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Many businesses track repeat transactions on a discrete-time basis. These include (1) companies for whom
transactions can only occur at fixed regular intervals, (2) firms that frequently associate transactions with

specific events (e.g., a charity that records whether supporters respond to a particular appeal), and (3) orga-
nizations that choose to utilize discrete reporting periods even though the transactions can occur at any time.
Furthermore, many of these businesses operate in a noncontractual setting, so they have a difficult time dif-
ferentiating between those customers who have ended their relationship with the firm versus those who are
in the midst of a long hiatus between transactions. We develop a model to predict future purchasing patterns
for a customer base that can be described by these structural characteristics. Our beta-geometric/beta-Bernoulli
(BG/BB) model captures both of the underlying behavioral processes (i.e., customers’ purchasing while “alive”
and time until each customer permanently “dies”). The model is easy to implement in a standard spreadsheet
environment and yields relatively simple closed-form expressions for the expected number of future transactions
conditional on past observed behavior (and other quantities of managerial interest). We apply this discrete-time
analog of the well-known Pareto/NBD model to a data set on donations made by the supporters of a nonprofit
organization located in the midwestern United States. Our analysis demonstrates the excellent ability of the
BG/BB model to describe and predict the future behavior of a customer base.
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1. Introduction
Consider a major nonprofit organization located in
the midwestern United States that is funded in large
part by donations from individuals. In 1995 the orga-
nization “acquired” 11,104 first-time supporters; in
each of the following six years, these individuals
either did or did not support the organization. As
shown in Table 1, donation behavior can be char-
acterized by a binary string, where 1 indicates that
a donation was made. (For the purposes of this
analysis—similar to Netzer et al. 2008—we focus only
on the annual incidence on the donations; we ignore
the dollar values.) Given these data, management
would like to know which individuals are most likely
to be active donors in the future so that it can pre-
dict the level of “transactions” it can expect in future
years from this cohort of donors (both individually
and collectively).
Management has a five-year planning period and

therefore would like to forecast the expected number

of donations for the 1995 cohort as a whole, as well
as for particular types of individuals, over the period
2002–2006. For instance,
• What should be expected from donor 100008,

who has made a repeat donation in each of the six
years since becoming a supporter of the organization:
is he likely to go “five-for-five” in the future period?
If not, how much “shrinkage” would we expect?
• How about comparing donor 100009, who had

been a consistent supporter up until 2001, versus
donor 100004, who has had a more irregular history,
with one fewer donation overall but with one made
in 2001?
• Likewise, how does donor 100004 compare to

donor 111103? They have both made four repeat dona-
tions, including one in 2001, but their earlier histories
differ somewhat from each other.
• Finally, how about the many donors (such as

100001) who have done nothing since their initial con-
tributions? Should the nonprofit organization write
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Table 1 Annual Donation Behavior by the 1995 Cohort of First-Time
Supporters

ID 1995 1996 1997 1998 1999 2000 2001

100001 1 0 0 0 0 0 0
100002 1 0 0 0 0 0 0
100003 1 0 0 0 0 0 0
100004 1 0 1 0 1 1 1
100005 1 0 1 1 1 0 1
100006 1 1 1 1 0 1 0
100007 1 1 0 1 0 1 0
100008 1 1 1 1 1 1 1
100009 1 1 1 1 1 1 0
100010 1 0 0 0 0 0 0

�
�
�

�
�
�

�
�
�

111102 1 1 1 1 1 1 1
111103 1 0 1 1 0 1 1
111104 1 0 0 0 0 0 0

them off, or is there still some meaningful future
value in them—individually and collectively?
Recognizing that this a noncontractual setting,1

the marketing analyst may think, “Let’s use the
Pareto/NBD,” a model developed by Schmittlein
et al. (1987) to provide answers to the kinds of
customer-base analysis questions listed above.
But is this an appropriate way to proceed? At the

heart of the Pareto/NBD model is the assumption that
customer purchasing while “alive” is characterized by
a Poisson distribution and that cross-sectional hetero-
geneity in the mean purchase rates is characterized
by a gamma distribution (resulting in the negative
binomial distribution (NBD) model of repeat buying;
Ehrenberg 1988, Morrison and Schmittlein 1988). The
use of the Poisson distribution assumes that trans-
actions can occur at any point in time; this may be
an acceptable assumption for the purchasing of CDs
from a website or for the purchasing of office prod-
ucts in a business-to-business (B2B) setting, which
are the empirical settings considered by Fader et al.
(2005) and Schmittlein and Peterson (1994), respec-
tively. However, it is not a valid assumption in a
number of other situations, including the nonprofit
setting described above. Even Schmittlein et al. (1987)
acknowledge that their model has limited applicabil-
ity and that there is a need for an alternative modeling

1 In a contractual setting (e.g., gym membership, cable TV, the-
ater subscription plan), we observe the time at which the customer
“dies” (i.e., ends their formal relationship with the firm). In a non-
contractual setting (e.g., traditional mail order, retail store patron-
age), however, the time at which a customer dies is unobserved by
the firm; customers do not notify the firm “when they stop being a
customer. Instead they just silently attrite” (Mason 2003, p. 55). The
only potential evidence of this having happened is an unusually
long hiatus since the last recorded purchase. The challenge facing
the analyst is how to differentiate between those customers who
have ended their relationship with the firm versus those who are
simply in the midst of a long hiatus between transactions.

framework to accommodate business settings charac-
terized by discrete-time purchasing (see pp. 16–17 and
Table 3 in their paper), yet no one to date has pre-
sented such a model.
As another example, consider attendance at the

INFORMS Marketing Science Conference. The confer-
ence occurs at a discrete point in time and an indi-
vidual can either attend or not. Similarly, consider
Sunday church attendance; an individual can either
attend the Sunday morning service or not. In both
cases, the opportunities for a transaction occur at dis-
crete points in time, and there is an upper bound
on the number of transactions that can occur in a
fixed unit of time; an individual cannot attend the
INFORMS Marketing Science Conference more than
once a year or attend the Sunday morning church ser-
vice more than 52 times a year. In such noncontractual
settings, the behavior is “necessarily discrete,” and it
is clearly incorrect to model the number of transac-
tions using a Poisson distribution. It would be more
appropriate to model the number of transactions in a
given time period using a Bernoulli process.
In other settings, the behavior of interest can occur

in continuous time, but it is “effectively discrete” in
the way firms view it. Consider the case of blood
donations. A blood collection agency will send quar-
terly notices to its donor base, requesting that they
give blood. Although an individual can give blood
at any point in time during that quarter, there is still
an upper bound in the number of times the agency
is willing to accept blood from any donor and can
therefore characterize a donor’s behavior in terms of
whether or not she gave blood in a fixed time inter-
val. Similarly, a charity may send out letters every
six months requesting money. Although an individ-
ual can send in a donation at any point in time, the
charity is basically interested in whether or not he
responded to a specific request for funds and will
therefore characterize donation behavior simply in
terms of whether or not the individual responds to a
mailing (Piersma and Jonker 2004). A number of mail-
order companies also think of their customer behav-
ior in such a manner (e.g., did the customer place an
order in response to the quarterly catalog mailing?).
In these cases, it is convenient to think of there being
a natural upper bound on the number of transactions
that can occur in a fixed unit of time (e.g., year), and
it is therefore more appropriate to model the number
of transactions using a Bernoulli process rather than
a Poisson distribution.
Finally, there are cases where the event of interest

has no constraints on it at all—it is truly a continuous-
time behavior, but it is so rare per unit of time that
management will choose to discretize the purchasing
data for analysis and reporting purposes. For exam-
ple, a cruise-ship company may characterize customer
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behavior in terms of whether or not each customer
went on a cruise in 2000, 2001, 2002, etc. (Berger et al.
2003). Once again, purchasing behavior is more con-
veniently described as a Bernoulli process rather than
as a Poisson process. An example of this in a con-
sumer packaged goods setting is the work of Chatfield
and Goodhardt (1970), who model the purchasing of
a product not in terms of the number of purchases
made by an individual in a 24-week period (using
the NBD model) but rather in terms of the number of
weeks in which an individual purchased the product
(using the beta-binomial model of Skellam 1948, with
n = 24). Similarly, Easton (1980) uses the beta-binomial
model to characterize purchasing in an industrial set-
ting, commenting that using a discrete purchase inter-
val is a useful way of overcoming the problem of
determining when exactly a purchase is deemed to
have occurred in a B2B setting.
Figure 1 illustrates this continuum of settings in

which it is either correct or simply makes more sense
to model individual-level transaction behavior using
a Bernoulli process rather than a Poisson distribution.
In all of these settings, it is inappropriate to use the
Pareto/NBD as the underlying model for a customer-
base analysis exercise.
In this paper we develop a model that can be used to

answer the critical customer-base analysis questions in
discrete-time, noncontractual settings; in other words,
we develop a discrete-time analog of the Pareto/NBD
model. Although many aspects of the Pareto/NBD
model (and the inferences frequently associated with
it) carry over fairly smoothly to the discrete-time set-
ting, there are a number of interesting issues that arise
in the discrete-time setting that are quite unique—and
offer significant benefits for model implementation.
In the next section, we first outline the assumptions
underpinning this model and then present expres-
sions for a number of managerially relevant quan-
tities. This is followed by an empirical analysis (for
the aforementioned nonprofit organization) in which
we carefully examine the performance of the model
both in a six-year calibration sample and a five-year

Figure 1 Classifying “Discrete-Time” Transaction Opportunities

Charity donations
Blood donations

“Necessarily discrete”

“Generally discrete”

Discretized by
recording process

Church attendance
Attendance at a periodic academic conference

Cruise-ship vacations

holdout period. We then examine the relative perfor-
mance of the Pareto/NBD model when applied to this
same data set. Next we present an extension to the
basic model in which the consequences of relaxing one
of the model assumptions are explored. We conclude
with a discussion of several additional issues that arise
from this work.

