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Abstract The internal validity of an observational study is enhanced by only
comparing sets of treated and control subjects which have sufficient overlap
in their covariate distributions. Methods have been developed for defining the
study population using propensity scores to ensure sufficient overlap. However,
a study population defined by propensity scores is difficult for other investi-
gators to understand. We develop a method of defining a study population in
terms of a tree which is easy to understand and display, and that has similar
internal validity as that of the study population defined by propensity scores.
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1 Introduction

An observational study attempts to draw inferences about the effects caused by
a treatment when subjects are not randomly assigned to treatment or control
as they would be in a randomized trial. A typical approach to an observational
study is to attempt to measure the covariates that affect the outcome, and
then adjust for differences between the treatment and control groups in these
covariates via propensity score methods [25,16], matching methods [21,13] or
regression; see [18], [22] and [27] for surveys.
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A quantity that is often of central interest in an observational study is
the average treatment effect, the average effect of treatment over the whole
population. However, in many observational studies, there is a lack of overlap,
meaning that parts of the treatment and control group’s covariate distribu-
tions do not overlap. For example, in studies of the comparative effectiveness
of medical treatments, virtually all patients of certain types may receive a par-
ticular treatment and virtually no patients of certain other types may receive
this treatment, but there may be a marginal group of patients who may or
may not receive the treatment depending upon circumstances such as where
the patient lives, patient preference or the physician’s opinion [24]. When there
is a lack of overlap, inferences for the average treatment effect rely on extrap-
olation. This is because extrapolation is needed to estimate the treatment
effect for those subjects in the treatment group whose covariates differ sub-
stantially from any subjects in the control group (or vice versa). Rather than
rely on extrapolation, it is common practice to limit the study population to
those subjects with covariates that lie in the overlap between the treatment
and control groups. In comparative effectiveness studies, these subjects in the
overlap are the marginal patients for whom there is some chance that they
would receive either treatment or control based on their covariates. Focusing
on the average treatment effect for the marginal patients rather than all pa-
tients enhances the internal validity of the study and is more informative for
deciding how to treat patients for whom there is currently no definitive stan-
dard of care. Knowing the average treatment effect on the currently marginal
patients may also shift the margin and over a period of time, a sequence of
studies may gradually shift the consensus of which patients should be treated
[24].

A number of approaches have been developed for defining a study popula-
tion that has overlap between the treated and control groups. An often used
approach is to discard subjects whose propensity score values fall outside the
range of propensity scores in the subsample with the opposite treatment [9,
27]; the propensity score is the probability of receiving treatment given the
measured covariates [25]. This approach seeks to make the study population
as large as possible while maintaining overlap. However, if there are areas
of limited overlap, that is parts of the covariate space where there are lim-
ited numbers of observations for the treatment group compared to the control
group or vice versa, the average treatment effect estimate on this study popu-
lation may have large variance. It may be better to consider a more restrictive
study population for which there is sufficient overlap. The goal is to define
a study population which is as inclusive as possible but for which there is
enough overlap that, not only is extrapolation not needed, but also the aver-
age treatment effect can be well estimated. Crump, Hotz, Imbens and Mitnik
[8] and Rosenbaum [24] develop criterion by which to compare different choices
of study populations according to this goal and then choose the study pop-
ulation to optimize these criteria. Crump et al.’s criterion is the variance of
the estimated average treatment effect on the study population. They show
that, under some conditions, the optimal study population by this criterion is
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those subjects whose propensity scores lie in an interval [α, 1−α] with the op-
timal interval determined by the marginal distribution of the propensity score
and usually well approximated by [0.1, 0.9]. Rosenbaum’s criterion involves
balancing (i) the sum of distances between the propensity scores (or related
quantities) of matched treated and control subjects in the study population
and (ii) the size of the study population; the criterion will be explained in
detail in Section 2.3. Rosenbaum develops an algorithm that uses the optimal
assignment algorithm for choosing the optimal study population according to
his criterion.

All of the above approaches define the study population in terms of the
propensity score and related quantities. A difficulty with these approaches is
that it is hard to have a clear understanding of a study population defined in
terms of propensity scores. Rosenbaum, in his book Design of Observational
Studies [23], states, “Rather than delete individuals one at a time based on
extreme propensity scores, it is usually better to go back to the covariates
themselves, perhaps redefining the population under study to be a subpopu-
lation of the original population of subjects. A population defined in terms of
[the propensity score] is likely to have little meaning to other investigators,
whereas a population defined in terms of one or two familiar covariates will
have a clear meaning.”

Our goal in this paper is to develop an approach to defining a study pop-
ulation that has sufficient overlap and is good by Crump et al.’s [8] criterion
or Rosenbaum’s [24] criterion for judging study populations, but that is also
easily described. Our approach is to use a classification tree [4] to define the
study population in a way that approximates a propensity score based rule
for defining the study population. The resulting study population is easily de-
scribed by a tree diagram. Figure 2 provides an example of a study population
that is defined in terms of a classification tree.

Our paper is organized as follows. Section 2 provides the framework and
assumptions that we will use as well as reviewing Crump et al.’s (Section 2.2)
and Rosenbaum’s (Section 2.3) approaches to defining the study population.
Section 3 describes our method. Sections 4 and 5 presents examples. Section 6
provides discussion.

2 Framework

2.1 Assumptions and Notation

The framework we use is that of [25]. We have a random sample of size N from
a large population. For each subject i in the sample, let Di denote whether or
not the treatment of interest was received, with Di = 1 if subject i receives
the treatment of interest and Di = 0 if subject i receives the control. Let Y 1

i

be the outcome that subject i would have if she received the treatment and Y 0
i

be the outcome that subject i would have if she received the control; these are
called potential outcomes. The treatment effect for subject i is τi = Y 1

i − Y 0
i .
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Let τ(X) denote the average treatment effect for subjects with covariates X,
τ(X) = E[Y 1

i − Y 0
i |Xi = X].

