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Computerized Tomography and
Nuclear Magnetic Resonance

L. A. Shepp

Abstract: In 1917 Radon gave a simple formula for reconstructing a function
Slx.y.2) from its integrals over all planes in three-dimensions. We give a simple
algorithm for numerical quadrature of his formula and suggest its application
to imaging the nuclear magnetic resonance spin density of an object. Index
Terms: Nuclear magnetic resonance—Image reconstruction—Data processing.

1. INTRODUCTION

The theoretical basis of X-ray computerized
tomography (XCT) is the mathematical theorem of
Radon (1) that a function f{x.y) can be uniquely
reconstructed from its line integrals in the x-y plane.
If f represents the X-ray density in one plane section
of a real object such as a human head, the line
integrals of the density can be approximated by
measuring the attenuation of an X-ray beam passed
along the various lines. The resulting reconstruction
image of f by XCT has become an important tool
in diagnostic radiology.

Nuclear magnetic resonance (NMR) measure-
ments can be used to approximate the plane inte-
grals of the density f(x,v,z) of hydrogen nuclei in
a real object. We will show that these measure-
ments can also be used to reconstruct and image
the density f. (Note that the X-ray density and the
hydrogen density are different, although roughly
proportional except in bone.) Indeed, in the same
paper (1), Radon proved that a function f(x,y.z),
continuous and of compact support, can be unique-
ly reconstructed from its plane integrals by an
explicit formula. We give a simple numerical
algorithm (Section 2) for the approximate recon-
struction of f from a natural finite set of plane
integrals of f. This gives an explicit procedure for
obtaining an NMR computerized tomography (NCT)
image of f which is completely analogous to that of
XCT. NCT has time-resolution advantages over so-
called direct techniques in NMR imaging which do
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not use the full resonance NMR signal as discussed
below.

Let f(x,y,z) represent the spin density of atomic
nuclei of a given spin type (say hydrogen) at each
point (x,y,z) of an object, say a human head. In
NCT, a space-varying magnetic field is imposed
in the space containing the object. The level sur-
faces of the magnetic field are approximately a
series of parallel planes. After excitation by a
broad-band radiofrequency pulse, each nucleus pre-
cesses at a rate proportional to the magnetic field
strength at its point of location. Thus the total
magnetic energy at any given frequency represents
the integral of the spin density over the surface of
constant magnetic field corresponding to this fre-
quency. In this way the plane integrals of f can be
approximated. This method of measuring plane inte-
grals of the spin density is known as the gradient
method.

The idea of mathematical inversion of the NMR
measured plane integrals is not new. In fact, it is
well known (2—5) that the plane integrals of f
actually determine f via the Fourier projection

© theorem (3) (i.e., the fact that the one-dimensional
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Fourier transform of the plane integrals normal to
any one line is the three-dimensional Fourier trans-
form f of f along the line). The general problem of
inverting the NMR projection data to reconstruct
f has been called zeugmatography (2), and attempts
have been made to reconstruct from planar projec-
tions by a double use of the linear projection tech-
nique (2). However, it was observed (3,5) that the
technique of determining f by first determining
f using the projection theorem is clumsy, indirect,
and inaccurate (and the double use of linear recon-
struction is not much simpler). Indeed the use of
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mathematical inversion has apparently been inten-
tionally ignored (5) in NMR imaging. On the other
hand, there is much interest in NMR diagnostic
imaging because NMR is nonionizing and nonin-
vasive in contrast with XCT (6) (and allows for an
easier interaction with metabolic processes than
XCT), and so NMR imaging is an active field. Most
researchers, however, rely on **direct’’ techniques.
These direct techniques use one or more methods
of physically canceling the superposition effect of
forming plane integrals by using either (a) rapidly
switched magnetic field gradients, intended to
cancel the contribution of spins outside a sensitive
region, usually a point (5), or (b) narrow-band
radiofrequency excitation pulses, intended to either
excite, or to saturate, only the spins in a limited
region (4).

