

Distinguishing a Sequence of Random Variables from a Translate of Itself
Author(s): L. A. Shepp
Source: The Annals of Mathematical Statistics, Vol. 36, No. 4 (Aug., 1965), pp. 1107-1112
Published by: Institute of Mathematical Statistics
Stable URL: http://www.jstor.org/stable/2238114
Accessed: 19/11/2010 14:46

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ims.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematical Statistics.

DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A TRANSLATE OF ITSELF

By L. A. Shepp
Bell Telephone Laboratories, Murray Hill, New Jersey

1. Introduction. Suppose $X=\left\{X_{1}, X_{2}, \cdots\right\}$ is a sequence of independent and identically distributed random variables and $a=\left\{a_{1}, a_{2}, \cdots\right\}$ is a numerical sequence, a_{n} representing the error in centering X_{n}. When are the sample paths of X and $X+a$ distinguishable?
We can distinguish X and $X+a$ with probability one if a is so big that $\sum a_{n}{ }^{2}=\infty$. If $\sum a_{n}{ }^{2}<\infty$ and X has finite information (see Equation (1)) then we cannot distinguish. Conversely if we cannot distinguish for all a with $\sum a_{n}{ }^{2}<\infty$ then X has finite information. For X with finite information we can distinguish if and only if $\sum a_{n}{ }^{2}=\infty$. The latter statement becomes false for any wider class than the finite information class.

Here X is said to have finite information ($I<\infty$) if the common distribution F has a positive (a.e.) and (locally) absolutely continuous density φ and

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\varphi^{\prime}\right)^{2} / \varphi<\infty . \tag{1}
\end{equation*}
$$

Fisher [2] called the quantity in (1) the information, or intrinsic accuracy. It is denoted by $I=I(F)$.

We briefly mention an application to a quantization problem. Following J. Feldman [1] one can produce examples of quasi-invariant (qi) distributions in l_{2} : Construct a product measure λ on sequence space whose translates λ_{a} for $a \varepsilon l_{2}$ are all equivalent measures. Such a predistribution λ gives rise to a qi distribution on l_{2} [1]. Theorem 1 gives, in particular, the exact class of such λ having identical one-dimensional marginals-namely those with finite information. Part of this result was obtained by Feldman who was concerned with more general situations. J. R. Klauder and J. McKenna have recently obtained very general classes of qi distributions in their work on continuous representations of l_{2} [4].
Returning to the statistical setting, we say we can distinguish X and $X+a$ if there is a set E of sequences for which

$$
P\{\Omega-E \mid X\}=P\{E \mid X+a\}=0
$$

where Ω is the set of all sequences. This means that the measures μ and μ^{a} induced by X and $X+a$ respectively,

$$
\mu(A)=P\{A \mid X\}, \quad \mu^{a}(A)=P\{A \mid X+a\}
$$

are singular $\left(\mu \perp \mu^{a}\right)$.

The measure μ is the product measure

$$
\begin{equation*}
\mu=\prod_{n=1}^{\infty} F\left\{d x_{n}\right\} \tag{2}
\end{equation*}
$$

where F is the common distribution of X_{1}, X_{2}, \cdots. The measure μ^{a} is also a product measure

$$
\begin{equation*}
\mu^{a}=\prod_{n=1}^{\infty} F\left\{d\left(x_{n}-a_{n}\right)\right\} . \tag{3}
\end{equation*}
$$

The measures μ and μ^{a} are equivalent ($\mu \sim \mu^{a}$) if they have the same null sets,

$$
\begin{equation*}
\mu(A)=0 \text { if and only if } \mu^{a}(A)=0 \text { for all } A . \tag{4}
\end{equation*}
$$

We call X and $X+a$ totally indistinguishable if (4) holds. This is stronger than merely being indistinguishable (nonsingular) and, roughly stated, means that for every observed sequence there is doubt as to whether it came from X or $X+a$.