We observe Di and Yi, where Yi = Y Di

i . In addition, we observe a vector of
pre-treatment covariates denoted by Xi, where the support of the covariates is
X. The propensity score e(X) for a subject with covariatesX is the probability
of selection into the treatment given X, e(X) = P (Di = 1|Xi = X).

We make the assumption that all of the confounders have been measured
[25]. This means that, conditional on the covariatesX, the treatment indicator
is independent of the potential outcomes:

Assumption 1:Di⊥⊥(Y 0
i , Y

1
i )|Xi.

Assumption 1 is called the strongly ignorable treatment assignment assump-
tion [25] or the unconfoundedness assumption [18].

2.2 Minimum Variance Approach to Defining the Study Population

Crump et al. [8] seek to choose the study population that allows for the most
precise estimation of the average treatment effect within the study population.
They show that, under some conditions, this leads to discarding observations
with propensity scores outside an interval [α, 1 − α] with the optimal cut-off
value determined by the marginal distribution of the propensity score. Their
approach is consistent with the common practice of dropping subjects with
extreme values of the propensity score with two differences. First, the role of
the propensity score in the selection rule is not imposed a priori, but emerges
as a consequence of the criterion, and second, there is a principled way of
choosing the cutoff value α. They show that the precision gain from their
approach can be substantial with most of the gain captured by using a rule
of thumb to discard observations with estimated propensity score outside the
range [0.1, 0.9].

The specifics of Crump et al.’s approach are as follows. Let A be a subset
of the covariate space X. For sets A ⊂ X, let IXi∈A be an indicator for the
event that Xi is an element of the set A, and define the subsample average
treatment effect τA:

τA =
1

NA

∑
i:Xi∈A

τ(Xi), NA =

N∑
i=1

IXi∈A.

In words, τA is the average treatment effect for the study population of subjects
with covariates in A, where the distribution of covariates in A is assumed to
be the same as that in the sample. Under the assumption that the conditional
variance of potential outcomes given X is constant, i.e., V ar(Y 0

i |Xi = X) =
V ar(Y 1

i |Xi = X) = σ2, the asymptotic variance of an efficient estimate of τA
is the following [12,20,16]:

V (A) =
1

P (X ∈ A)
E

{
σ2

e(X)
+

σ2

1− e(X)
|X ∈ A

}
. (1)
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Crump et al. seek to choose the subpopulation A which minimizes the asymp-
totic variance. Focusing on estimands that average the treatment effect only
over a subpopulation rather than the whole population has two effects on the
asymptotic variance, pushing it in opposite directions. First, excluding sub-
jects with covariate values outside the set A reduces the effective sample size
in expectation from N to NP (X ∈ A), increasing the asymptotic variance
by a factor of 1/P (X ∈ A). Second, discarding subjects with high values for
σ2

e(X) +
σ2

1−e(X) lowers the conditional expectation E
{

σ2

e(X) +
σ2

1−e(X) |X ∈ A

}
.

Optimally choosing A involves balancing these two effects.
Crump et al. show that the optimal choice of A is

A
∗ = {X ∈ X : α ≤ e(X) ≤ 1− α}, (2)

where, if

sup
X∈X

1

e(X){1− e(X)} ≤ 2E

[
1

e(X){1− e(X)}
]
,

then α = 0 and otherwise α is a solution to

1

α(1 − α)
= 2E

[
1

e(X)(1 − e(X))
| 1

e(X)(1 − e(X))
≤ 1

α(1 − α)

]
.

The optimal set A∗ depends only on the distribution of the covariates X, so it
can be constructed without looking at the outcome data. This avoids potential
biases associated with using outcome data to define the study population. The
set defined by (2) is optimal under homoskedasticity (the conditional variance
of potential outcomes given X is constant) but even when homoskedasticity
does not hold, the set (2) may be a useful approximation [8].

To implement their proposed criterion, Crump et al. first estimate the
propensity score, e.g., via logistic regression, and then solve for the smallest
value α̂ ∈ [0, 1/2] that satisfies

1

α(1− α)
≤ 2

∑N
i=1 Iê(Xi)(1−ê(Xi))≥α(1−α)/[ê(Xi){1− ê(Xi)}]∑N

i=1 Iê(Xi)(1−ê(Xi))≥α(1−α)

, (3)

and use the set
Â = {X ∈ X : α̂ ≤ ê(X) ≤ 1− α̂} (4)

Given this definition Â of the study population, one can use any standard
method for estimation of, and inference for, average treatment effects, such as
those surveyed in [18], [22] or [27], ignoring the uncertainty in Â. Crump et al.
use a version of the Horvitz-Thompson estimator [17] that is detailed in [16].
Specifically, Crump et al. first estimate the propensity score on the selected
study population Â using the full set of covariates. They then estimate the
average treatment effect for the study population by

τ̂
Â
=

N∑
i=1

DiYiIXi∈Â

ê(Xi)
/

N∑
i=1

DiIXi∈Â

ê(Xi)
−

N∑
i=1

(1−Di)YiIXi∈Â

1− ê(Xi)
/

N∑
i=1

(1 −Di)IXi∈Â

1− ê(Xi)

(5)
Crump et al. estimate the variance of τ̂

Â
by using the bootstrap.
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2.3 Balance for Treatment on Treated Effect Approach to Defining Study
Population

A commonly used design for observational studies is to match each treated
subject to a control subject with similar covariates [23]. This design seeks to
estimate the treatment on treated effect, the average effect of treatment among
those who receive treatment. The treatment on treated effect for the whole
population is E[Y 1

i −Y 0
i |Di = 1]. When some treated subjects are almost sure

to receive treatment based on their covariates, it would be difficult to estimate
the treatment on treated effect for the whole population without extrapolation,
since there are no similar control subjects to compare these subjects to. One
may instead want to only focus on estimating the treatment on treated effect
for a subset of subjects. The treatment on treated effect for the subset of
subjects with covariates X ∈ A is E[Y 1

i − Y 0
i |Di = 1,Xi ∈ A].