2. Model Development
Our objective is to develop a stochastic model of
buyer behavior for discrete-time, noncontractual set-
tings. To start, we define a transaction opportunity as
either one of the following:
• A well-defined point in time at which a transac-

tion either occurs or does not occur, or
• A well-defined time interval during which a trans-

action either occurs or does not occur.
The first type of transaction opportunity corre-

sponds to the necessarily discrete case in Figure 1. The
second type of transaction opportunity corresponds
to the “generally discrete” and “discretized by record-
ing process” cases in Figure 1. (The nonprofit example
discussed in the introduction is an example of this
second case.) In all three cases, a customer’s trans-
action history can be expressed as a binary string,
where yt = 1 if a transaction occurred at or during the
tth transaction opportunity, and 0 otherwise (for t =
1� � � � �n transaction opportunities). Note that we are
simply interested in modeling the transaction process
(i.e., the pattern of 1s and 0s). We are not interested in
modeling other behaviors associated with each trans-
action (e.g., the quantity purchased); this is discussed
in §6.
Our model is based on the following six

assumptions.

Assumption 1. A customer’s relationship with the
firm has two phases: he is “alive” (A) for some period of
time, then becomes permanently inactive (“dies”; D).

Assumption 2. While alive, the customer buys at any
given transaction opportunity with probability p:

P�Yt = 1 � p� alive at t� = p� 0≤ p ≤ 1�

(This implies that the number of transactions by a cus-
tomer alive for i transaction opportunities follows a bino-
mial (i� p) distribution.)

Assumption 3. A “living” customer dies at the begin-
ning of a transaction opportunity with probability �. (This
implies that the (unobserved) lifetime of a customer is char-
acterized by a geometric distribution.)

Assumption 4. Heterogeneity in p follows a beta dis-
tribution with probability distribution function (pdf )

f �p � ���� = p�−1�1− p��−1

B�����
� 0≤ p ≤ 1� ��� > 0� (1)
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Assumption 5. Heterogeneity in � follows a beta dis-
tribution with pdf

f �� � 	�
� = �	−1�1− ��
−1

B�	�
�
� 0≤ � ≤ 1� 	�
 > 0� (2)

Assumption 6. The transaction probability p and the
dropout probability � vary independently across customers.

Assumptions (2) and (4) yield the beta-Bernoulli
model (i.e., the beta-binomial model without the bino-
mial coefficient, since we explicitly account for the
ordering of the transactions). Similarly, Assumptions
(3) and (5) yield the beta-geometric (BG) distribu-
tion. We therefore call this the beta-geometric/beta-
Bernoulli (BG/BB) model of buyer behavior.

2.1. Derivation of Model Likelihood Function
Consider a customer with repeat purchase string
10100. What is P�Y1 = 1�Y2 = 0�Y3 = 1�Y4 = 0�Y5 =
0 � p���? The fact that the customer made a purchase at
the third transaction opportunity means that he must
have been alive for t = 1�2�3. However, Y4 = 0, Y5 =
0 could be the result of one of three scenarios: (i) he
died at the beginning of the fourth transaction oppor-
tunity (AAADD), (ii) he was alive at the fourth trans-
action opportunity and died at the beginning of the
fifth transaction opportunity (AAAAD), or (iii) he was
alive at both the fourth and fifth transaction opportu-
nities (AAAAA). We therefore compute P�Y1 = 1�Y2 =
0�Y3 = 1�Y4 = 0�Y5 = 0 � p��� by computing the prob-
ability of the purchase string conditional on each sce-
nario and multiplying it by the probability of that
scenario:

f �10100 � p���

= f �10100 � p�AAADD�P�AAADD � ��

+ f �10100 � p�AAAAD�P�AAAAD � ��

+ f �10100 � p�AAAAA�P�AAAAA � ��

= p�1− p�p �1− ��3�︸ ︷︷ ︸
P�AAADD�

+p�1− p�p�1− p� �1− ��4�︸ ︷︷ ︸
P�AAAAD�

+ p�1− p�p︸ ︷︷ ︸
P�Y1=1�Y2=0�Y3=1�

�1− p��1− p��1− ��5︸ ︷︷ ︸
P�AAAAA�

� (3)

Note that the zero-order nature of purchasing while
the customer is alive means that the exact order of
any given number of transactions prior to the last
observed transaction does not matter. For example,
it should be clear that f �10100 � p��� = f �01100 � p���.
Therefore, we do not need the complete binary-
string representation of a customer’s transaction his-
tory. Rather, all we need to know for n transaction
opportunities are frequency and recency: the number of
transactions across the calibration period (x =∑n

t=1 yt)
and the transaction opportunity at which the last

observed transaction occurred (tx).2 We therefore go
from 2n binary string representations of all the pos-
sible purchase patterns to n�n + 1�/2 + 1 possible
recency/frequency patterns.
This realization that recency and frequency are suf-

ficient summary statistics offers signficant benefits
for model implementation, particularly as the num-
ber of transaction opportunities becomes sizeable. For
instance, in the case of our nonprofit organization, we
can compress the number of necessary binary strings
from 64 down to 22 recency/frequency combinations,
making it a bit easier to visualize and manipulate the
data set. However, in another recent application with
n = 10, we saw a reduction from 1,024 binary strings
down to 56 recency/frequency combinations. Further-
more, these numbers are not affected by the size of the
customer base being modeled; see Table 2 for a com-
plete characterization of the nonprofit data set par-
tially presented in Table 1. Whether we have 11,000
customers or 11 million customers, the data struc-
ture would be identical—the numbers in the “No. of
donors” columns would grow, but the computational
demands for data storage and manipulation would be
unaffected.
Returning to the likelihood function, we generalize

the logic behind the construction of (3), so it follows
that

L�p�� �x�tx�n� = px�1−p�n−x�1−��n

+
n−tx−1∑

i=0

px�1−p�tx−x+i��1−��tx+i� (4)

To arrive at the likelihood function for a randomly
chosen customer with purchase history (x� tx�n), we
remove the conditioning on p and � by taking
the expectation of (4) over their respective mixing
distributions:

L�����	�
 � x� tx�n�

=
∫ 1

0

∫ 1

0
L�p� � � x� tx�n�f �p � ����f �� � 	�
�dp d�

= B�� + x�� + n − x�

B�����

B�	�
 + n�

B�	�
�

+
n−tx−1∑

i=0

B�� + x�� + tx − x + i�

B�����

· B�	 + 1�
 + tx + i�

B�	�
�
� (5)

(The solution to the double integral follows naturally
from the integral representation of the beta function.)

2 If x = 0, then tx = 0. Note that this measure of recency differs
from that normally used by the direct marketing community, who
measure recency as the time from the last observed transaction to
the end of the observation period (i.e., n − tx).
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Table 2 Recency/Frequency Summary of the Annual Donation
Behavior by the 1995 Cohort of First-Time Supporters �n = 6�

x tx No. of donors x tx No. of donors

6 6 1�203 4 4 240
5 6 728 3 4 181
4 6 512 2 4 155
3 6 357 1 4 78
2 6 234 3 3 322
1 6 129 2 3 255
5 5 335 1 3 129
4 5 284 2 2 613
3 5 225 1 2 277
2 5 173 1 1 1�091
1 5 119 0 0 3�464

The four BG/BB model parameters (����	�
) can
be estimated via the method of maximum likelihood
in the following manner. For a calibration period with
n transaction opportunities, we have J = n�n+1�/2+1
possible recency/frequency patterns, each containing
fj customers. The sample log-likelihood function is
given by

LL�����	�
� =
J∑

j=1

fj ln�L�����	�
 � xj� txj
� n��� (6)

where xj and txj
are the frequency and recency, respec-

tively, for each unique pattern. This can be maxi-
mized using standard numerical optimization rou-
tines. These calculations are easy to perform in a
spreadsheet environment; in fact, the entire model
implementation (from initial data setup through the
calculation of the “key results” in the next section)
rarely requires the analyst to use any software beyond
a spreadsheet. This is a major benefit of the BG/BB
model.

2.2. Key Results
We now present expressions for a set of quantities
of interest to anyone wanting to apply this model
of buyer behavior in a discrete-time, noncontractual
setting. (The associated derivations can be found in
Appendix A.)
Let the random variable X�n� = ∑n

t=1 Yt denote
the number of transactions occurring across the first
n transaction opportunities. The BG/BB probability
mass function is

P�X�n� = x � ����	�
�

=
(

n

x

)
B�� + x�� + n − x�

B�����

B�	�
 + n�

B�	�
�

+
n−1∑
i=x

(
i

x

)
B�� + x�� + i − x�

B�����

B�	 + 1�
 + i�

B�	�
�
� (7)

with mean

E�X�n� � ����	�
�

=
(

�

� + �

)(



	 − 1

)

·
{
1− �	 + 
�

�	 + 
 + n�

�1+ 
 + n�

�1+ 
�

}
� (8)

More generally, let the random variable
X�n�n + n∗� =∑n∗

t=n+1 Yt denote the number of trans-
actions in the interval �n�n + n∗�. The BG/BB
probability of x∗ transactions occurring in this
interval is given by

P�X�n�n+n∗�=x∗ �����	�
�

=
x∗=0

{
1− B�	�
+n�

B�	�
�

}

+
(

n∗

x∗

)
B��+x∗��+n∗−x∗�

B�����

B�	�
+n+n∗�
B�	�
�

+
n∗−1∑
i=x∗

(
i

x∗

)
B��+x∗��+i−x∗�

B�����

B�	+1�
+n+i�

B�	�
�
� (9)

with mean

E�X�n�n + n∗� � ����	�
�

=
(

�

� + �

)(



	 − 1

)
�	 + 
�

�1+ 
�

×
{

�1+ 
 + n�

�	 + 
 + n�
− �1+ 
 + n + n∗�

�	 + 
 + n + n∗�

}
� (10)

In most customer-base analysis settings, we are
interested in making statements about customers con-
ditional on their observed purchase history �x� tx�n�.