Our results may now be formulated:
Theorem 1. Suppose $F=F\{d x\}$ is a probability distribution on R (real numbers), and μ and μ^{a} are the product measures defined in (2) and (3) above:
(i) If $\sum{a_{n}}^{2}=\infty$ then $\mu \perp \mu^{a}$ (distinguishable).
(ii) Assume $I<\infty$: then $\mu \sim \mu^{a}$ (totally indistinguishable) if $\sum a_{n}{ }^{2}<\infty$, and $\mu \perp \mu^{a}$ if $\sum a_{n}^{2}=\infty$.
Moreover a converse to (ii) holds:
(iii) If $\mu \sim \mu^{a}$ for all a with $\sum a_{n}{ }^{2}<\infty$ then $I<\infty$.
(ii) was previously known for Gaussian F and shows that the Gaussian situation continues to hold for any F with finite information. It was unexpected that the Fisher information plays such a central role and it might be interesting to determine the class of F for which $\mu \sim \mu^{a}$ for $a \varepsilon l_{p}$ for values of $p \neq 2$. The proof of Theorem 1 leans heavily on an important result of S. Kakutani on equivalence of infinite product measures and on the machinery of the Hilbert space L_{2} of square-integrable functions.
2. Singularity and equivalence of product measures. S. Kakutani [3] gave useful criteria for determining singularity or equivalence of infinite product measures. Suppose $\mu_{1}, \mu_{2}, \cdots, \nu_{1}, \nu_{2}, \cdots$ are probability measures and

$$
\begin{equation*}
\mu=\prod_{n=1}^{\infty} \mu_{n}, \quad \nu=\prod_{n=1}^{\infty} \nu_{n} \tag{5}
\end{equation*}
$$

are their product measures. Let H denote the Hellinger integral (9).
Theorem 2. (Kakutani). If μ and ν are given by (5), then

$$
\begin{equation*}
H(\mu, \nu)=\prod_{n=1}^{\infty} H\left(\mu_{n}, \nu_{n}\right) \tag{6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\mu \perp \nu \text { if and only if } H(\mu, \nu)=0 . \tag{7}
\end{equation*}
$$

If $\mu_{n} \sim \nu_{n}, n=1,2, \cdots$, then

$$
\begin{equation*}
\mu \sim \nu \text { if and only if } H(\mu, \nu)>0 . \tag{8}
\end{equation*}
$$

We recall that for any probability measures μ and ν the Hellinger integral $H(\mu, \nu)$ is defined by choosing any measure m for which $d \mu / d_{m}, d \nu / d_{m}$ are defined (for example $m=\mu+\nu$) and setting

$$
\begin{equation*}
H(\mu, \nu)=\int(d \mu / d m \cdot d \nu / d m)^{\frac{1}{2}} d m \tag{9}
\end{equation*}
$$

It is easy to check that $H(\mu, \nu)$ does not depend on m and $0 \leqq H(\mu, \nu) \leqq 1$ by Schwarz's inequality. Equation (6) allows us to calculate $H(\mu, \nu)$ from the component measures.
3. A separating sequence. To prove (i) we need to show that for every F, X and $X+a$ are distinguishable if $\sum a_{n}{ }^{2}=\infty$. We shall choose a sequence of numbers $\theta_{1}, \theta_{2}, \cdots$ which, in a sense, separates X and $X+a$. This will entail making $\left|F\left(\theta_{n}\right)-F\left(\theta_{n}-a_{n}\right)\right|$ large, where F is now used to denote the common distribution function.

Lemma 1. Suppose F is any distribution function and $\sum a_{n}{ }^{2}=\infty$. There is a sequence $\theta_{1}, \theta_{2}, \cdots$ for which

$$
\begin{equation*}
\sum\left(F\left(\theta_{n}\right)-F\left(\theta_{n}-a_{n}\right)\right)^{2}=\infty . \tag{10}
\end{equation*}
$$

Assuming the lemma for a moment let us define new sequences X^{\prime} and $(X+a)^{\prime}$. Given any sequence Y set

$$
\begin{aligned}
Y_{n}^{\prime} & =0 & & \text { if } Y_{n}<\theta_{n} \\
& =1 & & \text { if } Y_{n} \geqq \theta_{n} .
\end{aligned}
$$