Rosenbaum develops an algorithm for choosing an optimal subset of treated
subjects to match and then optimally pair matching them to controls. There
are two goals, which are at odds with one another: (i) to match as many treated
subjects as possible, recognizing that some treated subjects may be too ex-
treme to match and (ii) to match as closely as possible on the propensity score
and other variables with a view to balancing many covariates. The algorithm
makes three simultaneous decisions: (i) how many treated subjects to match;
(ii) which specific treated subjects to match and (iii) which controls to pair to
which treated subjects.

Let δ(Xi,Xj) denote a distance between the covariates Xi,Xj and let Δ
denote the matrix which records all distances between treated and control
subjects. Commonly used distances are the absolute difference in propensity
scores, Mahalanobis distance or Mahalanobis distance with a caliper on the
propensity score; see Rosenbaum [23], Chapter 8, for discussion of distance
functions for observational studies. Rosenbaum’s [24] optimality criterion de-
pends on two parameters. One is the minimum number of treated subjects
which we would like to match. The other is a critical distance δ̃ that we would
like our matched pairs to have a distance less than. Among two matchings
which each have at least the minimum number of treated subjects, we prefer
the matching with more treated subjects if its average increase in distance for
the extra matches is less than the critical distance δ̃ and otherwise prefer the
matching with less treated subjects. Among matchings with the same num-
ber of treated subjects, we prefer the one with the smallest total distance.
Rosenbaum [24] provides an algorithm for finding the optimal matching for
this criterion that uses the assignment algorithm on an augmented distance
matrix.

Rosenbaum suggests examining a few choices of critical distance δ̃, in par-
ticular, δ̃ = ∞ which will result in using all treated subjects, δ̃ equal to the
5% quantile of distances in the distance matrix Δ and δ̃ equal to the 20%
quantile of distances in Δ. The success of a match of treated and control sub-
jects is judged by whether or not it balances the covariates in the treated and
control groups. Measures of balance include the standardized differences be-
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tween the treated and control group’s covariates and propensity scores and a
comparison of the p values for testing for a difference between the treated and
control group means in covariates to what would be expected in a completely
randomized experiment [23]. The standardized difference is the difference in
means divided by a pooled standard deviation before matching. The pooled
standard deviation is the square root of the unweighted average of the variances
in the treated and control groups before matching. An absolute standardized
difference less than 0.2 is considered adequate balance with a value less than
0.1 being ideal [5,6]. The goal in Rosenbaum’s [24] approach is to obtain an
internally valid estimate of the treatment on treated effect on as large a subset
of the whole population as possible. Consequently, the match with the most
treated subjects that has adequate balance is chosen.

3 Tree Method for Defining the Study Population

3.1 Minimum Variance Criterion

Let r(X) be a definition of a study population, where r(X) = 1 if a subject with
covariatesX is in the study population and 0 if not. In this section we consider
r(X) as Crump et al.’s [8] propensity-score based definition (3)–(4) of the study
population described in Section 2.2. We seek to find a definition of a study
population r′, which is similar to r, but which can be easily described in terms
of a few covariates.We propose to use classification trees to do this. Specifically,
for Crump et al.’s criterion, let s(X) classify whether X’s propensity score
is too low to be in the study population defined by (3)–(4), in the study
population or too high to be in the study population: s(X) = Low if ê(X) < α̂,
s(X) = In if α̂ ≤ ê(X) ≤ 1 − α̂ and s(X) = High if ê(X) > α̂. We build a
classification tree to classify the variable s(X) and then the study population
consists of those values of X that are classified as In by the classification tree.

Classification trees are a nonparametric method of classifying a categorical
outcome variable based on covariates that results in a classification rule that
can be displayed as a tree [4]. The classification tree partitions the covariate
space and then the classification for each set in the partition is the most likely
category among the observations that fall into the set. A classification tree is
built using binary recursive partitioning [4,28]. At each step of the construc-
tion, a split is made in some set of the current partition between higher and
lower values of one variable (or for categorical variables, between one subset of
the values and another subset). The split is chosen to optimize some criterion
for how well the resulting partition classifies the variable. Following [4], we use
the Gini index, which is defined as follows. Let pjk denote the proportion in
class k at node j of the tree. Then the Gini index is

∑
j

∑
k �=k′ pjkpjk′ .

We use the R library rpart to build classification trees in R. Example code
is provided in supplementary materials for our paper.

To control the complexity of the tree’s definition of the study sample, we
can limit the maximum depth of the tree. For a given maximum depth of the
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tree, the R function rpart uses cross validation to choose the tree of that
depth which minimizes the probability of misclassification of the tree on a
future sample.

Let T0 be the unpruned tree generated by the rpart function. When prun-
ing, we search for a tree T ⊆ T0. The tree quality is measured by the misclas-
sification rate. Since there is no independent sample to estimate the misclas-
sification rate, rpart’s algorithm uses a penalized misclassification rate of the
form

Lγ(T ) =

T∑
m=1

nmLm(T ) + γ|T |,

where |T | is the number of leaves in the tree T , nm is the number of obser-
vations in the leaf m, Lm(T ) is the training misclassification rate, which is
defined as the proportion of points with label different from the leaf’s label,
and γ is the regularization parameter. If γ = 0, then the tree is not pruned.
The regularization γ is chosen to try to minimize the misclassification rate.
rpart, by default, uses 10-fold cross-validation to choose γ. Specifically, rpart
generates 10 trees using 9 parts of the data as training set and 10th as a test
set to estimate effect of different γ values on the tree’s misclassification rate.
We used “1 SE rule” (see [15]) to choose the γ that gives the “best” average re-
sult. See [4] for more details on the cross-validation procedure used by rpart.
Once the estimate γ̂ of the optimal γ parameter is chosen, the generated tree
T0 is pruned by looking for T ⊆ T0 such that Lγ̂(T ) is minimized.

