerial interest can be
easily calculated directly from the survivor function.
For example, the expected (or average) tenure of a
customer is simply the area under the survivor

rt �
S(t)

S(t � 1)
 .

� q
t

i�1
ri ,

function. In a discrete-time setting, this is computed
as

expected tenure � .

In light of (1), the standard textbook expression for
(expected) customer lifetime value (CLV) in a contrac-
tual setting that (correctly) reflects the phenomenon
of nonconstant retention rates,

can be written as 

In a contractual setting, the empirical survivor func-
tion is simply the proportion of customers
acquired at Time 0 who are still active at Time t. A
major problem in using the empirical survivor func-
tion to compute expected tenure or lifetime value is
that the observed time horizon is often quite limited.
Suppose we observe a particular cohort of customers
over their first 5 years with the firm, which implies
we can compute , . . . (By definition, � 1.)
The quantity � . . . � is the expected cus-
tomer lifetime for the members of the cohort over this
period. Similarly, we can compute expected CLV dur-
ing the first 5 years of a customer’s relationship with
the firm; however, we would be underestimating the
expected tenure and CLV of a new customer, as we
would be ignoring the remaining life of those cutomers
who are active at the end of Year 5. To compute the
true expected tenure and CLV, we need to be able to
project the survivor function beyond the observed
time horizon. That is, we need to create estimates of
S(6), S(7), . . . given the data , . . . . This pro-
jected survivor function also is needed if we wish to
compute the expected residual tenure or lifetime
value of an individual who has been a customer for,
say, 3 years.

An obvious approach is to fit some flexible function of
time to the observed data. Then resulting regression
equation can be used to project the survivor func-
tion beyond the range of observations, from which we
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1 This is in contrast to a noncontractual setting, a defining charac-
teristic of which is that the departure of a customer is not observed
by the firm (see “Limits to Application” section for a discussion of
the implications of this characteristic).
2 Strictly speaking, we should talk of retention and churn probabil-
ities, not rates.
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can compute expected tenure, CLV, and so on. In a
popular book on data mining, Berry and Linoff (2004)
explored this idea (pp. 392–393); their conclusion
regarding the viability of such an exercise is evident
in the title of their sidebar discussion “Parametric
approaches do not work.”

The objective of this article is to present an alterna-
tive approach to the problem of projecting the sur-
vivor function—one that does “work.” We formulate a
probabilistic model of contract duration that is based
on a simple story of customer behavior. The resulting
model offers useful diagnostic insights and is very
easy to implement using Microsoft Excel.

In the next section, we replicate and extend Berry and
Linoff ’s (2004) analysis. We then present a simple
probability model of customer lifetime and demon-
strate the value of using a formal model to predict
future customer behavior. We conclude with a discus-
sion of several issues that arise from this work.

PROJECTING SURVIVAL USING
SIMPLE FUNCTIONS OF TIME

The survival data presented in Table 1 are for two
segments of customers (“Regular” and “High End”) for

an unspecified subscription-type business. These data
were presented in graphical form in Berry and Linoff
(2004, chap. 12). The High End data were used by
Berry and Linoff in their examination of parametric
approaches to the projection of the survivor function.

Suppose we only have the first 7 years of data and
wish to compute estimates of S(8), S(9), . . . . If we
were to give these data to a student who had just com-
pleted a typical data analysis course, the natural
starting point would be to fit a linear function of time
to the data and use the resulting regression equation
to project the survivor function over the future peri-
ods. Recognizing that the data are not linear, some
students would add a quadratic term to try to capture
the curvature in the data. More sophisticated stu-
dents would specify some nonlinear function of time,
such as an exponential function.

In their “Parametric approaches do not work” sidebar,
Berry and Linoff (2004) estimated and compared this
set of regression models with the following results:3

Linear y � 0.925 � 0.071t R2 � 0.922
Quadratic y � 0.997 � 0.142t � 0.010t2 R2 � 0.998
Exponential ln(y) � �0.062 � 0.102t R2 � 0.963

where y is the proportion of customers surviving at
least t years. These equations then are used to extra-
polate the survivor function to Year 12; Figure 1
recreates the plot presented in Berry and Linoff ’s
sidebar (p. 393).