• The probability that a customer with purchase
history �x� tx�n� will be alive at the �n + 1�th transac-
tion opportunity is

P�alive at n + 1 � ����	�
�x� tx�n�

= B�� + x�� + n − x�

B�����

B�	�
 + n + 1�

B�	�
�

·L�����	�
 � x� tx�n�−1� (11)

• The probability that a customer with purchase
history �x� tx�n� makes x∗ transactions in the interval
�n�n + n∗� is

P�X�n�n + n∗� = x∗ � ����	�
�x� tx�n�

= 
x∗=0

{
1− �1

L�����	�
 � x� tx�n�

}

+ �2

L�����	�
 � x� tx�n�
� (12)
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where

�1 = B�� + x�� + n − x�

B�����

B�	�
 + n�

B�	�
�

and

�2 =
(

n∗

x∗

)
B�� + x + x∗�� + n − x + n∗ − x∗�

B�����

· B�	�
 + n + n∗�
B�	�
�

+
n∗−1∑
i=x∗

(
i

x∗

)
B�� + x + x∗�� + n − x + i − x∗�

B�����

· B�	 + 1�
 + n + i�

B�	�
�
�

• The expected number of future transactions
across the next n∗ transaction opportunities by a cus-
tomer with purchase history �x� tx�n� is

E�X�n�n + n∗� � ����	�
�x� tx�n�

= 1
L�����	�
 � x� tx�n�

B�� + x + 1�� + n − x�

B�����

×
(




	 − 1

)
�	 + 
�

�1+ 
�

·
{

�1+ 
 + n�

�	 + 
 + n�
− �1+ 
 + n + n∗�

�	 + 
 + n + n∗�

}
� (13)

Many customer-base analysis exercises are moti-
vated by a desire to compute customer lifetime value
(CLV), which is “the present value of the future cash
flows attributed to the customer relationship” (Pfeifer
et al. 2005, p. 17). The general explicit formula for
computing CLV is (Rosset et al. 2003)

E�CLV� =
∫ �

0
E�v�t�� S�t� d�t� dt�

where E�v�t�� is the expected value of the customer
at time t (assuming he is alive), S�t� is the survivor
function, and d�t� is a discount factor that reflects the
present value of money received at time t. Follow-
ing Fader et al. (2005), if we assume that the pro-
cess describing the net cash flow per transaction for
a given customer is both independent of the trans-
action process and stationary, we can express v�t�
as net cash flow/transaction × t�t�, where t�t� is the
transaction rate at t.
In many cases we are interested in the expected

residual lifetime value of a customer. Standing at
time T ,

E�RLV� = E�net cashflow/transaction�

×
∫ �

T
E�t�t��S�t � t > T �d�t − T �dt︸ ︷︷ ︸

discounted expected residual transactions

�

The number of discounted expected residual trans-
actions (DERT) is the present value of the expected
future transaction stream for a customer with pur-
chase history �x� tx� T �. Fader et al. (2005) derive the
expression for this quantity when the transaction pro-
cess can be described by the Pareto/NBD model.
When the transaction process is described by the
BG/BB model, the present value of the expected num-
ber of future transactions for a customer with pur-
chase history �x� tx�n�, with discount rate d is

DERT�d �����	�
�x�tx�n�

= B��+x+1��+n−x�

B�����

B�	�
+n+1�
B�	�
��1+d�

× 2F1
(
1�
+n+1�	+
+n+1�1/�1+d��

L�����	�
 �x�tx�n�
� (14)

where 2F1� · � is the Gaussian hypergeometric func-
tion.3 This number of discounted expected residual
transactions can then be rescaled by the customer’s
value multiplier to yield an overall estimate of
E�RLV�. Although the presence of the Gaussian
hypergeometric function makes this calculation a bit
more complex than the others in this section, it is
worth emphasizing that it only needs to be evalu-
ated once for any given value of n (i.e., only once
per cohort, not for every recency/frequency pattern),
and it is relatively straightforward to use a recursion
formula to perform the calculations in a spreadsheet
environment. Furthermore, this calculation for DERT
is far simpler than the equivalent expression derived
by Fader et al. (2005) for the Pareto/NBD model. In
that case, the DERT expression required the evalua-
tion of Gaussian hypergeometric functions for each
recency/frequency combination, as well as the con-
fluent hypergeometric function of the second kind,
which is unfamiliar and fairly burdensome from a
computational standpoint.
Finally, we may also be interested in making

inferences about a customer’s latent transaction and
dropout probabilities.
• The marginal posterior distribution of P is

f �p �����	�
�x�tx�n�=�
/
L�����	�
 �x�tx�n�� (15)

where

� = p�+x−1�1− p��+n−x−1

B�����

B�	�
 + n�

B�	�
�

+
n−tx−1∑

i=0

p�+x−1�1− p��+tx−x+i−1

B�����

B�	 + 1�
 + tx + i�

B�	�
�
�

3 Assuming that there are k transaction opportunities per year, an
annual discount rate of r maps to a discount rate of d = �1+r�1/k −1.
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• The marginal posterior distribution of � is

f �� �����	�
�x�tx�n�=�
/
L�����	�
 �x�tx�n�� (16)

where

� = B�� + x�� + n − x�

B�����

�	−1�1− ��
+n−1

B�	�
�

+
n−tx−1∑

i=0

B�� + x�� + tx − x + i�

B�����

�	�1− ��
+tx+i−1

B�	�
�
�

• For l�m = 0�1�2� � � � , the �l�m�th product
moment of the joint posterior distribution of P and
� is

E�P l�m �����	�
�x�tx�n�

= B��+l���

B�����

B�	+m�
�

B�	�
�

· L��+l���	+m�
 �x�tx�n�

L�����	�
 �x�tx�n�
� (17)

where L�� + l���	 + m�
 � x� tx�n� is simply (5) eval-
uated using � + l in place of � and 	 + m in place
of 	.

3. Empirical Analysis
We examine the performance of the BG/BB model
using data on the annual donation behavior by the
supporters of a nonprofit organization located in the
midwestern United States. The full data set contains
information on the 56,847 people who made their first-
ever annual donation between 1995 and 2000 (inclu-
sive), from their first year up to and including 2006;
the sizes of each annual cohort are given in Table 3.
Our initial analysis focuses on the 11,104 mem-

bers of the 1995 cohort. We fit the model using the
data on whether or not these supporters made repeat
donations across 1996–2001 and examine the model’s
predictive performance across a 2002–2006 holdout
validation period. We follow up this analysis with one
in which we pool the six cohorts, fitting the model to
the repeat donation data up to and including 2001 and
examining its predictive performance over 2002–2006.
(For the sake of linguistic simplicity, we will refer to
the act of making a repeat donation in any given year
as making a repeat transaction or purchase.)

Table 3 Number of New Supporters Each Year
(1995–2000)

Cohort Size

1995 11�104
1996 10�057
1997 9�043
1998 8�175
1999 8�977
2000 9�491

3.1. Analysis of the 1995 Cohort
The group of 11,104 people that became support-
ers of the organization for the first time in 1995
made a total of 24,615 repeat transactions over the
next six years. Given the data in Figure 2, we
“code up” the log-likelihood function given in (6)
in Excel—see Figure 2 for a screensheet of the com-
plete spreadsheet used for parameter estimation—
and maximize it using the Solver add-in. (A note on
how to implement the model in Excel, along with
a copy of the complete spreadsheet, can be found
at http://brucehardie.com/notes/010/.) The resulting
maximum-likelihood estimates of the model parame-
ters are reported in Table 4. (We also report the model
parameters and value of the log-likelihood function
for the beta-Bernoulli model and note that the addition
of the “death” component results in a major improve-
ment in model fit.)
The expected number of people making 0�1� � � � �6

repeat transactions between 1996 and 2001 is com-
puted using (7) and compared to the actual frequency
distribution in Figure 3. We note that the model pro-
vides a very good fit to the data.
The performance of the model becomes more

impressive when we see how well it tracks repeat
transactions over time. Using the expression for the
expected number of transactions across n transac-
tion opportunities as given in (8), we compute the
expected number of repeat transactions made by the
whole cohort of 11,104 people up to 2006. These are
plotted along with the actual cumulative numbers in
Figure 4(a). We note that the BG/BB model predic-
tions accurately track the actual cumulative number
of repeat transactions in both the six-year calibration
period and the five-year forecast period, underfore-
casting at 2006 by a mere −0�65%.4 Further insight
into the excellent tracking performance of the model
is given in Figure 4(b), which reports these num-
bers on a year-by-year basis; we note that the BG/BB
model clearly captures the underlying trend in repeat
transactions over this fairly lengthy period of time.
To get a clearer idea of how well the model cap-

tures validation period purchasing, we compute the
expected number of people making x∗ = 0�1� � � � �5
transactions in 2002–2006 (n∗ = 5) using (9) and com-
pare it to the actual frequency distribution in Figure 5.
We note that the model provides a very good predic-
tion of the actual behavior.

3.1.1. Conditional Expectations. Perhaps a more
important examination of the predictive performance
of the model focuses on the quality of the predic-
tions of future behavior conditional on past behavior.

