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DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A 
TRANSLATE OF ITSELF 

BY L. A. SHEPP 

Bell Telephone Laboratories, Murray Hill, New Jersey 

1. Introduction. Suppose X = {X1 , X2, - - } is a sequence of independent and 
identically distributed random variables and a = {al, a2 , * * * } is a numerical 
sequence, an representing the error in centering X. . When are the sample paths 
of X and X + a distinguishable? 

We can distinguish X and X + a with probability one if a is so big that 
Z a,2 = OO. If E an2 < 00 and X has finite information (see Equation (1)) 

then we cannot distinguish. Conversely if we cannot distinguish for all a with 
Z a 2 < o0 then X has finite information. For X withfiniteinformationwecan 

distinguish if and only if E an2 = oo. The latter statement becomes false for 
any wider class than the finite information class. 

Here X is said to have finite information (I < o ) if the common distribution 
F has a positive (a.e.) and (locally) absolutely continuous density sp and 

(1)~~~~~~~~~~~00 IX (S)2/SO < O 
Fisher [2] called the quantity in (1) the information, or intrinsic accuracy. It 
is denoted by I = I(F). 

We briefly mention an application to a quantization problem. Following J. 
Feldman [11 one can produce examples of quasi-invariant (qi) distributions in 
12: Construct a product measure X on sequence space whose translates X. for 
a e 12 are all equivalent measures. Such a predistribution X gives rise to a qi 
distribution on 12 [1]. Theorem 1 gives, in particular, the exact class of such X 
having identical one-dimensional marginals-namely those with finite informa- 
tion. Part of this result was obtained by Feldman who was concerned with more 
general situations. J. R. Klauder and J. McKenna have recently obtained very 
general classes of qi distributions in their work on continuous representations 
of 12 [4]. 

Returning to the statistical setting, we say we can distinguish X and X + a 
if there is a set E of sequences for which 

P{Q-E I X} = P{E I X + a} = , 

where Q is the set of all sequences. This means that the measures ,u and g induced 
by X and X + a respectively, 

,u(A) = P{A I X}, ,a(A) = P{A I X + a}, 

are singular (A j 
pa). 
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The measure ,u is the product measure 

(2) M = fl0 1F{dxn} 

where F is the common distribution of X1, X2 X . . The measure IA' is also a 
product measure 

(3) /a = Idl F{d(xn- an)- 

The measures ,u andMAa are equivalent (A _ Ga) if they have the same null sets, 

(4) ,(A) = 0 if and only if MA(A) = 0 for all A. 

We call X and X + a totally indistinguishable if (4) holds. This is stronger than 
merely being indistinguishable (nonsingular) and, roughly stated, means that 
for every observed sequence there is doubt as to whether it came from X or X + a. 

Our results may now be formulated: 
THEOREM 1. Suppose F = F{dx} is a probability distribution on R (real num- 

bers), and A and MA are the product measures defined in (2) and (3) above: 
(i) If Ej a2 = oo then , A M (distinguishable). 
(ii) Assume I < oo: then M Mla (totally indistinguishable) if Ej an2 < oo, 

and A A f E aa 2 = 00. 

Moreover a converse to (ii) holds: 
(iii) If,u ,ua for all a with >2 an < oo then I < oo. 

(ii) was previously known for Gaussian F and shows that the Gaussian situation 
continues to hold for any F with finite information. It was unexpected that the 
Fisher information plays such a central role and it might be interesting to de- 
termine the class of F for which M __ Ma for a e I for values of p 0 2. The proof 
of Theorem 1 leans heavily on an important result of S. Kakutani on equivalence 
of infinite product measures and on the machinery of the Hilbert space L2 of 
square-integrable functions. 

2. Singularity and equivalence of product measures. S. Kakutani [3] gave 
useful criteria for determining singularity or equivalence of infinite product 
measures. Suppose MlI, M2, ... , * * I P21 ... are probability measures and 

(5) MJ= tInA=i n1 f l = Hn=1 Vn 

are their product measures. Let H denote the Hellinger integral (9). 
THEOREM 2. (Kakutani). If , and v are given by (5), then 

(6) H(,u, v) = IIT`,H(n , vn). 