The fit of all three models up to and including Year 7
is reasonable, and the quadratic model provides a
particularly good fit. But when we consider the pro-
jections beyond the model calibration period, all three
models break down dramatically. The linear and
exponential models underestimate Year 12 survival
by 81 and 30%, respectively, while the quadratic
model overestimates Year 12 survival by 92%.
Furthermore, the models lack logical consistency:
The linear model would have S(t) � 0 after year 14,
and according to the quadratic model the survivor
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TABLE 1 Observed %Customers Surviving at
Least 0–12 Years

%SURVIVING

YEAR REGULAR HIGH END

0 100.0 100.0

1 63.1 86.9

2 46.8 74.3

3 38.2 65.3

4 32.6 59.3

5 28.9 55.1

6 26.2 51.7

7 24.1 49.1

8 22.3 46.8

9 20.7 44.5

10 19.4 42.7

11 18.3 40.9

12 17.3 39.4

3 In the models run by Berry and Linoff (2004), time is indexed 1,
2, . . . , 8, but to maintain consistency with the definitions of S(t)
discussed earlier [specifically S(0) � 1], we reindex time to 0, 1, . . . , 7.
This has no impact at all on the fit or forecasting performance of
any of the models.
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function will start to increase over time, which is not
possible. It is therefore not surprising that Berry and
Linoff (2004) concluded that parametric curves do not
“work” for the task of projecting the survivor function
over time.

Repeating this analysis for the Regular segment
yields the following equations: 

Linear y � 0.773 � 0.092t R2 � 0.776
Quadratic y � 0.930 � 0.249t � 0.022t2 R2 � 0.960
Exponential ln(y) � �0.248 � 0.190t R2 � 0.915.

and the corresponding fits and projections are re-
ported in Figure 2. The projections associated with
the linear and quadratic models are terrible and illogical
once again. The exponential model does not appear to
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FIGURE 1
Actual Versus Regression-Model-Based Estimates of the Percentage of High End Customers
Surviving at Least 0–12 Years
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be very bad in the figure, but in fact it underestimates
Year 12 survival by 54%. This is not an acceptable
range of error.

Of course, we could try out different arbitrary func-
tions of time, but this would be a pure curve-fitting
exercise at its worst. Furthermore, it is hard to imag-
ine that there would be any underlying rationale for
the equation(s) that we might settle upon. Faced with
this situation, it is tempting to “throw up our hands”
in despair and say that we cannot project the survivor
function beyond the range of observations.

However, we feel that such a conclusion is prema-
ture. After all, in other areas of marketing there
are plenty of models that have been used to provide
accurate forecasts of the behavior of a cohort of cus-
tomers beyond the range of observations (e.g.,
Hardie, Fader, & Wisniewski, 1998, for the case of
new-product-sales forecasting). Thus, in the next sec-
tion, we formulate a probabilistic model of contract
duration that is based on a simple “story” of customer
behavior.

A DISCRETE-TIME MODEL FOR
CONTRACT DURATION

Consider the following story of customer behavior in a
contractual setting: 

• At the end of each period, a customer flips a coin:
“heads” she cancels her contract, “tails” she renews it.

• For a given individual, the probability of a coin
coming up “heads” does not change over time. 

• P(“heads”) varies across customers. 

Of course, people do not make their contract renewal
decisions on the basis of coin flips; rather, this
story is a paramorphic representation of customer
behavior. The third element of the story should not
be controversial, as the notion of heterogeneity is
central to marketing; however, some readers might
find the second element contrary to their expectation
that retention rates increase over time as the cus-
tomer gains more experience with the product or
service. But rather than overcomplicate our story, we
start with the simplest possible set of assumptions
and only add supposedly richer “touches of reality”
if the model does not “work.” As seen shortly, no

additional assumptions will be required in this par-
ticular case.

To operationalize this verbal model, we need to trans-
late the elements of this story into the language of
mathematics. More formally, our proposed model for
the duration of customer lifetimes is based on the
following two assumptions: 

1. An individual remains a customer of the firm with
constant retention probability 1 � �. This is equiv-
alent to assuming that the duration of the cus-
tomer’s relationship with the firm, denoted by the
random variable T, is characterized by the (shifted)
geometric distribution with probability mass
function and survivor function 

P(T � t|�) � �(1 � �)t � 1, t � 1, 2, 3, . . . (3)

S(t|�) � (1 � �)t, t � 1, 2, 3, . . . . (4)

2. Heterogeneity in � follows a beta distribution
with pdf 

where B(. , .) is the beta function. 