We used the complexity parameter cp = 0 to allow growing large trees.
The complexity parameter cp determines which splits are considered by the
rpart algorithm when growing trees1.

In usual applications of trees, the goal is to best classify the outcome on a
future sample and the depth of the tree is chosen by cross validation with this
goal in mind. In our application, our goal is to choose a tree which defines a
study population that is easily understood but also allows for estimating the
treatment effect with close to as small a variance as possible (where (1) shows
the variance for a given study population A). For the best tree (as chosen by
rpart through cross validation) of various depths, we create a table of some
measure of how small the variance of the estimated average treatment effect is
and choose a depth which strikes a good balance between providing an easily
understood study population and a small variance of the estimated average
treatment effect.

For Crump et al.’s criterion for defining the study population from Section
2.2, we use the following ratio as measure of how well a tree that defines a
study population Ã approximates the best study population:

V (Ã)

V (Â)
, (6)

1 Setting cp to 0 means that all possible splits will be considered. The default value of
0.01 means that those splits that result in the decrease of Gini criterion less than 0.01 are
not considered. In particular, this implies that if for a given terminal node any split results
in the Gini decrease of less than 0.01, then rpart does not split this node any further
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i.e., the ratio of the estimated asymptotic variance of τ̂
Ã
by using the study

population Ã defined by the tree to the estimated asymptotic variance of τ̂
Â

for the study population Â defined by (3)–(4). When calculating this ratio,
σ2 cancels out so does not need to be estimated. A ratio of 1.5 implies that
for the given set Ã the estimated variance of the average treatment effect is
1.5 times greater than the variance of the estimated treatment effect over the
“best” set Â.

For estimating the ratio (6), we use a cross-validation procedure. The cross-
validation procedure we use is the based on the one used by Breiman [3].
Unlike usual k-fold cross-validation, this procedure gives us more flexibility in
choosing the train and test sizes and allows us to decrease the variance of the
estimate. The procedure can be described as follows.

1. Split the original data set into the training and test parts so that training
part contains 80% of the original data and test part contains the remaining
20%. A relatively large size of the test part (20%) was chosen to ensure
that with high probability categorical variables in both training and test
sets have the same number of levels.

2. Use the training part to fit the propensity score model and then, using
the propensity score cutoff that was determined from the whole sample,
classify all the observations in the training set into the Low, In and High
classes.

3. Use the rpart function with the desired maxdepth parameter set to find
an approximation to the In set.

4. Use the test set to estimate the ratio of the variance estimate for the set
obtained with the tree to the variance estimate obtained using the logistic
regression propensity score model estimates obtained on the training set.

5. Repeat steps 1–4 100 times and compute the median of the ratio of the
variance estimate for the set obtained with the tree to the variance estimate
obtained using the logistic regression propensity score model estimates ob-
tained on the training set. We used the median instead of the mean because
the distribution of ratios is right-skewed.

Since steps 1–5 can be done for various values of the maxdepth parameter,
this gives us a graphical representation of the dependence of the ratio on this
parameter.

Given all the above discussion, our approach of growing a tree to describe
the study population can be formalized as follows.

1. Use the original data set to fit a propensity score model.
2. Use Crump et al. [8] method2, summarized by (3)–(4), to estimate set A.
3. Use the propensity score model of step 1 and definition of the study popu-

lation of step 2 to classify all the observations in the original data set into
either Low, In or High categories.

2 In fact, our method of growing a tree will work for any method that excludes from the
study population observations with either too low or too high propensity score.
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4. Use the cross-validation procedure described above and subject-specific
knowledge to determine the optimal tree depth.

5. Use the classification of step 3 and desired tree depth to grow a tree3 that
describes the study population.

6. Use the obtained tree to define the study population on which the treat-
ment effect is estimated.

In summary, our tree approach is easy to implement with functions in R pro-
vided in the supplementary materials and makes the study population easy to
understand compared to the Crump et al. [8] approach.

An important feature of our approach, like that in Crump et al. [8], is
that the tree that defines the study population is chosen only by looking at
the covariates X and treatment D, and not looking at the outcomes Y . Thus,
the choice of study population is done before looking at the outcome data,
avoiding potential biases associated with using outcome data when defining
the study population.

In our experiments we noticed that pruning did not have a considerable
effect of the tree size, probably because we were growing small trees to begin
with. Also, the ratio 6 was not noticeably affected by pruning. As a result,
when considering an alternative approach of Section 3.2 to defining a study
population, we did not using pruning.

3.2 Balance for Treatment on Treated Effect Criterion

In this section, we discuss how to use a tree to define a study population
for estimating the treatment on treated effect from a matched pair design.
Our approach is to approximate the optimal subset chosen by Rosenbaum’s
criterion described in Section 2.3 by a tree:

1. Choose an optimal set of treated subjects using Rosenbaum’s approach.
Let ri = 1 if treated subject i is in the optimal set of treated subjects and
ri = 0 if not.

2. Fit a tree to predict ri based on the covariates for all treated subjects. Let
s(Xi) = 1 if i is predicted to have ri = 1 based on the tree and covariates
Xi, and s(Xi) = 0 if i is predicted to have ri = 0. Define the study
population as the set of subjects with covariates X such that s(X) = 1,
i.e., those subjects who are predicted to have r = 1 based on the tree.

3. Find the optimal pair match of the subjects with si = 1. This can be done
using the optmatch package in R [14].

4. For continuous outcomes, the treatment effect can be estimated by the
difference in mean outcomes between the treated and control subjects in

3 We did not use weighting of observations when growing trees. Weighting can be used to
ensure that, for example, tree is more eager to exclude observations from the study, hence
increasing the chance that observations with either too high or too low propensity scores
are excluded from the study. If weighting is used to grow a tree, then a similar weighting
scheme should be used in the cross-validation step.
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Table 1 Treated and Control Means and Standardized Differences (treated mean - control
mean)/square root of average of within group variances) for the Job Training Study.