4 As a point of comparison, the prediction associated with the BB
model overforecasts cumulative repeat transactions at the end of
2006 by 20%.
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Figure 2 Screenshot of Excel Worksheet Used for Parameter Estimation
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We use (13) to compute the expected number of trans-
actions in the 2002–2006 period (n∗ = 5) conditional on
each of the 22 �x� tx� patterns associated with n = 6.
These conditional expectations are reported in Table 5
as a function of recency (the year of the individual’s
last transaction) and frequency (the number of repeat
transactions).
In Figure 6(a) we report these conditional expecta-

tions, along with the average of the number of the
transactions that actually occurred in the 2002–2006
forecast period, broken down by the number of repeat
transactions in 1996–2001. (For each x, we are aver-
aging over customers with different values of tx.)
Similarly, Figure 6(b) reports these conditional expec-
tations along with the average of the number of the
transactions that actually occurred in the 2002–2006
forecast period, broken down by the year of the indi-
vidual’s last transaction. (For each tx, we are aver-
aging over customers with different values of x.) We
observe that the BG/BB model generates very good
predictions of the expected behavior in the longi-
tudinal holdout period, with the only real blemish

Table 4 Parameter Estimates, 1995 Cohort

� � � 	 LL

BB 0�487 0�826 −35�516�1
BG/BB 1�204 0�750 0�657 2�783 −33�225�6

being an underestimation of expected purchasing by
those individuals whose last repeat purchase occurred
before 1998.
Referring back to Table 5, we can now address the

questions about different kinds of customers raised at
the outset of the paper.
• A donor who has made a repeat transaction every

year is expected to make “only” 3.75 transactions over
the next five years. Of course, such donors are still
extremely valuable, but the possibility of death plus
the fact that they might have been somewhat lucky in
the past make them a bit less valuable than they might

Figure 3 Predicted vs. Actual Frequency of Repeat Transactions
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Figure 4 Predicted vs. Actual (a) Cumulative and (b) Annual Repeat
Transactions
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have otherwise seemed. (With reference to Figure 6(a),
we see that this conditional expectation overestimates
the actual mean (3.53) by only 6%.)
• Donor 100009, who had had a perfect record until

the most recent year, is expected to make 1.81 trans-
actions over the next five years. In contrast, donor

Figure 5 Predicted vs. Actual Frequency of Repeat Transactions in
2002–2006
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Table 5 Expected Number of Repeat Transactions in 2002–2006 as a
Function of Recency and Frequency

Year of last transaction
No. of rpt transactions
(1996–2001) 1995 1996 1997 1998 1999 2000 2001

0 0�07
1 0�09 0�31 0�59 0�84 1�02 1�15
2 0�12 0�54 1�06 1�44 1�67
3 0�22 1�03 1�80 2�19
4 0�58 2�03 2�71
5 1�81 3�23
6 3�75

100004, with better recency but lower frequency, is
expected to make 2.71 transactions over the same
period—an increase of nearly 50%. This highlights the
critically important role of recency, which can also be
seen in the steep growth of the curve in Figure 6(b).
• Although donors 100004 and 111103 have differ-

ent histories, their recency and frequency numbers
are identical (x = 4, tx = 6); thus, they have the same
conditional expectation. Minor, remote differences in
purchase histories are deemed to be irrelevant when
making predictions using the BG/BB model.
• A donor who has been completely absent since

making his or her initial transaction is expected to
make only 0.07 repeat transactions over the next five
years. However, although each such donor is not
particularly valuable alone, it is important to note,
as per Table 2, that over 30% of the entire cohort
of donors is in this recency/frequency group. Taken
together, these donors are expected to make over 240
transactions over the next five years, making them
collectively more valuable than about half of the other
recency/frequency groups.
Beyond these specific analyses, Table 5 offers addi-

tional insights about the broader interplay between
recency and frequency. First, note that for any row
(i.e., value of x), the expected number of transactions
in the forecast period decreases as we move from
right to left (i.e., the less recent the last observed
transaction). This is as we would expect, because the
longer the hiatus in making a purchase, the more
likely it is that the customer is “dead.” Looking
down the columns, however, we see a somewhat dif-
ferent pattern. We first look at 2001 and note that
the conditional expectation is clearly an increasing
function of the number of repeat transactions made
in the six-year calibration period. Looking at the
1997–2000 columns, though, we note that the numbers
first increase, then decrease as the number of repeat
transactions made in the six-year calibration period
decreases. (A similar pattern is observed in the DERT
numbers under the Pareto/NBD model reported in
Fader et al. 2005.)
To help understand why this is the case, we use (11)

and (17) to compute P�alive in 2002� and the mean
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Figure 6 Predicted vs. Actual Conditional Expectations of Repeat
Transactions in 2002–2006 as a Function of (a) Frequency
and (b) Recency
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of the marginal posterior distribution of P as a func-
tion of recency and frequency. The combinations of
the patterns we shall see in these two tables provides
an explanation for this somewhat surprising pattern
of conditional expectations.
Let us first consider the probability that a cus-

tomer is alive in 2002; see Table 6. Looking across
the columns for any value of x, the observed pattern
is as would be expected, with a lower probability of
being alive the longer the hiatus in making a dona-
tion. Taking a columnwise view, the first thing to note
is that all customers who made a transaction in 2001
have the same probability of being alive the following
year, regardless of the number of repeat transactions
they had prior to that year; this is a natural con-
sequence of the Bernoulli “death” process. Looking
at the 1997–2000 columns, we note that the numbers
increase as the number of repeat transactions made
in the six-year calibration period decreases. The logic
behind this is as follows: looking at the 2000 column,

Table 6 P(Alive in 2002) as a Function of Recency and Frequency

Year of last transaction
No. of rpt transactions
(1996–2001) 1995 1996 1997 1998 1999 2000 2001

0 0�11
1 0�07 0�25 0�48 0�68 0�83 0�93
2 0�07 0�30 0�59 0�80 0�93
3 0�10 0�44 0�77 0�93
4 0�20 0�70 0�93
5 0�52 0�93
6 0�93

those customers who made only one repeat transac-
tion will have a lower value of p than those who have
made a repeat purchase in all five years, and there-
fore the fact that no transaction occurred in 2001 can
be attributed more to their low probability of making
a purchase in any given year than to the possibility
of them being dead.
Table 7 reports the mean of the marginal pos-

terior distribution of P . Looking at this table col-
umn by column, we see that the posterior mean
increases as a function of the number of repeat trans-
actions in the calibration period for any given value of
recency. This is intuitive: a smaller number of repeat
transactions reflects a lower underlying probability
of purchasing at any given transaction opportunity
(assuming one is alive). Perhaps less immediately
intuitive is the within-row pattern: for a given level
of frequency, the underlying probability of purchas-
ing at any given transaction opportunity increases as
recency decreases. The reason for this is that, other
things being equal, the longer the hiatus since the last
transaction, the more likely it is that the customer is
dead, and therefore the individual must have had a
higher p in order to have the realized number of trans-
actions while alive.
Further insights can be obtained by looking at the

marginal posterior distributions of P and �, (15)
and (16). With reference to Figure 7(a), the prior is
the plot of a beta distribution with parameters � =
1�204 and � = 0�750; the overall mean of P across the
whole sample is 0.62. With reference to Figure 7(b),

Table 7 Posterior Mean of P as a Function of Recency and Frequency

Year of last transaction
No. of rpt transactions
(1996–2001) 1995 1996 1997 1998 1999 2000 2001

0 0�49
1 0�66 0�44 0�34 0�30 0�28 0�28
2 0�75 0�54 0�44 0�41 0�40
3 0�80 0�61 0�54 0�53
4 0�82 0�68 0�65
5 0�83 0�78
6 0�91
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Figure 7 Prior and Selected Posterior Distributions of (a) P and (b) 
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the prior is the plot of a beta distribution with param-
eters 	 = 0�657 and 
 = 2�783; the overall mean of �
across the whole sample is 0.19. The posterior distri-
bution of P for an individual who made three consec-
utive repeat purchases with the last one in 1998 has
most of its mass to the right; the observed sequence
of purchases reflects the high mean of this distribu-
tion �E�P� = 0�80). At the same time, the three-year
hiatus suggests that the supporter is dead as a result
of their � coming from a posterior distribution with
an interior mode and with E��� = 0�20.

On the other hand, someone who made three repeat
purchases with the last one in 2001 had to be alive
over the whole period, which is a result of their �
coming from a beta distribution with most of its mass
piled to the left, with E��� = 0�07. The fact that trans-
actions did not occur in three of the six years reflects
the fact that their p comes from a distribution with a
lower mean (E�P� = 0�53).
These relationships between P and � suggest that

there may be some correlation in the joint posterior
distribution (despite the fact we assume independent
priors). This is indeed the case, and we explore it with
two analyses in Appendix B. (We discuss a model
with correlated priors in §5.)

3.1.2. Conditional Penetration. Ever since the
publication of Schmittlein et al. (1987), researchers

Table 8 Probability of Being Active in 2002–2006 as a Function of
Recency and Frequency

Year of last transaction
No. of rpt transactions
(1996–2001) 1995 1996 1997 1998 1999 2000 2001

0 0�05
1 0�05 0�17 0�32 0�46 0�56 0�62
2 0�05 0�24 0�48 0�66 0�76
3 0�09 0�40 0�69 0�84
4 0�19 0�66 0�88
5 0�51 0�91
6 0�92

have shown interest in the P�alive� measure.
Although we have reported this quantity as a means
of understanding patterns of conditional expectations,
we feel that the measure is of limited diagnostic
value when viewed by itself. It is a prediction of
something that is, by definition, unobservable (i.e.,
whether or not a customer is still alive at a par-
ticular point in time), and thus it is impossible to
directly assess its validity. A useful companion mea-
sure is a prediction of whether or not the customer
will be active in the future, that is, whether or not the
customer undertakes any transactions in a specified
future period of time.5

The probability that a customer is active in the
2002–2006 period (n∗ = 5) is computed as 1 −
P�X�n�n + n∗� = 0 � x� tx�n� using (12), conditional on
each of the 22 �x� tx� patterns associated with n = 6.
This conditional penetration is reported in Table 8
as a function of recency (the year of the individual’s
last transaction) and frequency (the number of repeat
transactions).
Comparing Tables 5 and 8, we note that the esti-

mated probabilities of being alive in 2002 are strictly
higher than the corresponding conditional 2002–2006
penetration numbers. This makes intuitive sense, but
the differences between these measures reflect several
factors. First, the P�alive� numbers are just for one
year, whereas the penetration numbers are for a five-
year period. Second, the mere fact that someone is
alive does not mean she will be active, because the lat-
ter state depends on the person’s underlying transac-
tion probability p. This is very clear when we look at
the rightmost column of both tables. Although those
people who made a purchase in 2001 have the same
probability of being alive, irrespective of frequency,
their corresponding probabilities of making at least
one transaction in the next five years clearly (and log-
ically) increase as a function of frequency, reflecting

5 Many authors, including Schmittlein et al. (1987), have used the
terms “alive” and “active” as synonyms. We feel that this should
not be the case, with the term “alive” referring to an unobservable
state and the term “active” referring to observable behavior.
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in part the associated probabilities of making a pur-
chase at any given transaction opportunity given alive
(Table 7). Third, the lower penetration numbers also
reflect the fact that inactivity may be due to the per-
son dying in 2003–2006, even if they had been alive
in 2002.
In summary, we encourage researchers who might

be attracted by the P�alive� measure to also utilize the
conditional penetration numbers, because they reflect
an observable quantity (i.e., whether or not the cus-
tomer is active).