The assumption of geometrically distributed lifetimes
follows from the first two elements of our simple story
of customer behavior; it is perfectly consistent with
the sequential coin-flip description. The beta distrib-
ution will be less familiar to most readers, but it is a
very reasonable way to characterize heterogeneity in
the churn probabilities because it is a flexible distrib-
ution that is bounded between zero and one. If one
thinks about how the “coin-flip” probabilities are like-
ly to vary across individuals, there are four principal
possibilities, as illustrated in Figure 3. If both para-
meters of the beta distribution (� and 	) are small
(�1), then the mix of churn probabilities is “U-shaped,”
or highly polarized across customers. If both parame-
ters are relatively large (�, 	 
 1), then the probabil-
ities are fairly homogeneous. Likewise, the dis-
tribution of probabilities can be “J-shaped” or
“reverse-J-shaped” if the parameters fall within the
remaining ranges as shown in the figure. It is not
essential for the reader to remember all of these
cases, but these parameters can offer useful diagnos-
tics to help the manager understand the degree (and

f(� 0�, 	) �
���1(1 � �)	�1

B(�, 	)
, �, 	 
 0,
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nature) of heterogeneity in churn probabilities across
the customer base.

Given these two model assumptions, how can we com-
pute the probability that a customer fails to renew his
contract at the end of Period t or survives beyond
Period t [P(T � t) and S(t), respectively]?  Since this
customer’s value of � is unobserved, we cannot use (3)
and (4). We therefore take the expectation of (3) and
(4) over the beta distribution that characterizes the
cross-sectional heterogeneity in � to arrive at the cor-
responding expressions for a randomly chosen indi-
vidual:

(5)

(6)

(The mathematically inclined reader is referred to
Appendix A for step-by-step details of the deriva-
tions.) We call this model the shifted-beta-geometric
(sBG) distribution. Nonbusiness applications of this
model include the number of menstrual cycles

S(t 0�, 	) �
B(�, 	 � t)

B(�, 	)
, t � 1, 2, . . .

P(T � t 0�, 	 ) �
B(� � 1, 	 � t � 1)

B(�, 	 )
, t � 1, 2, . . .

required to achieve pregnancy (Weinberg & Gladen,
1986) and the length of stays in a psychiatric hospital
(Kaplan, 1982). Direct-marketing applications of
related models are discussed later.

We note that while (5) and (6) are expressed in terms
of beta functions, we can implement the model with-
out ever having to deal with beta functions directly.
As formally derived in Appendix A, we can compute
sBG probabilities by using the following forward-
recursion formula from P(T � 1):

(7)

Recall from (2) that the retention rate is the ratio 
of sequential values of the survivor function.
Substituting (6) into (2) and simplifying (see
Appendix A) gives us the following expression for the
(aggregate) retention rate associated with sBG model: 

(8)

Given (8), we can go back to the expression given in
(1) and compute S(t) without having to deal with any
beta functions.

We immediately see that under the sBG model, the
retention rate is an increasing function of time, even
though the underlying (unobserved) individual-level
retention probability is constant. According to this
model, there are no underlying time dynamics at the
level of the individual customer; the observed phe-
nomenon of retention rates increasing over time is
simply due to heterogeneity (i.e., the high-churn cus-
tomers drop out early in the observation period, with
the remaining customers having lower churn proba-
bilities). This well-known “ruse of heterogeneity”
(Vaupel & Yashin, 1985) is often overlooked by those
attempting to make sense of various aggregate pat-
terns of customer behavior.

We fit the sBG model to the first 7 years of the data
presented in Table 1. For the High End segment,

rt �
	 � t � 1

� � 	 � t � 1

P(T � t) � µ �

� � 	
t � 1

	 � t � 2
� � 	 � t � 1

P(T � t � 1) t � 2, 3, . . . 
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� 0.688, � 3.806; for the Regular segment,
� 0.704, � 1.182. (See Appendix B for details of

how to estimate the model parameters in the familiar
Microsoft Excel environment.) Using these parameter
estimates, we extrapolate the survivor function for
each segment to Year 12. These model-based numbers
are plotted in Figure 4, along with the corresponding
empirical survivor functions. The resulting predic-
tions are almost too good to be true; the sBG model
overestimates Year 12 survival by only 4% and 2% for
the High End and Regular segments, respectively.
Even though this model is no more complicated than
the regression models discussed earlier, its carefully
constructed “story” makes it possible to tease out, and
therefore accurately project, the critical behavioral
components.

Another plot of interest shows the (aggregate) reten-
tion rate as a function of tenure. The model-based
retention rate numbers [as computed using (8)] are
plotted in Figure 5, along with the corresponding
observed retention rates as computed from the empir-
ical survivor functions. For both segments, the sBG
model accurately tracks the empirical retention rate
curves. On one hand, this might not seem surprising
since rt and S(t) are so closely related; on the other
hand, however, rt is harder to predict accurately since

	̂�̂
	̂�̂ it does not have to accumulate across periods as S(t)

does, and therefore it is more sensitive to period-to-
period variations. Despite the existence of certain
unexplained “blips” as in Year 2 for the High End seg-
ment, the tracking/prediction plot for rt is very
impressive through Year 12, and there is every reason
to believe that the model would continue to perform
well over an even longer future horizon.