Covariate Treated Mean Control Mean Standardized Difference

Age 24.63 34.85 -1.17
Education 10.38 12.12 -0.69
African American 0.80 0.25 1.32
Hispanic 0.09 0.03 0.25
Married 0.17 0.87 -1.94
No High School Degree 0.73 0.31 0.94
1975 Earnings 3066 19,063 -1.57

the pairs and a matched pair t-test can be used to make inferences. For
binary outcomes, inferences for the treatment effect can be based on the
methods for matched pair designs described in [1].

We consider trees of various maximum depths, aiming to find a tree that
yields a study population that (i) has acceptable balance between the treated
subjects and their matched control subjects; (ii) is easy to understand; and
(iii) is as large as possible given the constraints (i) and (ii). To achieve these
goals, we can also consider fitting a tree that has a smaller or larger loss for
misclassifying subjects with ri = 1 to 0 as compared to misclassifying subjects
with ri = 0 to 1.

4 Example 1: Job Training Program

We consider the National Supported Work Demonstration (NSW) job training
program, which was designed to help disadvantaged workers lacking basic job
skills to move into the labor market by giving them work experience and coun-
seling in a sheltered environment [19]. The data set was originally constructed
by [19] and subsequently used by [9] and [26] among others. The particular
sample we use here is the one used by [9]. The treatment group is drawn from
an experimental evaluation of the job training program. The control group is
a sample drawn from the Panel Study of Income Dynamics. The treatment
group contains 297 subjects and the control group contains 2490 subjects.
The job training program took place in 1976–1977. The outcome is earnings
in 1978. The covariates are age, education, a dummy variable for being African
American, a dummy variable for being Hispanic, a dummy variable for being
married, a dummy variable for having no high school degree and earnings in
1975. The control and treatment group’s covariate distributions differ substan-
tially as seen in Table 1.

4.1 Minimum Variance Criterion

We consider Crump et al.’s minimum variance criterion for defining the study
population described in Section 2.2. We estimated the propensity score by
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Fig. 1 For the job training data, estimated ratio of variance of best trees of various depths
to that of the estimated optimal subpopulation by Crump et al.’s [8] criterion: Â = {X ∈
X : 0.066 ≤ ê(X) ≤ 0.934}

a logistic regression on the covariates. The estimated optimal cutoff point
from (3) is α̂ = 0.066. After fitting the propensity score model using logistic
regression and thresholding the estimated probabilities at 0.066 and 0.934 we
get the following classification counts:

Low In High

2187 584 16

Hence, only 26.7% of observations should be included into the study according
to Crump et al.’s [8] criterion for defining the study population. Using the
study population based on this estimated optimal cutoff point produces a
more than million-fold decrease in the asymptotic variance (1) compared to
using all subjects.

Figure 1 shows the ratio of the estimated asymptotic variance of the best
trees of various depths to that of the optimal subpopulation Â = {X ∈ X : α̂ ≤
ê(X) ≤ 1− α̂} using the cross-validation approach described in Section 3.1.

Figure 1 shows there is a big gain from going from a tree of depth 1 to
a tree of depth 2; the variance of the estimated treatment effect is reduced
by more than 50%. There is not much gain from going from a tree of depth
2 to a tree of depth 3. Going from a tree of depth 2 to a tree of depth 4
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Fig. 2 Best tree of depth 2 for the minimum variance criterion for the job training study.

reduces the variance by around 30%. There is not much gain in going beyond
a tree of depth 4. Thus, a tree of depth 2 or depth 4 are the most reasonable
choices to define the study population, and the choice between them depends
on a researcher’s tradeoff between complexity of the definition of the study
population vs. a small variance of the estimated treatment effect.

The trees of depths 2 and 4 are shown in Figures 2 and 3 respectively. The
way in which to read these trees to see if a subject is in the study population
is that we follow the logical statements given in the boxes. When we arrive
at a leaf of the tree, if the classification of the leaf is In, the subject is in
the study population and if the classification of the leaf is Low (too low a
propensity score) or High (too high a propensity score), the subject is not
in the study population. The tree of depth 2 defines the study population as
subjects whose 1975 earnings were less than $9,870 and are not married. The
tree of depth 4 defines the study population as subjects who fall into any of the
following groups: (i) 1975 earnings less than $9,870, not married and 17.5 or
older; (ii) 1975 earnings less than $9,870, not married, younger than 17.5 and
1975 earnings greater than $616; (iii) 1975 earnings less than $ 9,870, married,
not black and Hispanic; (iv) 1975 earnings less than $ 9,870, married, black
and younger than 38.5; (v) 1975 earnings less than $17,520, not married and
black.
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Fig. 3 Best tree of depth 4 for the minimum variance criterion for the job training study.

Table 2 shows the estimated effect of job training programs (as well as
standard errors and the % of all subjects in the study sample) using the
Horvitz-Thompson estimator (5) for the study populations defined by the tree
of depth 2 in Figure 2, the tree of depth 4 in Figure 3 and the Crump et
al. criterion. The standard errors were estimated by the bootstrap as in [8].
Specifically, using those subjects in the sample for the the given study pop-
ulation definition, we resample subjects with replacement and estimate the
treatment effect by (5).

The estimates for all of the study populations is that the job training
program has a negative effect; the effect is significant for the study populations
defined by Figure 3 and the Crump et al. criterion. The estimates for the
study population defined by Figure 2 differs substantially from that for the
study population defined by Figure 3 and the Crump et al. criterion. This
suggests that the treatment effect is not constant. A valuable feature of the
tree approach is that it gives us some idea about what population an estimates
refers to and can potentially be generalized to.

4.2 Balance for Treatment on Treated Effect Criterion

We consider choosing a study population for estimating the treatment on
treated effect from a matched pair design as discussed in Section 2.3. For the
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Table 2 Estimated Average Treatment Effect of Job Training for Different Study Popula-
tions.