3.2. Pooled Analysis
The analyses presented above all focused on a single
cohort, the group of individuals who made their first-
ever donation during 1995. However, as noted earlier,
we have data for a total of six cohorts. At first glance
we may be tempted to apply the model cohort by
cohort; unfortunately, we are not able to estimate a
complete set of cohort-specific parameters. Consider,
for instance, the 2000 cohort: we only have one obser-
vation per customer—whether or not each new donor
made a repeat donation in 2001 (i.e., n = 1)—and as
such cannot identify the model parameters. The obvi-
ous, albeit possibly restrictive, solution is to pool all
six cohorts and estimate a single set of model param-
eters. We now turn our attention to such an analysis,
examining how well the BG/BB model predicts the
behavior of the complete group of the 56,847 people
who made their first-ever donation to the organiza-
tion between 1995 and 2000.
The maximum-likelihood estimates of the model

parameters are reported in Table 9. (Comparing the
fit of the BG/BB model with that of the beta-Bernoulli
model, we once again note that the addition of the
death component results in a major improvement in
model fit.) We also note that the BG/BB parameters
for the pooled model are remarkably similar to those
of the 1995 cohort by itself (Table 4)—this reflects both
the high reliability of the model as well as the “poola-
bility” of the cohorts. Figure 8, which compares the
expected number of people making 0�1� � � � �6 repeat
transactions between 1996 and 2001 with the observed
frequencies, confirms that the model provides a very
good fit to the data.
The pooled model continues to accurately track the

actual number of repeat transactions over time. View-
ing Figure 9(a), which shows the actual versus pre-
dicted cumulative number of repeat transactions, we

Table 9 Parameter Estimates, Pooling the 1995–2000 Cohorts

� � � 	 LL

BB 0�501 0�753 −115�615�0
BG/BB 1�188 0�749 0�626 2�331 −110�521�0

Figure 8 Predicted vs. Actual Frequency of Repeat Transactions by the
1995–2000 Cohorts
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see that the model overforecasts the holdout trans-
actions by a mere 0�25%. Looking at Figure 9(b),
which reports these numbers on a year-by-year basis,
we note that the BG/BB model clearly captures the
underlying trend in repeat transactions. (The repeat
transaction numbers rise up to 2001 as new support-
ers continue to enter the combined pool of donors;
after that point, we are focusing on a fixed group of

Figure 9 Predicted vs. Actual (a) Cumulative and (b) Annual Repeat
Transactions

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year

0

40,000

80,000

120,000

160,000

C
um

ul
at

iv
e 

no
. o

f r
ep

ea
t t

ra
ns

ac
tio

ns

Actual
Model

(a)

Year

0

5,000

10,000

15,000

20,000

N
o.

 o
f r

ep
ea

t t
ra

ns
ac

tio
ns

(b)



Fader, Hardie, and Shang: Customer-Base Analysis in a Discrete-Time Noncontractual Setting
1098 Marketing Science 29(6), pp. 1086–1108, © 2010 INFORMS

56,847 potential repeat supporters.) The conditional
expectation plots, omitted in the interests of space, are
similarly impressive.
This pooled analysis provides a further illustra-

tion of the remarkable ability of the BG/BB model to
describe and predict the future behavior of a customer
base. It is encouraging to see how one set of param-
eters can capture the behavior of different cohorts
acquired across six consecutive years (1995–2000) and
project their actions quite accurately into the future.

4. Comparison with the Pareto/NBD
Model

Our empirical analysis has focused on the number of
repeat transactions. The alert reader will have ques-
tioned our use of the term “transactions” because
this is not a “necessarily discrete” setting (Figure 1).
Strictly speaking, we have been modeling whether or
not the supporter has made any donation to the orga-
nization each year; we have ignored the fact that some
supporters may make more than one donation in a
given year.
We feel that such an approach is perfectly appro-

priate for two reasons. First, the majority of the sup-
porter base (71%) made only one donation for each of
the years during which a “transaction” occurred. Sec-
ond, this is the way the nonprofit organization thinks
about its donor base; they focus more on whether or
not each person has made a donation in any given
year (0/1), not as much on the number of donations
made. Thus, the 0/1 indicator is the primary behav-
ioral measure recorded in the database provided to us
(just as it was for Netzer et al. 2008).
Nevertheless, the fact that 29% of the supporter

base made more than one donation in at least one
of the years during which a “transaction” occurred
may lead some to argue that we should be mod-
elling the number of donations over time rather than
annual incidence; the natural model to use for such
an approach to the data would be the Pareto/NBD.
Returning to the 1995 cohort, we obtained data

on the number of repeat donations made by each
supporter within each year (i.e., the binary string
characterization of behavior is replaced by a string
of nonnegative integers). Given the interval-censored
nature of these data, we estimate the parameters of
the Pareto/NBD model using the likelihood function
given in Fader and Hardie (2005).6

The expected number of people making 0�1�2� � � �
repeat donations between 1996 and 2001 is compared
to the actual frequency distribution in Figure 10. In
contrast to the performance we normally expect from

6 The parameter estimates are r̂ = 11�419, �̂ = 12�865, ŝ = 0�129, and
�̂ = 0�013, with LL= −44�506�6.

Figure 10 Comparing the Number of Repeat Donations as Predicted
by the Pareto/NBD Model with the Actual Numbers
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the Pareto/NBD model (e.g., Fader et al. 2005), we
note that the Pareto/NBD provides a poor fit to the
observed donation data.
Another test of the Pareto/NBD as a model of the

donation process is to estimate the implied flow of
annual “transactions” (i.e., annual incidence) and then
examine how well the model captures and predicts
the observed transaction patterns. The expected num-
ber of people making 0�1� � � � �6 repeat transactions
between 1996 and 2001 is compared to the actual fre-
quency distribution in Figure 11. In contrast to the
fit observed for the BG/BB model in Figure 3, we
see that the Pareto/NBD fails to capture the observed
annual incidence of donations.
We can also examine how well the model tracks

repeat transactions over time, both cumulatively (Fig-
ure 12(a)) and year by year (Figure 12(b)). In con-
trast to the equivalent plots for the BG/BB model
(Figures 4(a) and 4(b), respectively), we see that
Pareto/NBD fails to track the actual data. The initial

Figure 11 Comparing the Number of Repeat Transactions (i.e., Annual
Incidence) as Predicted by the Pareto/NBD Model with the
Actual Numbers
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Figure 12 Predicted vs. Actual (a) Cumulative and (b) Annual Repeat
Transactions
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underprediction follows naturally from the overesti-
mation of the number of people making zero dona-
tions between 1996 and 2001. We also note that the
Pareto/NBD fails to capture the overall rate of decline
in transactions over time.
Finally, we examine how well the BG/BB and

Pareto/NBD models track (and predict) the evolution
of the number of cohort members that ever make a
repeat transaction—see Figure 13. Once again we see

Figure 13 Comparing the Number of “Ever-Repeaters” as Predicted by
the BG/BB and Pareto/NBD Models with the Actual Number
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a strong performance by the BG/BB model and a poor
performance by the Pareto/NBD model.
To summarize, this analysis has demonstrated that

the Pareto/NBD model fails to capture the flow of
donations. Treating the data as discrete—even though
the underlying process is not “necessarily discrete”—
and modeling the flow of transactions (i.e., inci-
dence, rather than the overall number within each dis-
crete time interval) using the BG/BB model is clearly
superior.
Why does the Pareto/NBD perform so poorly

in this case? The assumption of exponential “inter-
purchase” times between donations (which yields the
Poisson count model) is a dubious one in this set-
ting. Donations are made too “regularly” (e.g., in
December of each year) to be accommodated by the
“memorylessness” of the exponential/Poisson. Con-
sider, for example, the 1,203 customers who made
a donation every year (Table 2). An individual-level
Poisson model would take such a high donation rate
and (because of its equi-dispersion property) would
predict a fairly large number of years with multiple
donations. However, each of these customers made,
on average, a total of only 1.3 donations per year
across the calibration period. The Pareto/NBD sim-
ply cannot cope with such a low level of persistent
behavior. Schmittlein et al. (1987, p. 17) explicitly
acknowledged this limitation as well: “For processes
like church attendance and television viewing the
opportunities for a transaction occur regularly, so
our model is � � � inappropriate.” In contrast, directly
modeling annual incidence—as opposed to continuous-
time purchasing—as a memoryless process (while
the customer is alive) is a much more reasonable
approach.