For both segments, note that the retention rates are an
increasing function of the length of a customer’s rela-
tionship with the firm. The important point to empha-
size, once again, is that the sBG “story” assumes that
these apparent dynamics are simply a result of hetero-
geneity; any given individual has a constant (but
unknown) retention probability 1 � �. Unlike the con-
ventional wisdom about customer retention, it is not a
story of individual customers becoming increasingly
loyal as they develop a deeper relationship with the
firm, and so on. Thus, the observed phenomenon of
increasing retention rates is simply a sorting effect in a
heterogeneous population (i.e., the high-churn cus-
tomers drop out early in the observation period, with the
remaining customers having lower churn probabilities).

As a final demonstration of the usefulness of the sBG
model, we show and contrast the mixing distributions
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that characterize how the churn probabilities (�)
differ across the individuals in each segment. In
Figure 6, we see that both distributions are “reverse-
J-shaped.” This implies that within each group, most
customers have fairly low churn probabilities, but
there is a sizeable subsegment within each one that

will tend to depart very quickly. These patterns sug-
gest that there is a fairly high degree of heterogeneity
within each segment; therefore, a model that does not
take these cross-customer differences into account
will not perform very well, particularly in terms of
out-of-sample forecasting. A closer examination shows
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that the overall “weight” of the distribution for the
Regular group is shifted slightly to the right com-
pared to that of the High End distribution. This
reflects the fact that the Regular group has a higher
mean churn probability [E(�) � ��(� � 	) � 0.37] com-
pared to that of the High End group [E(�) � 0.15]. It
should be clear from Figures 4 and 5 that this kind of
difference in the means exists, but this plot provides
a better idea about the nature of these differences at
a more fine-grained level.

DISCUSSION

We have presented the sBG distribution as a model for
the duration of customer relationships in a discrete-
time contractual setting, and demonstrated that it
can provide accurate forecasts and other useful diag-
nostics about customer retention. Furthermore, we
have argued that it is preferable to use such a model
instead of arbitrary functions of time. In closing, we
discuss limits to its application, related models in the
direct-marketing literature, possible extensions to the
basic model, and some practical implementation
issues.

Limits to Application
The practical problem that drove the development of
this model is a desire to project an empirical survivor
function (and therefore retention rates) beyond the
observed time horizon of our dataset. The ability to
perform this projection is central to any attempt to
compute CLV or other metrics such as expected
tenure if we wish to avoid the “truncation” problem
associated with computing these quantities using just
the observed survival data. For this particular prob-
lem, this simple model should be the first tool the
researcher pulls out of his toolkit.

There are other churn-related problems where this
should not be the case. In particular, there is a broad
literature on churn modeling in which logit models
(and far more sophisticated statistical models and
data-mining methodologies) are used to determine
the correlates of churn (Berry & Linoff, 2004; Parr
Rud, 2001). The resulting models then can be used to
identify which customers are at risk of churning in
the next period so that retention-oriented marketing
resources can be targeted at them. Many of the
covariates included in these models will vary from

period to period (e.g., number of contacts with the
customer-service department), and changes in
these variables can be strong predictors of customer
defection.

However, these models cannot easily be used to
address the problem of projecting the survivor func-
tion into the future, as we do not have future values
of the time-varying covariates. It is therefore impor-
tant to use the right model for the task at hand, and
to acknowledge the limitations to application of any
model we develop.

We have referred to the sBG distribution as a model for
the duration of customer relationships in a discrete-
time contractual setting. Many readers will have
glanced over the words “discrete-time” and “contrac-
tual” without reflecting on their significance, howev-
er, they are very important as we seek to understand
when and where it is appropriate to use the model
presented in this article. 

• By “discrete-time,” we mean that transactions can
occur only at fixed points in time (e.g., the annual
renewal cycles for most professional organizations).
This is in contrast to continuous-time, where the
transactions can occur at any point in time (e.g., the
cancelation of basic utility contracts).

• In a “contractual” setting, the time at which the
customer becomes inactive is observed (e.g., when
the customer fails to renew a subscription). This is
in contrast to a “noncontractual” setting, where the
absence of a contract or subscription means that
the point in time at which the customer becomes
inactive is not observed by the firm (e.g., a catalog
retailer). The challenge is how to differentiate
between a customer who has ended a “relation-
ship” with the firm versus one who is merely in the
midst of a long hiatus between transactions. 

This leads to a two-dimensional classification of cus-
tomer bases: opportunities for transactions (continu-
ous vs. discrete) and type of relationship with cus-
tomers (noncontractual vs. contractual). The model in
this article is for just one of the four possible business
contexts.