Study Population Treatment Standard Error % of All Subjects
Effect (Bootstrap Estimate) in Study Sample

Tree of Depth 2 -360 882 13.1
Tree of Depth 4 -2293 843 19.9
Crump et al. -2509 819 20.9

distance matrix Δ, we use the rank-based Mahalanobis distance described by
[23], between two observations, where the original observations are replaced
by their ranks, and a penalty is added if two observations have propensity
scores that differ by more than 0.2 standard deviations of the propensity score.
This distance takes into account the goals of forming close individual matches
(by using the Mahalanobis distance), obtaining overall balance (by having a
penalty if the propensity scores are too far apart) and robustness (by replacing
the original data by its ranks). See Chapter 8 of Rosenbaum (2010) [23] for
further discussion of this distance matrix and its rationale.

Figure 4(a) shows box plots of the standardized differences for the covari-
ates and the propensity score between a treated and a matched pair control
group for (i) all treated subjects, (ii) the optimal subset of treated subjects
when the critical distance is the 25% quantile of all distances in Δ and (iii)
the optimal subset of treated subjects when the critical distance is the 20%
quantile of all distances in Δ. Using all treated subjects produces poor balance
with most standardized differences being greater than 0.2. Using the optimal
subset of treated subjects when the critical distance is the 25% quantile im-
proves the balance but one standardized difference is still greater than 0.2.
Using the optimal subset of treated subjects when the critical distance is the
20% quantile provides good balance with all standardized differences less than
0.2 and most standardized differences less than 0.1. This optimal subset uses
154 out of the original 297 treated subjects.

We consider fitting a tree to the classification of subjects as In or Out of
the optimal subset of treated subjects when the critical distance is the 20%
quantile. The resulting standardized differences are shown in Figure 4(b). Fig-
ure 5 compares the p-values from two sample tests to the uniform distribution,
so worse covariate balance than in a completely randomized experiment leads
to points below the diagonal line, whereas better balance leads to points above
the diagonal line. A tree of depth 1 has unacceptable balance with standard-
ized differences above 0.2. A tree of depth 2 has all standardized differences
less than 0.2, but some standardized difference are quite close to 0.2. A tree of
depth 3 has all standardized differences less than 0.1. Also, Figure 5 shows that
the treatment and control groups defined by the tree of depth 3 have covariate
balance that is better than that expected from a randomized experiment. The
tree of depth 3 uses a similar, but smaller number of treated subjects (124),
compared to the optimal subset (154).
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Table 3 Estimated Treatment on Treated Effect of Job Training for Different Study Pop-
ulations.

Study Population Treatment Standard Number
Effect Error of Pairs

Optimal Subset with
Critical Distance = 20% Quan. -3450 1089 154
Tree of Depth 3 -4637 1285 140

The tree of depth 3 is plotted in Figure 6. The study population associated
with this tree is as follows (where note that the job training data we consider
only involves so all possible study populations only involve men): (i) married
men with earnings less than $2308; (ii) men at least 21 years old who earned
at least $2308 in 1975; (iii) unmarried men who are at least 38 years old
and earned less than $2,308 in 1975; (iv) men who are less than 21 years old
and earned at least $8,256 in 1975. Table 3 shows the estimated treatment
on treated effect for this study population based on a matched pair t-test,
along with that of the optimal subset that the tree of depth 3 sought to
approximate. The job training program is estimated to have a substantial
negative effect, −4, 637 (p-value < .001) on the treated subjects in the study
population defined by the tree of depth 3. Note that this is the treatment on
treated effect, so that even though men who have high earnings in 1975 are
included in the study population, they are unlikely to be treated and hence
this treatment effect says little about what their treatment effect would be if
they were treated.

The standard error for the treatment on treated effect estimate for the tree
of depth 3 study population is only 18% higher than that of the optimal subset
study population. In this example, the tree approach has provided an easily
understood study population that yields a treatment effect estimate with a
similar standard error as that of the harder to understand optimal subset
study population.

The study population defined by the tree of depth 3 is fairly easily de-
scribed, but we might want to limit ourselves to study populations defined by
trees of depth 2. Unfortunately, from Figure 4, the study population defined by
the tree of depth 2 lacks good covariate balance with a standardized difference
of almost 0.2. If we want to have a tree of depth 2 and are willing to reduce the
number of treated subjects (i.e., reduce the sample size), we can consider fit-
ting a tree that puts a higher loss on misclassifying a subject who is out of the
optimal subset than a subject who is in the optimal subset. For example, we
consider a tree of depth 2 that has double the loss for misclassifying a subject
who is out of the optimal subset than a subject who is in the optimal subset.
The tree is shown in Figure 7. This tree uses 85 treated subjects, compared
to the 124 treated subjects used by the tree of depth 3 in Figure 6. The study
population defined by this tree is (i) married men whose 1975 earnings are less
than $2,840 and (ii) men whose 1975 earnings are at least $2,840 and are at
least 22 years old. The treatment effect for this study population is estimated
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to be that job training reduces earnings by $5,265 with a standard error of
$1,766, which is a 37% higher standard error than for the study population
defined by the tree of depth 3 in Figure 6.