The above direct techniques avoid the need for
mathematical inversion but have the disadvantage
that only a small volume of the object is actually
radiating spin energy due to the selectivity of the
technique. The signal-to-noise ratio is thereby
decreased by a factor approximately equal to the
ratio of excited volume to total volume. Thus
mathematical inversion has advantages in decreas-
ing data acquisition time when it is desired to recon-
struct the entire object. This time limitation is
critical because of the long (~1 sec) spin relaxation
times.

In Section 2 we give the mathematical basis of
NCT and also a simple algorithm and simple
FORTRAN program (Appendix A) for reconstructing
from a set of parallel plane measurements. In Sec-
tion 3 we give an experimental simulation using
a model of a human head made of ellipsoids where
the projection data can be exactly calculated under
ideal and noise conditions in order to separate
algorithmic effects from those due to erroneous
data and to compare the resolution with that of
XCT (7.8).

We find that there are many interesting parallels
with linear algorithms in XCT. To obtain a resolu-
tion roughly equivalent to that of the XCT simula-
tion experiments described in the work of Shepp
and Logan (8) requires about 100 times as many
projections: 5,000—10,000 compared to 50—100 in
XCT. Here a projection is thought of as a set of
(say 100) parallel planes. This is partly due to the
fact that realistic head phantoms include high-
contrast objects outside the plane (nose, ears,
mouth, etc.) which ‘“‘cast tangents’” (due to their
edges) inside the plane of reconstruction. On the
other hand, this increased number of projections
should perhaps have been expected, since these
same projections now allow reconstruction in all
slice planes at once. Further, as we shall see, the
mathematics of NCT is even simpler than that of
XCT.

2. RADON’S INVERSION OF f
FROM PLANE INTEGRALS

Let f = f{x,v,2) be continuous and of compact support.
For each unit vector u and —x <t < x let ®(t,u) denote
the plane whose normal from the origin is tu. The plane
integral

Py = f £dA 2.1)

Puwmy

is the two-dimensional projection of f along P(r.u).
Note that ®(—t,—u) = P(z,u), and hence ®(—¢,—u) =
Pt u).

Radon (1) gave an inversion formula for f in terms
of P as follows. First he defines for each point Q =
(v,¥,2) the point mean value of P over all planes through

Q.
I
FlQ) = 4—77_”“6_ PU@O)) dS(w)  (2.2)

where u€S means that u runs over the unit sphere § of
unit vectors with dS(u) the local element of area on §
and 1(Q) being the value of ¢ for which P(t,u) contains
the point Q. Since F(Q) represents a fourfold integration
of f. it reduces to a threefold integral of f, as is easy to
see: namely,

F(Q) = F(x,y.2)
dy’ dv' d:’

(2.3)

so that F(Q) is the same as the convolution of f with
(1/2r), F = Y2 f = r'. But then 2F is the analog of the
electrostatic potential due to an electric charge density

/. so by Gauss’ formula (9), f = — (1/4m7) V2 (f = r '), we

have

flxy) = — L( o + & + &
e 27\ ox? Iy? 4:*

)F(‘\',y.:) .
(2.4)

Since F is given in Eq. 2.2 in terms of P(r,u), Eq. 2.4
gives the (Radon’s) formula for reconstructing f from
P.

One interesting consequence of Eq. 2.4 is that to
reconstruct f{(Q) it is not necessary to use all values of
P(t,u), but only those values for planes @ passing through
an arbitrarily small sphere about Q. This localization
property of the reconstruction of f from plane integrals
has no counterpart in XCT, where «!l line integrals are
used (8,10) to reconstruct f at any one point. In this
sense, the NCT reconstruction formula is simpler than in
the XCT case. On the other hand, it does not seem con-
venient with the gradient technique to obtain localized
data without actually being in a position to obtain the
full set of data.

As in the linear case (10), Radon’s formula is not
directly suited to a numerical implementation, since it
is awkward to form Eq. 2.2 as an intermediate step to
Eq. 2.4. A different reconstruction formula based on
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Fourier transforms seems to give more insight. However,
an alternative algorithm based on Eqs. 2.2 and 2.4 is
considered at the end of this section.