In continuous-time contractual settings, we should
not use the sBG model. Rather, we should use its
continuous-time analog, the exponential-gamma (EG)

Journal of Interactive Marketing DOI: 10.1002/dir



distribution (also known as the Lomax distribution or
the “Pareto distribution of the second kind”). Such a
model assumes that the duration of an individual 
customer’s relationship with the firm is characterized
by the exponential distribution, and that het-
erogeneity in “departure rates” is captured by a
gamma distribution (Hardie et al., 1998; Morrison &
Schmittlein, 1980).

Models for noncontractual settings are more complicated
because the time at which a customer becomes inactive,
and the likelihood that it has occurred at all, must be
inferred from the transaction history. For continuous-
time noncontractual settings, we have the Pareto/NBD
(Schmittlein, Morrison, & Colombo, 1987) and BG/
NBD (Fader, Hardie, & Lee, 2005) models while for
discrete-time noncontractual settings, we have the BG/
BB model (Fader, Hardie, & Berger, 2004).

Related Probability Models
and Extensions

“List falloff” is an important phenomenon in direct
marketing. The basic idea is that the response rate
from the first mailing to a prospect list is usually
higher than that of the second mailing, which in turn
is higher than that for the third mailing, and so on.
Buchanan and Morrison (1988), hereafter BM, pre-
sented a simple probability model of list falloff and
showed how the model can be used to determine how
many more mailings should be sent to a prospect list
given the observed response rates for the first two
mailings. Their model is based on assumptions simi-
lar to those behind the sBG model: (a) Each person
responds to a direct-mail solicitation with constant
probability p, and (b) p varies across the population
according to a beta distribution. While BM base their
framework on the beta-binomial model, it could have
been derived as an sBG model (e.g., the mailing on
which the prospect responds to the offer is character-
ized by the shifted-geometric distribution). As such, it
is possible to identify clear relationships between
some of the results in this article [e.g., rt and S(t)] and
some quantities of interest in a list-falloff setting.

The BM framework was extended by Rao and Steckel
(1995) to incorporate (time-invariant) descriptor
variables such as age, income, and sex. This is accom-
plished using the beta-logistic model (Heckman &
Willis, 1977), which extends the beta-binomial model

by making the model parameters functions of the
descriptor variables. By a similar logic, the effects of
time-invariant covariates could be incorporated in the
sBG model by making � and 	 functions of the
descriptor variables. Incorporating the effects of time-
varying covariates (e.g., marketing-mix effects, sea-
sonality) is more complicated. The key is to bring in
all of these factors at the right level; that is, at the
level of the latent parameter of interest (in this case,
�) instead of just “jamming” different covariate effects
into a regression-like model (see Schweidel, Fader, &
Bradlow, 2006, for a discussion of how to do this in a
continuous-time contractual setting.) However, as
noted in the last section, we question the value of
such an extension given our modeling objective (i.e.,
projecting the empirical survivor function beyond the
observed time horizon of our dataset).

Both the sBG model and its continuous-time analog
(i.e., the EG model) are based on the assumption that
the commonly observed phenomenon of increasing
retention rates is due entirely to heterogeneity;
individual-customer-level retention rates are assumed
to be constant. If we wish to allow for the possibility of
time dynamics at the level of the individual customer,
we can no longer characterize the duration of an indi-
vidual’s relationship with the firm using either the
shifted-geometric or exponential distributions, both of
which have the “memoryless” property (i.e., the proba-
bility of survival to s � t, given survival to t, is the
same as the initial probability of survival to s). In a
continuous-time setting, we can accommodate this
effect by assuming that individual lifetimes can be
characterized by the Weibull distribution, which allows
for an individual’s risk of canceling a contract to
increase or decrease as the length of the relationship
with the firm increases. In a discrete-time contractual
setting, this leads to the beta-discrete-Weibull (BdW)
model (Fader & Hardie, 2006), which is a generaliza-
tion of the sBG model, while in a continuous-time con-
tractual setting, this leads to a generalization of the EG
model, the Weibull-gamma (WG) model (Hardie et al.,
1998; Morrison & Schmittlein, 1980).