5 Example 2: Right Heart Catheterization

Connors et al. [7] used a propensity score matching approach to study the
effect of right heart catheterization (RHC) on mortality in an observational
study. RHC is a diagnostic procedure for directly measuring cardiac function.
The measures of cardiac function provided by RHC are useful for directing
immediate and subsequent therapy. However, RHC can cause complications
such as line sepsis, bacterial endocarditis and large vein thrombosis [7]. At
the time of Connors et al.’s study, the benefits of RHC had not been demon-
strated in a randomized controlled trial. The popularity of the procedure and
the widespread belief that it is beneficial made conducting a randomized trial
difficult and an attempt at a randomized trial was stopped because most
physicians refused to allow their patients to be randomized. For an obser-
vational study of RHC, it is important to control for confounding variables
that are associated with decisions to use RHC and outcome; for example,
patients with low blood pressure are more likely to be managed with RHC
and such patients are more likely to die. For Connors et al.’s study, a panel
of 7 specialists in critical care specified the variables that would relate sig-
nificantly to the decision to use or not to use RHC. The variables were age,
sex, race (black, white, other), years of education, income, type of medical
insurance (private, Medicare, Medicaid, private and Medicare, Medicare and
Medicaid, or none), primary disease category, secondary disease category, 12
categories of admission diagnosis, activities of daily living (ADL) and Duke
Activity Status Index (DASI) 2 weeks before admission, do-not-resuscitate
status on day 1 of admission, cancer (none, localized, metastatic), an estimate
of the probability of surviving 2 months, acute physiology component of the
APACHE III score, Glasgow Coma Score, weight, temperature, mean blood
pressure, respiratory rate, heart rate, PaO2/FIO2 ratio, PaCO2, pH, WBC
count, hematocrit, sodium, potassium, creatinine, bilirubin, albumin, urine
output, 12 categories of comorbid illness and whether the patient transferred
from another hospital. The outcome was survival at 30 days after admission.
The treatment is that RHC was applied within 24 hours of admission and the
control is that RHC was not applied within 24 hours of admission. The study
contained patients admitted to intensive care units (ICUs) who met severity
and other entry criteria and were in one or more of nine disease categories on
admission; the disease categories are acute respiratory failure (ARF), chronic
obstructive pulmonary disease (COPD), congestive heart failure (CHF), cir-
rhosis, nontraumatic coma, colon cancer metastatic to the liver, non-small cell
cancer of the lung (stage III or IV) and multiorgan system failure (MOSF)
with malignancy or sepsis. There are 2184 patients in the treatment group
and 3551 in the control group.
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Table 4 Treated and Control Means and Standardized Differences (treated mean − control
mean)/square root of average of within group variances) for several important variables for
the RHC Study.

Covariate Treated Mean Control Mean Standardized Difference

Age 60.71 61.76 -0.06
Female 0.41 0.46 -0.09
APACHE Score 60.74 50.93 0.50
Multiple Organ System
Failure with Sepsis 0.32 0.15 0.41

The control and treatment group’s covariate distributions differ substan-
tially on several key variables as seen in Table 4. The treated group has a
substantially higher average APACHE (Acute Physiology and Chronic Health
Evaluation) score, meaning that the treated group has higher severity of dis-
ease when being admitted. The treated group is also substantially more likely
to be admitted with multiple organ system failure with sepsis. Multiple organ
system failure with sepsis is a severe condition from which patients are highly
likely to die.

5.1 Minimum Variance Criterion

Crump et al. [8] used the RHC study to illustrate their method. When the
categorical covariates are broken into dummy variables and combined with
the continuous covariates, there are 72 total covariates. Crump et al. estimated
the propensity score by logistic regression on the 72 covariates. Based on the
estimated propensity score, they calculated the optimal cutoff value α from
(3) as α = 0.1026 so that their study population consists of subjects with
propensity scores between 0.1026 and 0.8974. This results in 82% of the original
sample being in the study group. 16% of subjects are excluded because they
have too low propensity scores and 2% are excluded because they have too high
propensity scores. Since the propensity score describing the study population
is based on 72 covariates, the study population is not that easily described.

Figure 8 shows the ratio of the estimated asymptotic variance of using the
study populations defined by best trees of various depths to that of the study
population from Crump et al.’s method described in the above paragraph. We
used the cross-validation approach described in Section 3.1 to estimate this
ratio. To carry out the cross validation, we had to do some minor preprocessing,
removing the two patients with a secondary disease category of colon cancer
as otherwise the cross-validation would fail since the training and test data
sets would have a secondary disease category variable with a different number
of levels.

Figure 8 shows that compared to using the whole population, which is
equivalent to a tree of depth 0, the smaller study populations defined by trees
of depths 1, . . . , 10 show only a small gain in variance reduction for the esti-
mated average treatment effect, less than a 15% gain. Given the interpretabil-
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ity advantages of using the whole population, it seems best to use the whole
population rather than the study population defined by a tree. The study
population from Crump et al.’s method, i.e., subjects with propensity scores
between 0.1026 and 0.8974, does show some gain in the estimated variance of
the average treatment effect estimate over the whole population, about a 30%
gain4 It is not clear whether or not this gain in variance would make it worth
using the harder to interpret study population defined by propensity scores
between 0.1026 and 0.8974 rather than the whole population. The best study
population to use might depend on the audience for the study.

5.2 Balance for Treatment on Treated Effect Criterion

As in Section 4.2, we consider choosing a study population for estimating the
treatment on treated effect from a matched pair design. For the distance matrix
Δ, we use the rank-based Mahalanobis distance as in Section 4.2. Figure 9 and
Figure 10 shows that choosing the optimal subset with critical distance equal
to the 5% quantile of distances in Δ provides good balance; all standardized
differences are less than 0.1 and the covariate balance is comparable to that
of a randomized experiment5.

We consider fitting a tree to the classification of subjects as in or out of
the optimal subset of treated subjects when the critical distance is the 5%
quantile. The resulting standardized differences are shown in Figure 9 along
with those of the optimal subset. Figure 10 compares the p-values from two-
sample tests to the uniform distribution, so worse covariate balance than in
a completely randomized experiment leads to points below the diagonal line,
whereas better balance leads to points above the diagonal line.

The trees of depths 1, 2 and 3 do not have acceptable balance, with some
standardized differences greater than 0.2 (see Figure 9) and worse covariate
balance than that expected in a completely randomized experiment (see Fig-
ure 10). The tree of depth 4 has acceptable balance, with no standardized
differences much above 0.1 and covariate balance similar to that expected in
a randomized experiment.