Introducing spherical coordinates, 0 <= < 7,0 < a <
27 and setting P(1,6.«) = P(r.,u), where

u = (sinf cosa, sinf sina, cosf) 2.5)

we define

P(w.0,a) :f P(t.0,«) exp(—iwt) dt (2.6)

It is easy to see that
Pw.b.a) = flw,0.a) 2.7

where f is the three-dimensional Fourier transform of f;
flwba) = fff fiey.z) exp{ —io[(v cosa

+ v sin@)sin® + : cosf]} dx dv dz. (2.8)

The Fourier inversion formula [and fl —w.6,a) = flw. 8.a)+]
then gives

flev,2) = (i):{f:ﬂ da f: de fol

dw flw. 8.0)e? sinf expliws)
_ ¢)l
‘(2,, e [Tan |

dw flo.0.0)w* sind explior) (2.9
where
(2.10)

From Eq. 2.6, the one-dimensional Fourier inversion
formula gives

t = v sinf cos « + v sinf sina + 2 cosé.

Pt.0,a) = if P(w.0.0) expliwt) do  (2.11)
27 Y,

Differentiating (2.11) twice on ¢, formally, we obtain

-P'(1.0.a0) = LJ‘ P(w, 0.0)? expliot) dw (2.12)
27 J_,

Using Eq. 2.7 in Eqs. 2.9 and 2.12, we get simply
1 da f d® P"(t.0,a) sinfl

Y

fleyn) = —

8m*J

(2.13)

where ¢t is given in Eq. 2.10 and represents the distance
from the origin to the plane ®(,u) = ®(.6.a) containing
the point (x.v,z). Of course, Eq. 2.13 must be the same
as Eq. 2.4 whenever P is sufficiently smooth so that the
above differentiations may be performed. On the other
hand, Eq. 2.13 shows more clearly than Eq. 2.4 how
each measured plane integral P(s,8,a) contributes to the
reconstruction at (v,y.2). In fact, Eq. 2.13 is exactly in
the same form as in XCT (8,10), i.e., f'is a filtered back-
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projection of P where the filter realizes the operation of
second-order differentiation by a second-order dif-
ference. Thus the filter here is a three-point (local) filter,
whereas in XCT the filter involves all the points (8,10).
Equation 2.13 suggests the following natural algorithm
for the physically natural case where for each of N
directions u,, ..., u, we are given the planar projec-
tions of f along equispaced parallel planes. No set of
directions seems completely natural, and the one we have
chosen is arbitrary: but for definiteness we assume
P(1,,6;,a;) is known for 6, = ((j—2)mw/n), j = 1,...
o, = K2mim), k =0,...,m — landt, = la, | =0,
*1, £2,.... We then set as our approximation to

Sy, 2y in (2.13)

Hoom-1

NN ing, Q06

fivy.z) = 4dmn — -

(2.14)

i=1 k=0

where
I = x sinfl; cosay, + ¥ sing; sing;. + : cosf, (2.15)

and Q is the natural second-difference approximation to
-P",
QUL 0.a) = a (2P 0,00 — Pty 1.6,00 ~ P(1.,.0.)]
(2.16)

at+ = 1, and is extended linearly in the intervals ¢, <t <
t;.,. The FORTRAN program which realizes reconstruction
2.14 and generates the data P(t,.6,.«;) for the phantom
used in the experiments described below is given in
Appendix A.

Radon's formula (2.2) and Eq. 2.4 lead to a slightly
less convenient algorithm in which we first back-project
P(t.0,a) to obtain an approximation to F(x.v.2) in
Eq. 2.2 and then apply the Laplacian difference operator
to approximate f in Eq. 2.4. Thus we first form

=1

o727\

F(x,v.2) = sind; P(t.6,. ) (2.17)

4 nom T 7

where P(1,,0,,a;.) is the measured or calculated value at
the sample points ¢ = 1, and P(1.6,.,) is the linear inter-
polation. We then form the second-order difference
approximation to the Laplacian (2.4),

_f:l.\'.)',:) = = [ZF(.\")'.:,) - Fx+a,v,2) — F(x—a,y.2)
27a*

+ 2F(x,v,2) — F(z,v+a.2) — F(x,y—a,2)

+ 2F(x,v.2) — Fx.v.2+a) — F(.\‘.)'.:—(l)].
(2.18)

This algorithm is more difficult to program and is less
elegant in that one must (arbitrarily) choose the x.v.z2
axes to define the second-order approximation in (2.18).
Further the effective back-projection in each direction
is much more oscillatory than with f in (2.14). As a
consequence one would not expect good performance
from 7, which is the case in the experiments made in
the following section.