5. Extending the Basic Model
Of all the assumptions associated with the BG/BB
model, the one that many readers will have the most
problem with is Assumption (6), that the transac-
tion probability p and the dropout probability � vary
independently across customers. This is not nearly
as restrictive as it may seem; more formally, we are
assuming independent priors, which does not imply
independence in the joint posterior distribution of P
and �. (In fact, we can see some fairly strong correla-
tions in the posterior distributions—see Appendix B.)
Nevertheless, we now relax this assumption.
An extremely attractive consequence of Assump-

tions (4)–(6) (i.e., independent beta-mixing distribu-
tions) is that we arrive at simple analytical expressions
for all the model quantities of interest, which greatly
reduces the barriers to model implementation (e.g.,
being able to perform all the analysis in an Excel
spreadsheet). Ideally, we would like to be able to relax
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the independence assumption without losing the abil-
ity to derive simple analytical expressions.
The Sarmanov family of distributions, as introduced

to marketing by Park and Fader (2004), is a natural
starting point, because it allows us to create bivari-
ate distributions with specified marginals. However,
a problem with the Sarmanov approach is that the
range of its correlation coefficients is narrower than
(−1�1) and is a function of the parameters of the
marginal distributions. When we relax Assumption (6)
via the bivariate beta distribution used by Danaher
and Hardie (2005), we find that the distribution is
too constraining (i.e., the estimate of the correlation
reaches the limits imposed by the estimated parame-
ters of the marginal beta distributions).
We therefore consider the more flexible SBB distri-

bution (Johnson 1949), also known as the logit-normal
distribution; that is,

[ logit�p�

logit���

]
∼MVN

([�P

��

]
�

[ �2
P �P�

��P �2
�

])
�

Because the individual-level process has not
changed, the likelihood function for a randomly cho-
sen customer is obtained by taking the expectation of
(4) over the joint distribution of P and �:

L���� � x� tx�n�

=
∫ 1

0

∫ 1

0
L�p� � � x� tx�n�f �p�� � ���� dp d��

The major downside of using this distribution is that
there is no analytic solution to this double integral.
We therefore evaluate the integrals using Monte Carlo
simulation; that is, we estimate the model parameters
using the method of maximum simulated likelihood
(making use of MATLAB). We call this the SBB-G/B
model.
We first estimate a constrained version of the model

assuming p and � are assumed to be uncorrelated.
With reference to Table 10, we see that model fit
is almost identical to that of the original BG/BB
model. The associated moments in the �P��� space
are also very close to those associated with the BG/BB
model. Allowing for a correlation results in a signifi-
cant improvement in model fit—an increase of 15 log-
likelihood points at the cost of one extra parameter.
The estimated (prior) correlation between P and � is
0.361 (versus the limit of 0.042 associated with using
a Sarmanov bivariate beta distribution).
The big question is whether this improvement in

model fit leads to any meaningful improvement in
the associated predictions. We first consider how well
it tracks aggregate repeat transactions over time. The
cumulative and year-by-year numbers are plotted in
Figure 14. We note that the differences in the predic-
tions associated with the BG/BB and SBB-G/B models

Table 10 Results of the Model That Replaces Independent
Beta-Mixing Distributions with an SBB Distribution for
Heterogeneity in P and 


SBB heterogeneity

BG/BB Uncorr Corr

Parameter estimates
�P 0�720 1.119
�
 −1�993 -2.145
� 2

P 3�178 3.869
� 2


 2�219 4.020
�P 
 — 1.774

LL −33,225.6 −33,225.7 −33,210.7

Moments in �P �
� space
E(P ) 0�616 0�614 0.666
var(P ) 0�080 0�082 0.084
E�
� 0�191 0�189 0.209
var�
� 0�035 0�037 0.058
corr�P �
� — — 0.361

are negligible. However, when we look at the dis-
tribution of holdout period transactions (Figure 15),
it is clear that the SBB-G/B model provides a bet-
ter prediction of the distribution than the already

Figure 14 Comparing Predicted (a) Cumulative and (b) Annual Repeat
Transactions from the BG/BB and SBB-G/B Models vs. Actual
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Figure 15 Predicted (from the BG/BB and SBB-G/B Models) vs. Actual
Frequency of Repeat Transactions in 2002–2006
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excellent prediction associated with the BG/BB
model.7

Turning our attention to the conditional expecta-
tions, we first look at the expected number of trans-
actions in the 2002–2006 period (n∗ = 5) conditional
on each of the 22 (x� tx) patterns associated with
n = 6. These conditional expectations are reported in
Table 11; they are the SBB-G/B model equivalents of
the numbers reported in Table 5. We note that these
conditional expectations are highly correlated with
those associated with the BG/BB model (r = 0�997).
To compare these predictions with those associated

with the BG/BB model, we report in Figure 16(a) the
two sets of conditional expectations along with the
average of the number of the transactions that actu-
ally occurred in the 2002–2006 forecast period, bro-
ken down by the number of repeat transactions in
1996–2001. (As in Figure 6(a), we are averaging over
customers with different values of tx for each x.) Sim-
ilarly, Figure 16(b) reports the two sets of conditional
expectations along with the average of the number
of the transactions broken down by the year of the
individual’s last transaction. (For each tx, we are aver-
aging over customers with different values of x.) For
the most part, the predictions from the two models
are very close. Nevertheless, there are some noticeable
differences (e.g., a donor who made a repeat transac-
tion every year in the calibration period is expected to
make 3.59 transactions over the subsequent five years
according to the SBB-G/B model, versus 3.75 under
the BG/BB).
In conclusion, we find that, at least for this empir-

ical setting, there is a significant (prior) correlation
between the transaction and dropout probabilities;
that is, Assumption (6) is violated. However, relaxing

7 Assessing the relative “fit” using the chi-squared goodness-of-fit
measure, we note that it reduces from 47.9 for the BG/BB model to
4.8 for the SBB-G/B model.

Table 11 Expected Number of Repeat Transactions in 2002–2006 as
a Function of Recency and Frequency, as Predicted by the
SBB-G/B Model

Year of last transaction
No. of rpt transactions
(1996–2001) 1995 1996 1997 1998 1999 2000 2001

0 0�10
1 0�10 0�44 0�75 0�93 1�04 1�11
2 0�12 0�66 1�21 1�52 1�68
3 0�22 1�15 1�93 2�24
4 0�56 2�12 2�78
5 1�78 3�26
6 3�59

this assumption comes at a cost. Whereas the basic
BG/BB model can be implemented in Excel, the SBB-
G/B model requires a less accessible computing envi-
ronment (e.g., MATLAB). Although allowing for this
correlation does lead to some improvements in the
model’s predictive performance, the numbers are suf-
ficiently similar for us to conclude that the cost-benefit

Figure 16 Predicted (from the BG/BB and SBB-G/B Models) vs. Actual
Conditional Expectations of Repeat Transactions in
2002–2006 as a Function of (a) Frequency and (b) Recency
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trade-off is not immediately obvious. We will revisit
this issue in the following section.

6. Discussion
We have developed a new model that can be used
to answer standard customer-base analysis questions
in noncontractual settings where opportunities for
transactions occur at discrete intervals. Using a data
set on annual donations made by the supporters of
a nonprofit organization located in the midwestern
United States, we have demonstrated how the model
can be used to compute a number of managerially
relevant quantities such as future purchasing pat-
terns, both collectively and individually (conditional
on past behavior). In examining these quantities we
have observed some interesting effects of past behav-
ior (as summarized by recency and frequency) on pre-
dictions about future behavior.
The contractual versus noncontractual distinction

that lies at the heart of this work is very similar to
Jackson’s (1985a, b) “lost-for-good” versus “always-
a-share” framework. Rust et al. (2004) observe that
such a distinction is important, because the esti-
mates of CLV generated by applying a lost-for-good
model to data best characterized by the always-a-
share assumption will systematically underestimate
true CLV. In a discrete-time always-a-share setting, the
BB is the natural benchmark model for purchasing
from the firm. However, as shown earlier, it substan-
tially overforecasts cumulative repeat transactions; it
fails to capture the “leakage” of customers over time
typically observed in an always-a-share setting—also
observed by East and Hammond (1996). By allowing
for an unobserved death component, the BG/BB can
be viewed as a “leaky” version of an always-a-share
model.
As we mentioned from the outset of this paper,

the BG/BB is the direct analog of the Pareto/NBD
as one moves from a continuous-time setting to a
discrete-time domain. We have brought up a number
of specific examples where this distinction is critically
important, as well as some situations (characterized
as discretized by recording process in Figure 1) where
the analyst might intentionally convert a continuous-
time setting into a discrete-time one, primarily to
be able to use the BG/BB model instead of the
Pareto/NBD. We are aware of several organizations
(including hotel chains, financial services firms, and
a variety of nonprofits) that have chosen to focus
on “discretized” data, either on their own (such as
the organization that provided the data used here)
or specifically to utilize the BG/BB framework. The
fact that they have approached their data manage-
ment/analysis in such a manner is an indication of
the direct applicability of this new model.

Various benefits associated with the BG/BB have
been mentioned throughout this paper, and we sum-
marize them here.
• The BG/BB offers tremendous advantages in

terms of the required data structures. The size of
the data summary required for model estimation
is purely a function of the number of transaction
opportunities—not the number of customers—and
therefore the model is highly “scalable” to customer
bases of different sizes. Furthermore, in recognizing
that recency and frequency are sufficient summary
statistics, the relationship between the number of
transaction opportunities and the size of the data set
is on the order of n2, which is a significant reduction
compared to using the full binary strings (order 2n).
• Besides the efficient data requirements, the cal-

culations associated with the model are much simpler
than those of the Pareto/NBD. No unconventional
or computationally demanding functions are required
for parameter estimation or for most of the diagnostic
statistics that emerge from the model. Taken together
with the aforementioned data advantages, this means
that the model is easy to fully implement and utilize
within a standard spreadsheet environment, as illus-
trated in Figure 2. This is very appealing to practi-
tioners, because this reduction in space/effort can be
accomplished at virtually no cost (i.e., without sacri-
ficing anything in model performance, as shown in
our empirical analyses).
• Pragmatic considerations aside, we see that the