Suppose α_{n} (resp. β_{n}) is the measure induced on the two point space $\Omega=\{0,1\}$ by $X_{n}{ }^{\prime}\left(\operatorname{resp} .(X+a)_{n}{ }^{\prime}\right)$,

$$
\begin{array}{ll}
\alpha_{n}(0)=F\left(\theta_{n}\right) & \alpha_{n}(1)=1-F\left(\theta_{n}\right) \tag{11}\\
\beta_{n}(0)=F\left(\theta_{n}-a_{n}\right), & \beta_{n}(1)=1-F\left(\theta_{n}-a_{n}\right)
\end{array}
$$

We have

$$
H\left(\alpha_{n}, \beta_{n}\right)=\left[\alpha_{n}(0) \beta_{n}(0)\right]^{\frac{1}{2}}+\left[\alpha_{n}(1) \beta_{n}(1)\right]^{\frac{1}{2}}
$$

Using the elementary inequality

$$
(x y)^{\frac{1}{2}}+[(1-x)(1-y)]^{\frac{1}{2}} \leqq\left[1-(x-y)^{2}\right]^{\frac{1}{2}}, \quad 0 \leqq x \leqq 1,0 \leqq y \leqq 1
$$

with $x=\alpha_{n}(0), y=\beta_{n}(0)$ we obtain using (10) and (11) that

$$
\prod_{n=1}^{\infty} H^{2}\left(\alpha_{n}, \beta_{n}\right) \leqq \prod_{n=1}^{\infty}\left(1-\left(F\left(\theta_{n}\right)-F\left(\theta_{n}-a_{n}\right)^{2}\right)=0\right.
$$

It follows that $\prod_{n=1}^{\infty} \alpha_{n}$ and $\prod_{n=1}^{\infty} \beta_{n}$ are singular and so X^{\prime} and $(X+a)^{\prime}$ are distinguishable. It is clear that the original process X and $X+a$ must also be distinguishable. The proof of Lemma 1 rests on a second lemma.

Lemma 2. Suppose F is any distribution function. Define

$$
\delta=\inf _{0<a<1} \sup _{-\infty<\theta<\infty}[F(\theta)-F(\theta-a)] / a .
$$

Then $\delta>0$.

Suppose the lemma false so $\delta=0$. Then for each $\eta>0$ there is an $a, 0<a<1$, for which

$$
\begin{equation*}
F(\theta)-F(\theta-a)<a \eta \quad \text { for all } \theta \tag{12}
\end{equation*}
$$

Choose numbers b and c with $F(c)-F(b)>0$ and define the integer r by

$$
\begin{equation*}
b+r a \leqq c<b+(r+1) a \tag{13}
\end{equation*}
$$

where a is such that (12) holds with $\eta=(F(c)-F(b)) /(c-b+1)$. We have

$$
\begin{align*}
& F(c)-F(b) \leqq F(b+(r+1) a)-F(b) \tag{14}\\
&=\sum_{k=0}^{r} F(r+(k+1) a)-F(r+k a)
\end{align*}
$$

Using (12) in (14) we get

$$
\begin{equation*}
F(c)-F(b)<(r+1) a \eta . \tag{15}
\end{equation*}
$$

Now by (13), $(r+1) a \eta=r a \eta+a \eta<(c-b+1) \eta=F(c)-F(b)$, contradicting (15). This proves Lemma 2.

Now Lemma 1 is trivial if a_{n} does not tend to zero. Suppose then that $a_{n} \rightarrow 0$. This means that $\left|a_{n}\right|<1$ eventually and Lemma 2 then shows that numbers θ_{n} exist so that $\left|F\left(\theta_{n}\right)-F\left(\theta_{n}-a_{n}\right)\right| \geqq(\delta / 2)\left|a_{n}\right|$, for n sufficiently large. Since $\sum a_{n}{ }^{2}=\infty$ we see that the θ_{n} satisfy (10). This completes the proof of both Lemma 1 and (i) in Theorem 1.
4. The Fisher information. The information I can be written simply as

$$
\begin{equation*}
I=4 \int\left(h^{\prime}\right)^{2}, \quad h=\varphi^{\frac{1}{2}} . \tag{16}
\end{equation*}
$$