Implementation Issues
Our treatment of how to estimate the sBG model
parameters (Appendix B) assumes that we are fitting
the model to data for just one cohort of customers. But
in practice, we will frequently have data for more
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than one cohort, where cohorts are defined by time of
acquisition (and possibly acquisition channel, product
class, etc.) When faced with data for multiple cohorts,
an important model implementation issue is to choose
among three possible approaches: (a) to pool the
cohorts and estimate a single set of model parameters
across them, (b) to estimate a separate set of model
parameters for each cohort, or (c) to use a “beta-logistic”
version of the sBG with cohort-specific dummy vari-
ables. Our decision of how to move ahead is influenced
by our beliefs of whether we can view each cohort as
the realization of a common underlying contract dura-
tion process. The two datasets examined earlier
demonstrate that we can expect to see some cross-
cohort differences. Schweidel et al. (2006) examined
this issue more broadly in a continuous-time setting.

When we have multiple cohorts defined by time of
acquisition, the problem with fitting separate models
to each cohort is that every new cohort has one less
period of information than does its temporal prede-
cessor, which may result in less confidence in the
model parameter estimates for the cohorts with fewer
data points. The natural starting point in such a situ-
ation is to pool the cohorts, assuming that each cohort
is the realization of a common underlying contract-
duration process, and to estimate one set of parame-
ters using all the data. A more elegant solution would
be to add another layer of heterogeneity to the model.
That is, we would assume that � and 	 themselves are
distributed across cohorts according to some para-
metric distribution. Using a hierarchical Bayes for-
mulation, this would enable the cohorts with fewer
data points to “borrow” information about the possible
values of � and 	 from the earlier cohorts rather than
relying on the cohort-specific data alone.
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In Appendix A, we walk through the derivations of the key
mathematical results presented in this article.

Note the three definitions and results that are central to
the derivations that follow.

• The beta function B(�, 	) is defined by the integral

(A1)

Note that B(�, 	) is simply notation for the definite
integral on the right-hand side of (A1). 

• The beta function can be expressed in terms of gamma
functions:

. (A2)

• For the purposes of this article, the only thing we need to
know about the gamma function is its so-called recursive
property:

. (A3)

Derivation of  (5)
We derive the sBG expression for P(T � t) in the following
manner. If � were known, the probability of dropping out in
Period t would simply be the shifted-geometric probability
�(1 � �)t�1. But since � is unobserved (and assumed to be
distributed randomly across the population), P(T � t) for a
randomly chosen individual is the expected value of the
shifted-geometric probability of dropping out in Period t
(conditional on � � �), where the expectation is with respect
to the beta distribution for �, E[P(T � t|� � �)]. (That is,
we weight each P(T � t|� � �) by the probability of that
value of � occurring, f (�).) Since � is a continuous random
variable, this is computed as

� �
1

0

�(1 � �)t�1���1(1 � �)	�1

B(�, 	)
d�

P(T � t 0�, 	) � �
1

0

P(T � t 0 � � �)

shifted-geometric

f(� 0 �, 	)

beta

d�

≠(x � 1)
≠(x)

� x

B(�, 	) �
≠ (�)≠ (	)
≠(� � 	)

B(�, 	) � �
1

0

���1(1 � �)	�1d�, �, 	 
 0.

which, combining terms and moving all non-� elements to
the left of the integral sign,

.

Looking closely at the integral, we see that it is simply the
integral expression for the beta function (A1) with parame-
ters � � 1 and 	 � t � 1. Therefore, 

.

[The expression for the sBG survivor function (6) is derived
in a similar manner.]

Derivation of  (7)
To derive the forward-recursion formula used to compute
sBG probabilities, first note that

which, expressing the beta functions in term of gamma
functions (A2),

.

Recalling the recursive nature of the gamma function (A3),
(� � 1)�(�)� � and(� � 	 � 1)/(� � 	)� � � 	. Therefore,

.

But how does this help us compute P(T � t) for t � 2, 3, . . . ?
Reflecting on the identity

if we have a simple expression for the ratio P(T � t)�
P(T � t � 1), we can easily compute P(T � 2) given the
value of P(T � 1) � ��(� � 	). Given the value of P(T � 2),
we can then compute P(T � 3), and so on.

P(T � t) �
P(T � t)

P(T � t � 1)
� P(T � t � 1),

P(T � 1 0 �, 	) �
�

� � 	

�
≠(� � 1)
≠(�)

n≠ (� � 	 � 1)
≠(� � 	)

�
≠(� � 1)≠(	)
≠(� � 	 � 1)

n≠(�)≠(	)
≠(� � 	)

P(T � 1 0 �, 	) �
B(� � 1, 	)

B(�, 	)

P(T � t 0 �, 	) �
B(� � 1, 	 � t � 1)

B(�, 	)

�
1

B(�, 	) �
1

0

�
�(1 � �)	�t�2 d�
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In Appendix B, we show how to compute the maximum like-
lihood estimates for the sBG model parameters for the High
End dataset using Microsoft Excel. Before providing step-
by-step instructions for constructing the worksheet, we
briefly review the notion of maximum likelihood estimation.