Figure 11 show the study population defined by the tree of depth 4. The
study population includes the following subjects: (i) APACHE score greater
than or equal to 61.5, respiratory rate less than 25.5 and a primary disease

4 Crump et al. [8] used the bootstrap to assess the variance of the estimated average
treatment effect and reported a similar 36% gain in the bootstrap variance of the estimated
average treatment effect from their study population compared to the whole population. The
bootstrap requires using the outcome data. We would like to select our study population
before looking at the outcome data, which is why we use the cross validation procedure
from Section 3.1 in estimating the ratio of the variance of estimated treatment effect for a
given study population to the variance of estimated average treatment effect for the whole
population.

5 Rosenbaum [24] used only data on subjects under age 65. For this subset of subjects,
Rosenbaum found that choosing the optimal subset with critical distance equal to the 5%
quantile of distances in Δ also provided good balance and focused on this study population.
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Table 5 Estimated Treatment on Treated Effect of right heart catheterization for Different
Study Populations.

Study Population Treatment Standard Number
Effect Error of Pairs

Optimal Subset with
Critical Distance = 5% Quan. -0.068 0.0156 1563
Tree of Depth 4 -0.031 0.0164 1351

category of cirrhosis or COPD; (ii) APACHE score greater than or equal to
61.5 but less than 86.5, respiratory rate greater than or equal to 25.5 and
a cardiovascular diagnosis at admission; (iii) APACHE score greater than or
equal to 86.5, a respiratory rate greater than or equal to 25.5 and a mean
blood pressure greater than or equal to 51.5; (iv) APACHE score less than
61.5, a PaO2/FIO2 ratio greater than or equal to 117.57 and a primary dis-
ease category of acute respiratory failure, congestive heart failure, cirrhosis,
colon cancer, coma, COPD or lung cancer; (v) APACHE score less than 61.5, a
PaO2/FIO2 ratio greater than or equal to 117.57, a primary disease category
of multiple organ system failure (with malignancy or sepsis) and a respira-
tory rate greater than or equal to 61.5; (vi) APACHE score less than 53.5, a
PaO2/FIO2 ratio less than 117.57, not transferred from another hospital;

Table 5 shows the estimated treatment on treated effect of RHC on survival
to 30 days after admission for the study population defined by the tree of depth
4, along with that of the optimal subset that the tree of depth 4 sought to
approximate. The standard error was computed in a way that accounts for
the matched nature of the sample using the procedure described in [1]. For
both study populations, RHC is estimated to decrease survival; the effect is
significant at the 5% level in the optimal subset population and at the 10%
level in the study population defined by the tree of depth 4.

6 Discussion

Reliable estimation of a treatment effect requires that there be sufficient over-
lap between the treated and control group’s covariate distributions. In this
paper, we have developed a tree approach to choosing a study population
definition that has sufficient overlap and is easily described. We have consid-
ered using the tree approach to find study population definitions that perform
well according to either the criterion of minimum variance of estimated av-
erage treatment effect proposed by [8] or balance for treatment on treated
effect (combined with as large a sample as possible) proposed by [24]. The
tree approach could be used to find study populations that work well for other
criteria, such as the criterion of subjects whose propensity scores overlap with
those of the opposite treatment group.

For some studies, the tree approach can find a study population that per-
forms similarly to the optimal one according to the minimum variance criterion
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or the balance of treatment on treated effect criterion, but is much more easily
described. Examples are the job training study for both the minimum variance
criterion (Section 4.1) and the balance of treatment on treated effect criterion
(Section 4.2) and the right heart catheterization study for the balance of treat-
ment on treated effect criterion (Section 5.2). However, the tree approach is
not a panacea for finding easily described, close to optimal study populations.
For some studies, the tree approach with a small maximum depth will lead
to a study population definition that performs considerably worse than the
optimal one defined by a criterion such as Crump et al.’s minimum variance
criterion [8]. For such studies, we must decide whether the gain in interpretabil-
ity from an easily described study population outweighs the higher variance.
For such studies, we could use a tree with a larger depth, but then the num-
ber of groups that are included (excluded) becomes quite large and the study
population consists of the union of many highly specific subpopulations.

A potential drawback of the tree method for determining a study popula-
tion is that it might end up excluding groups that are already underrepresented
in research, e.g., certain minority groups. With the propensity score approach
to determining the study population, most, but not all, of such populations
might be excluded. Future research could consider how to constrain the tree
method to not entirely exclude underrepresented groups.

Example R code for implementing the methods developed in our paper is
provided in supplementary materials.
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Fig. 4 Absolute standardized difference in means between treated and matched control
groups for 8 covariates, including the propensity score, for (a) all treated subjects and
optimal subsets of treated subjects using a critical distance of the 25% or 20% quantile of
distances in Δ and (b) treated subjects who fall into a study population defined by trees of
various maximum depths fit to the classification of treated subjects as in or out of optimal
subset of treated subjects using a critical distance of the 20% quantile of distances in Δ.
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Fig. 5 Quantile-quantile plots comparing the two-sample p-values for 8 covariates, including
the propensity score, to the uniform distribution in five matched comparisons
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Fig. 6 Best tree of depth 3 for the job training study for the balance for treatment on
treated effect criterion.

Fig. 7 Best tree of depth 2 with double loss of misclassifying subjects who are out of the
optimal subset compared to those in the optimal subset for the job training study for the
balance for treatment on treated effect criterion.
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Fig. 8 For the RHC data, estimated ratio of variance of best trees of various depths to
that of the estimated optimal subpopulation by Crump et al.’s [8] criterion: Â = {X ∈ X :
0.1026 ≤ ê(X) ≤ 0.8974}
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Fig. 9 For the right heart catheterization study, absolute standardized difference in means
between treated and matched control groups for 73 covariates, including the propensity
score, for optimal subset of treated subjects using a critical distance of the 5% quantile
of distances in Δ and trees of various maximum depths fit to the classification of treated
subjects as in or out of this optimal subset.
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Fig. 10 For the right heart catheterization study, quantile-quantile plots comparing the two-
sample p-values for 73 covariates, including the propensity score, to the uniform distribution
in five matched comparisons
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Fig. 11 Best tree of depth 4 for the balance for treatment on treated effect criterion for
the right heart catheterization study.