Now φ is a density and so $h \varepsilon L_{2}$. Let $\hat{h}(u)=(2 \pi)^{-\frac{1}{2}} \int e^{i x u} h(x) d x$ denote the transform of h. The formal transform of h^{\prime} is $i u \hat{h}(u)$ and by Plancherel's theorem

$$
\begin{equation*}
\int\left(h^{\prime}\right)^{2}=\int u^{2}|\hat{h}(u)|^{2} d u . \tag{17}
\end{equation*}
$$

The correspondence between h^{\prime} and $i u \hat{h}(u)$ is made precise by the following wellknown lemma ([5], p. 92].

Lemma 3. Suppose $h \varepsilon L_{2}$. If $h^{\prime} \varepsilon L_{2}$ then $u \hat{h}(u) \varepsilon L_{2}$. If $u \hat{h}(u) \varepsilon L_{2}$ then h is (almost everywhere) an absolutely continuous function and $h^{\prime} \varepsilon L_{2}$. Moreover in this case (17) holds.

Now suppose that $I<\infty$. By definition F then has a positive density and so the measures

$$
\mu_{n}\{d x\}=F\{d x\}, \quad \nu_{n}\{d x\}=F\left\{d\left(x-a_{n}\right)\right\}
$$

are equivalent. We have

$$
d \mu_{n} / d x=\varphi(x), \quad d \nu_{n} / d x=\varphi\left(x-a_{n}\right)
$$

and applying (9) with $m=$ Lebesgue measure $d x$ we obtain

$$
\begin{equation*}
H\left(\mu_{n}, \nu_{n}\right)=\int\left[\varphi(x) \varphi\left(x-a_{n}\right)\right]^{\frac{1}{2}} d x . \tag{18}
\end{equation*}
$$

Parseval's identity gives

$$
\int\left[\varphi(x) \varphi\left(x-a_{n}\right)\right]^{\frac{1}{2}} d x=\int \cos a_{n} u|\hat{h}(u)|^{2} d u
$$

and from (6) we obtain

$$
\begin{equation*}
H\left(\mu, \mu^{a}\right)=\prod_{n=1}^{\infty}\left(1-\int\left(1-\cos a_{n} u\right)|\hat{h}(u)|^{2} d u\right) \tag{19}
\end{equation*}
$$

Using the inequality $1-\cos t \leqq \frac{1}{2} t^{2}$ we obtain from (16) and (17)

$$
\int\left(1-\cos a_{n} u\right)|\hat{h}(u)|^{2} d u \leqq \frac{1}{2} a_{n}^{2} \int u^{2}|\hat{h}(u)|^{2} d u=\frac{1}{8} a_{n}^{2} I .
$$

It follows immediately that $H\left(\mu, \mu^{a}\right)>0$ if $\sum a_{n}{ }^{2}<\infty$ and $I<\infty$. Using (8) this proves (ii). Feldman has already obtained this ([1], pp. 348-349).

Next we prove (iii). We are given that $\mu \sim \mu^{a}$ for all $a \varepsilon l_{2}$. In the next section we will show that F has a positive density. Assuming this, we have that $\mu_{n} \sim \nu_{n}$, $n=1,2, \cdots$. Using (8) we must have $H\left(\mu, \mu^{a}\right)>0$ for all $a \varepsilon l_{2}$. Now (19) gives

$$
\sum_{n=1}^{\infty} \int\left(1-\cos a_{n} u\right)|\hat{h}(u)|^{2} d u<\infty, \quad \text { for all } a \varepsilon l_{2}
$$

Now $1-\cos t \geqq \frac{1}{4} t^{2}$ for $|t| \leqq 1$ and so

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{2} \int_{|u| \leqq\left|a_{n}\right|^{-1}} u^{2}|\hat{h}(u)|^{2} d u<\infty . \tag{20}
\end{equation*}
$$

We next show $u \hat{h}(u) \varepsilon L_{2}$. Suppose this were false. Then

$$
T(a)=\int_{|u| \leqq 1 / a} u^{2}|\hat{h}(u)|^{2} d u
$$

increases to infinity as a tends to zero.
Lemma 4. If T is a function such that $T(a)$ increases to infinity as a decreases to zero then there is a sequence a εl_{2} for which $\sum a_{n}{ }^{2} T\left(a_{n}\right)=\infty$.