Moreover, 

(7) M t v if andonlyif H(Mu,v) =0. 

If8 nMriandoyn = 1if H(M )>0, then 

(8) ,u r_ v if and only if H (,, v) > O. 
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We recall that for any probability measures A and v the Hellinger integral 
H(,u, v) is defined by choosing any measure m for which di./dm, dv/dm are defined 
(for example m = , + v) and setting 

(9) H(,, v) = f (d,A/dm.dv/dm)'dm. 

It is easy to check that H(,4, v) does not depend on m and 0 < H(,, v) < 1 
by Schwarz's inequality. Equation (6) allows us to calculate H(MA, v) from the 
component measures. 

3. A separating sequence. To prove (i) we need to show that for every F, X 
and X + a are distinguishable if E an2 = 0o. We shall choose a sequence of 
numbers 01, 02 , - - which, in a sense, separates X and X + a. This will entail 
making IF(0.) - F(0. - an)i large, where F is now used to denote the common 
distribution function. 

LEMMA 1. Suppose F is any distribution function and , an2 = 00 . There is a 
sequence 01, 02. *. for which 

(10) E (F(0n) - F(n - an))2 = 00. 

Assuming the lemma for a moment let us define new sequences X' and 
(X + a)'. Given any sequence Y set 

Yn = 0 if Yn < On 

= 1 if Yn >- fn . 

Suppose a,n (resp. 3n) is the measure induced on the two point space Q {0, 1 
by Xn'(resp. (X + a),n'), 

(11) an (0) = F(0n) a,n(l) 1 - F(f9n) 

3,n(0) = F(0n- an), (l) = 1 - F(9n - an). 

We have 

H(,n X3n) = [a,n(0)fOW(0)I' + [a,n(1)B0n(1'). 

Using the elementary inequality 

(X8)* + [ -X)( -8)], < [1 _ (X _ y)2]1, 0 < X _ 1, 0 _ y < 

with x = a-n(0), Y = O,n(0) we obtain using (10) and (11) that 

flHiI2(x, X3,,) _ fln1 (1 - (F(O,n) - F(f9n - an,)2) = 0. 

It follows that ]I,=1 a,n and flHn /n are singular and so X' and (X + a)' are 
distinguishable. It is clear that the original process X and X + a must also be 
distinguishable. The proof of Lemma 1 rests on a second lemma. 

LEMMA 2. Suppose F is any distribution function. Define 

6 = info<a<l sup<O<e<,, [F(0) - F(0 - a)]/a. 

Then 6 > 0. 
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Suppose the lemma false so 6 = 0. Then for each n > 0 there is an a, 0 < a < 1, 
for which 

(12) F(O) - F(O - a) < avq for all 0. 

Choose numbers b and c with F(c) - F(b) > 0 and define the integer r by 

(13) b+ra < c < b+ (r+ 1)a 

where a is such that (12) holds withX = (F(c) - F(b))/(c - b + 1). We have 

(14) F(c) - F(b) ? F(b + (r + 1)a) - F(b) 

-Z= oF(r + (k + 1)a) -F(r + ka). 

Using (12) in (14) we get 

(15) F(c) - F(b) < (r + 1)aq. 

Now by (13), (r + 1)aq = raq + aq < (c - b + 1)rq = F(c) -F(b), con- 
tradicting (15). This proves Lemma 2. 

Now Lemma 1 is trivial if an does not tend to zero. Suppose then that an -> 0. 
This means that lanj < 1 eventually and Lemma 2 then shows that numbers An 
exist so that IF((n) - F(n - an) I > (6/2) Janl, for n sufficiently large. Since 
E an2 = oo we see that the On satisfy (10). This completes the proof of both 
Lemma 1 and (i) in Theorem 1. 

4. The Fisher information. The information I can be written simply as 

(16) I = 4f (h')2, h = -p 

Now sp is a density and so h E L2. Let A(u) = (2'rf-f eixuh(x) dx denote the 
transform of h. The formal transform of h' is iuh(u) and by Plancherel's theorem 

(17) f(h')2 S u2lh(u)I2du 

The correspondence between h' and iuh(u) is made precise by the following well- 
known lemma ([5], p. 92]. 