Pareto/NBD can fail to capture the flow of donations,
be it the actual number or annual incidence. We sus-
pect that there are many settings (particularly when
periodic transactions tend to occur during a relatively
limited range of time) when these shortcomings of the
Pareto/NBD will be quite evident.
• The discrete nature of the data and the associated

behavioral “story” lead to model diagnostics that are
convenient to display and are readily interpretable.
For instance, it is very easy to see and appreciate the
nonlinear pattern associated with high frequency and
low recency, shown in Table 5. Likewise, a simple
examination of that table instantly answers the man-
agerial questions raised in the introduction.
• Finally, it is relatively easy to build and ana-

lyze the BG/BB model across multiple cohorts of
customers—something that has been done rarely
(if ever) in the Pareto/NBD literature. Not only does
this make the model even more practical, but the
multiyear empirical results shown here offer much
stronger support for the model’s validity than a
single-cohort analysis can provide.
Although the BG/BB is an excellent starting point

for modeling discrete-time noncontractual data, there
are several natural extensions worth investigating
in future research. First, as is the case with the
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Pareto/NBD model, the BG/BB model will need to
be augmented by a model of purchase amounts when
we are interested in the overall monetary value of
each customer. A natural candidate would be the
gamma-gamma mixture (Colombo and Jiang 1999)
that Fader et al. (2005) use in conjunction with the
Pareto/NBD model. In situations (such as the data set
used here) that are not necessarily discrete and where
there is the possibility that more than one transaction
could occur in each discrete-time interval, we should
derive the monetary-value multiplier by first mod-
eling the number of transactions (conditional on the
fact that at least one transaction occurred) and then
multiply this by the average value per transaction.
A logical model would be the shifted beta-geometric
distribution (as used by Morrison and Perry 1970
to model purchase quantity, conditional on purchase
incidence).
Second, we may want to allow for a non-zero-order

purchasing process at the individual level. A good
historical starting point would be the “Brand Loyal
Model” (Massy et al. 1970). This would effectively be
an extension of the Markov chain model of retail cus-
tomer behavior at Merrill Lynch by Morrison et al.
(1982), an extension in which the “exit parameter” is
allowed to be heterogeneous and is estimated directly
from the data (as opposed to being derived from other
data sources).
The research presented in this paper is clearly

anchored in the “probability models for customer-
base analysis” tradition, of which the Pareto/NBD is
a central model. As Fader and Hardie (2009) note,
this stream of research uses combinations of basic
probability distributions to develop “simple” mod-
els of customer behavior that can be used to make
predictions of future behavior conditional on cus-
tomers’ past behavior. It is perhaps useful to reflect
on how this fits within the broader customer prof-
itability/CLV/customer equity literature, as exempli-
fied by a number of top managerially oriented books
(e.g., Blattberg et al. 2001, Gupta and Lehmann 2005,
Kumar 2008, Rust et al. 2000) and the large academic
literature (e.g., as reviewed in Blattberg et al. 2008),
especially in light of the fact that the effects of factors
such as marketing activities are completely ignored.
If one takes an evolutionary model-building view

of embedding analytics in an organization (Urban and
Karash 1971), models such as the BG/BB represent a
natural first step. These models can be implemented
by an organization at very low cost. For example,
no new software is required and the model can be
“coded up” in a blank spreadsheet in a matter of min-
utes; furthermore, the data requirements are minimal
and do not require the merging of databases, as is typ-
ically the case when wanting to incorporate the effects

of marketing activities—assuming such data are read-
ily available in the first case.8 If some of the under-
lying modeling assumptions are unappealing (e.g.,
the assumption of independence between the transac-
tion and dropout probabilities), we can create a “ver-
sion 2.0” of the model that comes at some increased
computational cost.
Implicit in these basic models is the assumption

that future marketing activities will be basically the
same as past marketing activities. The impressive
predictive performance of the BG/BB model sug-
gests that this is not an overly restrictive assumption.
If there has been some customization of marketing
activities on the basis of outputs generated from this
model (e.g., after scoring the customer database on
the basis of P(alive) or the conditional expectations),
then all we would need to do is reestimate the model
on an updated data set when it is time to apply
the model again in the future. (Given that this can
be done in Excel, such reestimation comes at very
low cost.) Furthermore, the forecasts generated by the
model provide a natural (and low-cost) baseline for
examining the performance of the “customized” mar-
keting activities.
Beyond efforts to use the BG/BB for customized

marketing activities, a similar iterative approach can
be applied to better understand other kinds of time-
varying marketing activities. In ongoing field appli-
cations of the model, we encourage organizations to
rerun the model on a periodic basis to try to detect
notable deviations from its baseline predictions, as
well as to make inferences about the changing nature
of the underlying “buy” and “die” processes. Like-
wise, we encourage organizations to run the model
separately for different “cohorts” of customers, e.g.,
based on their date and/or channel of acquisition.
It is often possible to detect systematic shifts across
these incoming customer groups, which can help
refine expectations and acquisition tactics for newly
acquired customers. Although these efforts admit-
tedly fall short of a full-blown optimization strategy,
they help organizations gain a much better feel for
the evolving patterns of their customer base and the
effectiveness of their marketing efforts.
As this kind of “analytics culture” gets embedded

into a marketing organization, we can expect man-
agers to begin to ask deeper kinds of “what-if” and
resource allocation questions tied to marketing vari-
ables. Assuming all the data are readily available in
the organization, it is possible to develop models that
incorporate these effects (e.g., Kumar et al. 2008; also
see the review by Blattberg et al. 2009). As covariates

8 In the nonprofit example considered in this paper, we know that
marketing activities were undertaken but the data were not avail-
able. There was no indication that these activities were customized
at the donor level.
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are incorporated, data structures and model estima-
tion issues become more complex. To the extent that
customers have been targeted with different market-
ing activities on the basis of their past behavior, we
must also account for endogeneity. This is clearly a
major step up the evolutionary ladder of marketing
analytics in the organization. We feel that it is impor-
tant that any organization embarking on such a jour-
ney should learn to walk before they can run, and the
BG/BB seems to be a solid way to start the journey.
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Appendix A. Derivations
In this appendix we present derivations of the key results
presented in §2.2. Before starting, we first recall that for
0< k < 1,

• The sum of the first n terms of a geometric series is

a + ak + ak2 + · · · + akn−1 = a
1− kn

1− k
� (A1)

• The sum of an infinite geometric series is
�∑

n=0

akn = a

1− k
� (A2)

and note the following transformation of Euler’s integral
representation of the Gaussian hypergeometric function
(2F1�a� b� c� z�):∫ 1

0
tb−1�1− t�c−b−1�1− zt�−a dt

= B�b� c − b�2F1�a� b� c� z�� c > b� (A3)

A.1. Derivation of (7)
An individual making x purchases had to be alive for
at least the first x transactions opportunities. Conditional
on p, the probability of observing x transactions out of the
i (unobserved) transaction opportunities (i = x� � � � �n) the
customer is alive is (

i

x

)
px�1− p�i−x�

Removing the conditioning on being alive for i transaction
opportunities by multiplying this by the probability that the
individual is alive for that length of time gives us

P�X�n�=x �p��� =
(

n

x

)
px�1−p�n−x�1−��n

+
n−1∑
i=x

(
i

x

)
px�1−p�i−x��1−��i� (A4)

Taking the expectation of this over the mixing distribu-
tions for P and � ((1) and (2), respectively) gives us (7).

A.2. Derivation of (8)
Conditional on p and �, the expected number of transactions
over n transaction opportunities is computed as

E�X�n� � p��� =
n∑

t=1

P�Yt = 1 � p�alive at t�P�alive at t � ��

= p
n∑

t=1

�1− ��t

= p�1− ��
n−1∑
s=0

�1− ��s�

which, recalling (A1) and performing some further algebra,

= p�1− ��

�
− p�1− ��n+1

�
� (A5)

Taking the expectation of this over the mixing distribu-
tions for P and � gives us

E�X�n� � ����	�
�

=
(

�

� + �

){
B�	 − 1�
 + 1� − ��	 − 1�
 + n + 1�

B�	�
�

}
�

(Strictly speaking, the use of the integral representation of
the beta function to solve the integral associated with taking
the expectation over � only holds for 	 > 1. However, it can
be shown that we arrive at the same result when 0< 	 < 1.)
Representing the beta functions in terms of gamma func-
tions and recalling the recursive property of gamma func-
tions gives us (8). Reflecting on the bracketed term in (8) as
n → �, we note that E�X�n�� grows to a limit of(

�

� + �

)(



	 − 1

)

when 	 > 1. When 	 < 1, there is no limit on E�X�n��. (The
Pareto/NBD model shares this property regarding the exis-
tence of a limit.)

A.3. Derivation of (9) and (10)
Recalling (A4), it follows from the memoryless nature of the
death process that

P�X�n�n + n∗� = x∗ � p���alive at n�

=
(

n∗

x∗

)
px∗

�1− p�n∗−x∗
�1− ��n∗

+
n∗−1∑
i=x∗

(
i

x∗

)
px∗

�1− p�i−x∗
��1− ��i� (A6)

Noting that the probability that someone is alive at n is
�1− ��n, we have

P�X�n�n + n∗� = x∗ � p���

= 
x∗=0�1− �1− ��n� +
(

n∗

x∗

)
px∗

�1− p�n∗−x∗
�1− ��n+n∗

+
n∗−1∑
i=x∗

(
i

x∗

)
px∗

�1− p�i−x∗
��1− ��n+i�
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(The first term accounts for the fact that anyone not alive at
n will, by definition, not make any purchases in the interval
�n�n + n∗�.) Taking the expectation of this over the mixing
distributions for P and � gives us (9).

By definition, X�n�n + n∗� = X�n + n∗� − X�n�; it follows
that E�X�n�n+n∗�� = E�X�n+n∗��−E�X�n��. Substituting (8)
in this gives us (10).

A.4. Derivation of (11)
Reflecting on (4), the first term is the likelihood of
x purchases out of n transaction opportunities under the
assumption that the customer was alive for all n transaction
opportunities. (The other terms account for the possibility
that the individual died before n.) Using Bayes’ theorem, it
follows that the probability that a customer with purchase
history �x� tx�n� is alive at n is

P�alive at n � p���x� tx�n� = px�1− p�n−x�1− ��n

L�p� � � x� tx�n�
� (A7)

It follows that

P�alive at n + 1 � p���x� tx�n�

= px�1− p�n−x�1− ��n+1

L�p� � � x� tx�n�
� (A8)

By Bayes’ theorem, the joint posterior distribution of P
and � is given by

f �p�� � ����	�
�x� tx�n�

= L�p� � � x� tx�n�f �p � ����f �� � 	�
�

L�����	�
 � x� tx�n�
� (A9)

where the individual elements are given in (1), (2), (4),
and (5). Taking the expectation of (A8) over the joint poste-
rior distribution of P and � gives us (11).