Suppose we observe a group of n customers for seven peri-
ods. Note that n1 customers are “lost” in the first period (i.e.,
do not renew their contract at the end of that period), n2 in
the second period, . . . , with n7 customers not renewing
their contracts at the end of the seventh period. It follows
that customers are still active at the end of the
seventh period.

Assume that the customer lifetimes can be characterized by
the sBG distribution. What is the probability that a randomly
chosen customer has a lifetime of one period? The answer is
the sBG probability P(T � 1|�, 	). What is the probability
that a randomly chosen customer has a lifetime of two peri-
ods? The answer is the sBG probability P(T � 2|�, 	). What
is the probability that one randomly chosen customer has a
lifetime of one period while another has a lifetime of two
periods? Assuming that the propensity of one customer to
drop out is independent of the behavior of the other cus-
tomer, it is simply the product of the respective sBG proba-
bilities: P(T � 1| �, 	)P(T � 2| �, 	). It follows that, given

n � g7
t�1 nt

specific values of the model parameters � and 	, the joint
probability of losing n1 customers in the first period, n2 in the
second period, . . ., n7 in the seventh period, and
customers still being active at the end of the seventh
period is

. (B1)

However, we do not know the values of � and 	, even though
we believe that the data come from the sBG distribution.

The idea of maximum likelihood estimation is to ask what
values of the model parameters maximize the probability
(or, more formally, the likelihood) of the observed data. We
define the likelihood function as

. (B2)

and use numerical optimization methods (e.g., the Solver
add-in in Excel) to find the values of � and 	 that maximize
this function; these are called the maximum likelihood

� P(T � 7 0 �, 	)n7 S(7 0 �, 	)n�g7
t � 1 nt

� P(T � 4 0 �, 	)n4 P(T � 5 0 �, 	)n5 P(T � 6 0 �, 	)n6

L(�, 	 0 data) � P(T � 1 0 �, 	)n1 P(T � 2 0 �, 	)n2 P(T � 3 0 �, 	)n3

� P(T � 7 0 �, 	)n7 S(7 0 �, 	)n� g7
t � 1 nt

� P(T � 4 0 �, 	)n4 P(T � 5 0 �, 	)n5 P(T � 6 0 �, 	)n6

P(data 0 �, 	) � P(T � 1 0 �, 	)n1 P(T � 2 0 �, 	)n2 P(T � 3 0 �, 	)n3

n � g7
t�1 nt
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Recalling (5), we have

which, expressing the beta functions in term of gamma
functions (A2) and canceling terms,

which, recalling the recursive nature of the gamma function
(A3),

.

The complete forward-recursion formula naturally follows.

�
	 � t � 2

� � 	 � t � 1

�
≠(	 � t � 1)
≠(	 � t � 2)

n ≠ (� � 	 � t)
≠ (� � 	 � t � 1)

�
B(� � 1, 	 � t � 1)
B(� � 1, 	 � t � 2)

P(T � t)
P(T � t � 1)

�
B(� � 1, 	 � t � 1)

B(�, 	)
nB(� � 1, 	 � t � 2)

B(�, 	)

Derivation of  (8)
We derive the expression for the retention rate as implied
by the sBG model by substituting the expression for the
sBG survivor function (6) into (2) and simplifying:

which, expressing the beta functions in terms of gamma
functions (A2) and canceling terms, 

which, recalling the recursive nature of the gamma function
(A3),

.�
	 � t � 1

� � 	 � t � 1

�
≠(	 � t)
≠(	 � t � 1)

n ≠(� � 	 � t)
(� � 	 � t � 1)

�
B(�, 	 � t)

B(�, 	 � t � 1)

rt �
B(�, 	 � t)

B(�, 	)
nB(�, 	 � t � 1)

B(�, 	)
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estimates of the model parameters.4 As the number computed
using (B2) will be very small, we usually work with the
natural logarithm of the likelihood function, the so-called
log-likelihood function:

(B3)

For a sample of 1,000 High End customers, Table 1 implies
the number of customers active at the end of Years 1–7 as
reported in Table B1. 

Given these data, our task is to “code up” the expression for
the model log-likelihood function in an Excel worksheet
and find the maximum likelihood estimates of � and 	 by
using Solver to find the values of � and 	 that maximize the
value of this function. The relevant worksheet is shown in
Figure B1 and is constructed in the following manner.

• To enter expressions for without an error
message appearing (e.g., #NUM! or #DIV/0!), we need
some “starting values” for � and 	. The exact values do
not matter—provided they are within the defined bounds
(i.e., �, 	 
 0)—so we start with 1.0 for � and 	, locating
these parameter values in Cells B1:B2, respectively.