Choose numbers t_{n} such that $0<t_{n} \leqq\left(\frac{1}{2}\right)^{n}, T\left(t_{n}\right) \geqq 2^{n}, n=1,2, \cdots$. Now choose a so that there are exactly r_{n} values of k for which $a_{k}=t_{n}$ where r_{n} is the unique integer satisfying

$$
\begin{equation*}
r_{n} 2^{n} t_{n}^{2}<1 \leqq\left(r_{n}+1\right) 2^{n} t_{n}^{2} \tag{21}
\end{equation*}
$$

We then obtain $\sum a_{n}{ }^{2}=\sum r_{n} t_{n}{ }^{2}<\sum 2^{-n}=1$ so $a \varepsilon l_{2}$. However, $\sum a_{n}{ }^{2} T\left(a_{n}\right)$ $\geqq \sum\left(r_{n}+1\right) t_{n}^{2} 2^{n}-\sum t_{n}^{2} 2^{n}=\infty$. This proves Lemma 4. Using a sequence a with the properties of the lemma we obtain a contradiction to (20). Thus $u \hat{h}(u) \varepsilon L_{2}$. Using Lemma 3 we see that $h=\varphi^{\frac{3}{2}}$ is absolutely continuous. It then follows, although the proof is not completely trivial, that φ itself is absolutely continuous. Using (16) and (17), $I<\infty$.
5. Translates of a linear measure. We are given that $\mu \sim \mu^{a}$ for $a \varepsilon l_{2}$ and we will show here that this means that F has a positive density. We must have $F\{d x\} \sim F\{d(x-a)\}$ for all a because marginals of equivalent product measures are necessarily equivalent. That is, F is equivalent to its translates. The fact that F has a positive density is already a consequence of this as the following lemma shows.

Lemma 5. If F is a probability measure on the reals (R) which is equivalent to its translates then F has a positive density.

For any set E, Fubini's theorem gives

$$
\int_{a \epsilon R}\left(\int_{x \in R} \chi_{E}(x-a) F\{d x\}\right) d a=\int_{x \in R}\left(\int_{a \epsilon R} \chi_{E}(x-a) d a\right) F\{d x\}
$$

where χ_{E} is the indicator of $E, \chi_{E}(u)=1$ or 0 according as $u \varepsilon E$ or not. This is exactly

$$
\begin{equation*}
\int_{a \in R} F\{E+a\} d a=\int_{x \varepsilon R} \lambda\{E\} F\{d x\}=\lambda\{E\} F\{R\} . \tag{22}
\end{equation*}
$$

Now if $F\{E\}=0$ then $\lambda\{E\}=0$ because $F\{E+a\}=0$ for all a. Conversely, if $\lambda\{E\}=0, F\{E+a\}=0$ for almost every a by (22). It follows that $F\{E+a\}=0$ for every a, since F is equivalent to its translates. In particular $F\{E+a\}=0$ for $a=0$. We have proved that F is equivalent to Lebesgue measure. This means that F has a positive density φ and the lemma is proved.

We have already seen that φ is absolutely continuous and that (1) holds. This proves (iii) and finishes the proof of Theorem 1.

REFERENCES

[1] Feldman, J. (1961). Examples of non-Gaussian quasi-invariant distributions in Hilbert space. Trans. Amer. Math. Soc. 99 342-349.
[2] Fisher, R. A. (1965). Statistical Methods and Scientific Inference. Oliver and Boyd, Edinburgh.
[3] Kakutani, S. (1948). On equivalence of infinite product measures. Ann. Math. 49 214224.
[4] Klauder, J. R. and McKenna, J. (1965). Continuous-representation theory. J. Math. Phys. 6 68-87.
[5] Titchmarsh, E. C. (1937). Introduction to the Theory of Fourier Integrals. Oxford Univ. Press.