LEMMA 3. Suppose h E L2 . If h' E L2 then uh(u) E L2. If uh(u) E L2 then h is 
(almost everywhere) an absolutely continuous function and h' E L2. Moreover in 
this case (17) holds. 

Now suppose that I < oo. By definition F then has a positive density and so 
the measures 

iln{dx} = F{dx}, vn{dx} = F{d(x - an)} 

are equivalent. We have 

d,gnldX= -p(x), dvn/dx = sp(x - an) 

and applying (9) with m = Lebesgue measure dx we obtain 

(18) H (,nX vn) = [ (x)p(x - an)]I' dx. 
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Parseval's identity gives 

f [ep(x) p(x - a.)]* dx = f cos anulh(u) I2 du 

and from (6) we obtain 

(19) H(I., A ) = fln=i (1 - 1(1 - cos anu)Ih(u)12 du). 

Using the inequality 1- cos t < lt2 we obtain from (16) and (17) 

f (1 - 005 anu)hA(U)I2 du af 2I IA(U)12 du 2I 

It follows immediately that H(I., ,ua) > 0 if E an2 < co and I < oo* Using 
(8) this proves (ii). Feldman has already obtained this ([1], pp. 348-349). 

Next we prove (iii). We are given that ,u , for all a e 12 . In the next section 
we will show that F has a positive density. Assuming this, we have that pn sn X 

n = 1,2, 2.. . Using (8) we must have H(,u, ,a) > 0 for all a E 12. Now (19) gives 

En=if (1 - cos adu)jA(u)j2du < oo, for all aE2. 

Now 1-cos t > lt2 for itl < 1 and so 

(20) < anf ?I;anIl u2IA(u)2hdu < . 

We next show uh(u) E L2. Suppose this were false. Then 

T(a) fiul ?l/a u2jh(u) 2 du 

increases to infinity as a tends to zero. 
LEMMA 4. If T is a function such that T(a) increases to infinity as a decreases to 

zero then there is a sequence a E 12 for which E an2T(an) = oo. 
Choose numbers tn such that 0 < tn < ()n, T(tn) > 2n n = 1, 2, .. Now 

choose a so that there are exactly rn values of k for which ak = tn where rn is the 
unique integer satisfying 

(21) rn2 tn < 1 _ (rn + 1)) 2 tn 

We then obtain X an2 = rntn2 < 1 2 n = 1 so a E 12. However, EI a n2T(an) 
? EI (rn + 1)t 22 - 

n 
tn22n = oo. This proves Lemma 4. Using a sequence a 

with the properties of the lemma we obtain a contradiction to (20). Thus 
uh(u) c L2 . Using Lemma 3 we see that h = spl is absolutely continuous. It then 
follows, although the proof is not completely trivial, that (p itself is absolutely 
continuous. Using (16) and (17), I < oo 

5. Translates of a linear measure. We are given that IA '_u' a for a c 12 and we 
will show here that this means that F has a positive density. We must have 
F{ dx} -' F{d (x - a) } for all a because marginals of equivalent product measures 
are necessarily equivalent. That is, F is equivalent to its translates. The fact that 
F has a positive density is already a consequence of this as the following lemma 
shows. 

LEMMA 5. If F is a probability measure on the reals (R) which is equivalent to 
its translates then F has a positive density. 
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For any set E, Fubini's theorem gives 

faeR (fxeR XE(X - a)F{dx}) da = fxeR (faeR XE(X - a) da)F{dx} 

where xE is the indicator of E, XE(u) = 1 or 0 according as u e E or not. This is 
exactly 

(22) faeR F{E + a} da = fxeR X{E}F{dX} = x{E}F{R}. 

Now if F{E} = 0 then X{E} = 0 because F{E + a} = 0 for all a. Conversely, 
if X{E} = O, F{E + a} = 0 for almost every a by (22). It follows that 
F{E + a} = 0 for every a, since F is equivalent to its translates. In particular 
F{E + a} = 0 for a = 0. We have proved that F is equivalent to Lebesgue 
measure. This means that F has a positive density qo and the lemma is proved. 

We have already seen that so is absolutely continuous and that (1) holds. This 
proves (iii) and finishes the proof of Theorem 1. 
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