• We enter the values of in Cells A6:A12.

• The corresponding values of P(T � t|�, 	) are computed
in Cells B6:B12 using the forward-recursion given in (7): 

– We compute by entering �B1/(B1 � B2) in
Cell B6.

P(T � 1)

t � 1, 2, . . . , 7

P(T � t  0a, b)

� a
7

t�1
 nt ln �P (T � t 0  a, b)� � an � a

7

t�1
 ntb ln�S (7 0   a, b)� .

LL(�, 	 0  data) � ln �L(�, 	 0  data)�
– We compute by entering �($B$2�A7�2)�

($B$1�$B$2�A7�1)*B6 in Cell B7.

– We copy B7 to B8:B12.

• We compute the values of for in
Cells C6:C12:

– S(1) is simply , so we enter �1�B6 in
Cell C6.

– For , , so we enter
�C6�B7 in Cell C7.

– We copy C7 to C8:C12.

• The next step is to enter the observed data. The number
of customers active at the end of Year 1 (n � 869) is
entered in cell D6, the number for Year 2 (n � 743) is
entered in cell D7, and so on down to 491 customers in
cell D12 for Year 7.

• The number of customers not renewing their contracts
each year (nt), as required for the log-likelihood function,
is computed in Cells E6:E12:

– As the number of customers “lost” in Year 1 is simply
the number of initial customers minus the number of
customers who are still active at the end of the first
year, we enter �1000�D6 in Cell E6.

– For , the number of customers “lost” in Year t is
the number of customers who are still active at the
end of Year t � 1 minus the number of customers who
are still active at the end of the Year t. We therefore
enter �D6�D7 in Cell E7 and copy it to E8:E12.

• The first seven elements of the log-likelihood function
are computed in Cells F6:F12: We enter �E6*LN(B6)

in Cell F6 and copy it to F7:F12.

t 
 1

S(t) � S(t � 1) � P(T � t)t 
 1

1 � P(T � 1)

t � 1, 2, . . . ,7S(t 0   �, 	)

P(T � 2)

4 Note that (B1) and (B2) look almost identical, but there is a sub-
tle difference: in (B1): The probability we compute is a function of
the data pattern for fixed model parameters; in (B2), we already
have the data, and the probability we compute is a function of the
model parameters.

1
2
3
4
5
6
7
8
9

10
11
12
13

A B C D E F
alpha 1.000
beta 1.000
LL -2115.5

t P(T=t) S(t) # active # lost
1 0.500 0.500 869 131 -90.8
2 0.167 0.333 743 126 -225.8
3 0.083 0.250 653 90 -223.6
4 0.050 0.200 593 60 -179.7
5 0.033 0.167 551 42 -142.9
6 0.024 0.143 517 34 -127.1
7 0.018 0.125 491 26 -104.7

-1021.0

FIGURE B1
Screenshot of Excel Worksheet for Parameter Estimation

TABLE B1 Sample Data

YEAR 1 2 3 4 5 6 7

No. Active 869 743 653 593 551 517 491
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• The final element of the log-likelihood function, that asso-
ciated with those customers who are still active at the end
of Year 7, is entered as �D12*LN(C12) in Cell F13.

• The sum of Cells F6:F13 is entered in Cell B3; this is the
value of the log-likelihood function given the values for
the two model parameters in Cells B1:B2. (With starting
values of 1.0 for both parameters, LL ��2,115.5.) 

We find the maximum likelihood estimates of the two model
parameters by maximizing the log-likelihood function. We
do this using the Excel add-in Solver, available under the
“Tools” menu. The target cell is the value of the log-
likelihood, Cell B3. We wish to maximize this by changing
Cells B1:B2. The constraints we place on the parameters
are that � and 	 are greater than 0. As Solver offers us only
a “greater than or equal to” constraint, we add the con-
straint that Cells B1:B2 are � a small positive number
(e.g., 0.0001) (see Figure B2).

Clicking the Solve button, Solver converges to a solution
where the maximum value of the log-likelihood function is
�1,611.2, associated with � � 0.668 and 	 � 3.806. These

are the maximum likelihood estimates of the model
parameters. (To be sure that we actually have reached the
maximum of the log-likelihood function, it is good practice
to redo the optimization process using a completely
different set of starting values. For example, using
starting values of 0.01 and 0.01 (for which LL � �2,741.7),
use Solver to find the maximum of the log-likelihood
function. Are the corresponding values of the two model
parameters equal to those given earlier? They should be!)
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FIGURE B2
Solver Settings