By the same logic, we can derive an expression for the
probability that a customer with purchase history �x� tx�n�
is alive at transaction opportunity n + m. Conditional on p
and �,

P�alive at n + m � p���x� tx�n� = px�1− p�n−x�1− ��n+m

L�p� � � x� tx�n�
�

Taking the expectation of this over the joint posterior dis-
tribution of P and � yields

P�alive at n + m � ����	�
�x� tx�n�

= B�� + x�� + n − x�

B�����

B�	�
 + n + m�

B�	�
�

·L�����	�
 � x� tx�n�−1� (A10)

A.5. Derivation of (12)
By definition,

P�X�n�n + n∗� = x∗ � p���x� tx�n�

= 
x∗=0�1−P�alive at n � p���x� tx�n��

+P�X�n�n + n∗� = x∗ � p���alive at n�

·P�alive at n � p���x� tx�n��

Substituting (A6) and (A7) in this, and taking the expecta-
tion over the joint posterior distribution of P and �, (A9),
gives us (12).

A.6. Derivation of (13)
Conditional on p and �, the expected number of transac-
tions across the next n∗ transaction opportunities (i.e., in
the interval (n�n+n∗]) by a customer with purchase history
�x� tx�n� is

E�X�n�n + n∗� � p���x� tx�n�

= E�X�n�n + n∗� � p���alive at n�

×P�alive at n � p���x� tx�n��

Now

E�X�n�n + n∗� � p���alive at n�

=
n+n∗∑
t=n+1

P�Yt = 1 � p�alive at t�P�alive at t � �� t > n�

= p
n+n∗∑
t=n+1

�1− ��t

�1− ��n

= p
n∗∑
s=1

�1− ��s

= p�1− ��

�
− p�1− ��n∗+1

�
� (A11)

Taking the expectation of the product of (A7) and (A11)
over the joint posterior distribution of P and �, (A9), and
simplifying (i.e., representing certain beta functions in terms
of gamma functions and exploiting the recursive property
of gamma functions) gives us (13).

A.7. Derivation of (14)
The number of discounted expected residual transactions
for a customer alive at n is

DERT�d � p���alive at n�

=
�∑

t=n+1

P�Yt = 1 � p�alive at t�P�alive at t � t > n���

�1+ d�t−n

= p
�∑

t=n+1

�1− ��t−n

�1+ d�t−n

= p
1− �

1+ d

�∑
s=0

(
1− �

1+ d

)s

�

which, recalling (A2),

= p�1− ��

d + �
� (A12)

Multiplying this by the probability that a customer
with purchase history �x� tx�n� (and latent transaction and
dropout probabilities p and �) is still alive at transaction
opportunity n, (A7), gives us

DERT�d � p���x� tx�n� = px+1�1− p�n−x�1− ��n+1

�d + ��L�p� � � x� tx�n�
� (A13)

Taking the expectation of this over the joint posterior dis-
tribution of P and �, (A9), gives us

DERT�d � ����	�
�x� tx�n�

=�× B�� + x + 1�� + n − x�

B�����

/
L�����	�
 � x� tx�n��



Fader, Hardie, and Shang: Customer-Base Analysis in a Discrete-Time Noncontractual Setting
1106 Marketing Science 29(6), pp. 1086–1108, © 2010 INFORMS

where

�=
∫ 1

0

1
d + �

�	−1�1− ��
+n

B�	�
�
d��

letting s = 1− �

= 1
B�	�
�

∫ 1

0

1
�1+ d� − s

�1− s�	−1s
+n ds

= 1
B�	�
��1+ d�

∫ 1

0
s
+n�1− s�	−1

(
1−

(
1

1+ d

)
s

)−1

ds�

which, recalling (A3),

= B�	�
 + n + 1�
B�	�
��1+ d� 2F1

(
1�
 + n + 1�	 + 
 + n + 1�

1
1+ d

)
�

giving us the expression in (14).
It is interesting to note that this expression for DERT dif-

fers from that for the conditional expectation, (13), by a
factor of

�	 − 1�2F1�1�
 + n + 1�	 + 
 + n + 1�1/�1+ d��

�	 + 
 + n��1+ d�

·
{
1− �	 + 
 + n�

�1+ 
 + n�

�1+ 
 + n + n∗�
�	 + 
 + n + n∗�

}−1

�

For any given analysis setting, this is a constant, inde-
pendent of the customer’s exact purchase history. There-
fore, any ranking of customers on the basis of DERT will
be exactly the same as that derived using the conditional
expectation of purchasing over the next n∗ periods. When
	 > 1 and d = 0 (i.e., there is no discounting of future pur-
chases), this converges to 1 as n∗ → �.

Because L�����	�
 � x� tx�n� = 1 when x = tx = n = 0, it
follows that the number of discounted expected transactions
(DET) for a just-acquired customer is

DET�d �����	�
�

=
(

�

�+�

)(



	+


)
2F1

(
1�
+1�	+
+1�1/�1+d�

)
1+d

� (A14)

To compute DET for a yet-to-be-acquired customer, we need
to add 1 to this quantity (i.e., the purchase at time t = 0 that
corresponds to the customer’s first-ever purchase with the
firm and therefore starts the transaction opportunity clock).

A.8. Derivation of (15)–(17)
We obtain (15) and (16) by integrating (A9) over � and p,
respectively.

By definition, the �l�m)th product moment (l�m =
0�1�2� � � �) of the joint posterior distribution of P and � is

E�P l�m � ����	�
�x� tx�n�

=
∫ 1

0

∫ 1

0
pl�mf �p�� � ����	�
�x� tx�n�dp d��

which, recalling (A9),

=
∫ 1

0

∫ 1

0
pl�m L�p�� �x�tx�n�f �p �����f �� �	�
�

L�����	�
 �x�tx�n�
dpd�

= B��+l���

B�����

B�	+m�
�

B�	�
�

×
∫ 1

0

∫ 1

0

L�p�� �x�tx�n�f �p ��+l���f �� �	+m�
�

L�����	�
 �x�tx�n�
dpd��

which, recalling the derivation of (5), gives us (17).

Appendix B. Correlation Analyses
One of the assumptions associated with the BG/BB model is
that the transaction probability p and the dropout probabil-
ity � vary independently across customers. At first glance,
this may appear to be unrealistic, but it is not nearly as
restrictive as it may seem. More formally, we are assuming
independent priors, which does not imply independence
in the joint posterior distribution of P and �; in fact, we
can see some fairly strong correlations in the posterior dis-
tributions, as we show here in two separate analyses that
demonstrate how these correlations can be estimated and
interpreted.

First, following an analysis shown in Abe (2009), Fig-
ure B.1 is a scatter plot of the means of the marginal poste-
rior distributions of P and �. Each circle represents the pair
of means for a particular purchase history �x� tx�n� (com-
puted using (17) with l = 1�m = 0 and l = 0�m = 1, respec-
tively), and the area of each circle is directly proportional
to the number of customers who share the same purchase
history (i.e., using the numbers from Table 2). The weighted
correlation across the 22 pairs of numbers is −0�42. This
implies, as common intuition would suggest, that customers
who purchase more frequently (while alive) tend to live
longer than light purchasers (but of course we do not want
to imply any kind of causal connection here).

However, this analysis tells only part of the story because
it only considers the posterior means. When we take into
account the full posterior distribution for a given customer,
a different correlation analysis emerges. Suppose for each
customer in a given recency/frequency group we made a
number of draws from their joint posterior distribution—
what would be the correlation between p and � across these
draws? The joint posterior distribution of P and � is given
by (A9). For the special case where tx = n, this collapses to

f �p�� �����	�
�x�tx�n�=f �p ��+x��+n−x�f �� �	�
+n��

Figure B.1 Scatter Plot of the Marginal Posterior Means of P and 
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Table B.1 The Posterior Correlation of P and 
 as a Function of
Recency and Frequency

Year of last transaction
No. of rpt transactions
(1996–2001) 1995 1996 1997 1998 1999 2000 2001

0 0�258
1 0�193 0�250 0�203 0�105 0�030 0�000
2 0�165 0�238 0�159 0�047 0�000
3 0�174 0�214 0�071 0�000
4 0�214 0�114 0�000
5 0�190 0�000
6 0�000

i.e., the posterior distribution of P is independent of the
posterior distribution of �. (Equivalently, the marginal pos-
terior distributions of P and �, (15) and (16), collapse to
the updated beta distributions f �p � � + x�� + n − x� and
f �� � 	�
 + n�, respectively.) In all other cases, the poste-
rior distribution of an individual’s transaction probability is
not independent of the posterior distribution of her dropout
probability. The joint posterior correlation is given by

corr�P�� � ����	�
�x� tx�n�

= E�P� � ·� −E�P � ·�E�� � ·�√[
E�P 2 � ·� −E�P � ·�2]�E��2 � ·� −E�� � ·�2] � (B1)

where the individual terms are computed using (17). This
correlation is reported in Table B.1 as a function of recency
(the year of the individual’s last transaction) and frequency
(the number of repeat transactions).

This table shows that the “intracustomer” correlations are
strictly positive (except when tx = n), or, equivalently, if we
were to draw from the joint posteriors across all the individ-
uals that are represented within each cell of this table, we
would see these positive correlations. In the most extreme
case, i.e., when tx = n = 0, we see a fairly strong relationship
between p and �. This makes sense: customers in this cell
with a higher purchasing propensity are even more likely
(than light purchasers) to be dead. However, across cells,
the overall correlation is a fairly strong negative one, as dis-
cussed previously. In some sense, this combined analysis
(within and across each type of customer) represents a form
of Simpson’s paradox (Simpson 1951, Wagner 1982).

Taken together, these two analyses provide a more com-
plete picture of the correlations than shown by Abe (2009)
and other researchers, who have limited themselves to a
simple correlation across the posterior means. More impor-
tantly, these analyses put to rest any concerns that a simple
empirical Bayesian model with independent priors will be
unable to capture and reveal correlations in the underlying
processes. To the contrary, these analyses arise quite natu-
rally from the BG/BB model—and the same is true for the
Pareto/NBD and other related models.
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