3. SIMULATION EXPERIMENTS

In order to compare the resolution achievable
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FIG. 1. Section of original phantom z = 0.381.

with the planar (Eq. 2.14) and linear (Eq. 12 in
ref. 8) algorithms, we simulated a three-dimensional
head which in fact extends the head phantom used
by Shepp and Logan (8). It is reproduced here as
Fig. 1. Here we use 17 ellipsoids whose centers,
axes, and incremental gray levels are given in
Table 1. The parameters in Table 1 were chosen
to be realistic and so that a particular section
(z = 0.381) is consistent with the 11-ellipse phantom
used by Shepp and Logan (8). Unfortunately, con-
sistency required taking the NMR spin density of
the skull as 2.0 whereas zero would probably be
more realistic, since the skull has little water con-
tent. Front, side, and top views of the phantom
are given in Figs. 2—4 and the ; = 0.381 section
is given in Fig. 1. Figure 5 shows the original
phantom along one line v = 0.23, - = 0.381.

The area A of intersection of the plane £ *+ u =
t with the ellipsoid

3
N I 1 .Vi :
NEEV) a6

a,

i=1

centered at &, = (x,,vy,20) With semiaxes a,, d», ay
along the orthonormal axes V,, V,, V, is given by

A = w0, datts(sE—1 TSP (3.2)

wherer =¢ — & cu,xt = max(x,0),uw o v = ,,u,.00)
v,y =ww, + u,v, + uv., and S is given by

S$? = ajd} + adai + ajai,
o = ui 'Vi. i - 1,2,3 (3.3)

We have used Eq. 3.2 in the FORTRAN program of
Appendix A to calculate the planar projection data.
Some of the experiments to be described also use
slab projection data P,. Here P/{(t,u:h) is the integral
of f over the volume of the slab of thickness h
centered at ru and normal to u, divided by A. This
integral is the integral over (t — (/1/2), t + (h/2)) of

A in Eq. 3.2. We show in Appendix B that the
slab integral of f is the same as the plane integral
of g, where g is the smoothed version of f/ obtained
by integrating f over the surface of a sphere of
radius V2 f, i.e., P,(t,u) = P/t,u).

A typical projection of the head phantom (along
the x-axis) is shown in Fig. 6, where P(r,u) is plotted
as a function of r and u is a unit vector along the
positive x-axis. The second-difference filtered P,
i.e., Q(t,u) is shown in Fig. 7.

Figures 8—-13 show reconstructions of f via
Eq. 2.14 from plane data in the z = 0.381 plane
form =n =25, 69, and 99, respectively. Figures 12
and 14-17 show reconstructions of f via Eq. 2.14
from slab data (& = 3a) form = n = 25, 35, 49, 69.
Each increment of m = n roughly doubles the
number of data points. These reconstructions may
be compared with those of Shepp and Logan (8)
and show that for m = n = 49 with (smooth) slab
data or m = n = 99 with planar data, reconstruc-
tions comparable with the linear case are obtainable.
This shows that the algorithmic aspects of NCT are
achievable.

Figures 18 and 19 show a reconstruction in the
same plane with planar integral projections, m =
n = 25, but where the head phantom has been
changed—namely, the high-contrast parts of the
anatomy (ears, eyes, nose, mouth) which would
cast tangents into the reconstruction plane have
been “‘removed’’ (by having L in the program steps
360 and 460 skip over the values 3—8). The fact
that a good reconstruction is now obtained with
m = n = 25 shows that the optimal choice of the
number of **views'’ m and n is phantom dependent,
since excellent reconstructions can be obtained if
there are no high-contrast objects in the phantom
which cast tangents into the region of interest in
the reconstruction. This problem has a familiar
parallel in XCT (Appendix ! in ref. 8) and is now
well known. It is interesting that the human anat-
omy seems to be more friendly to XCT than to
NCT in the above sense, but the experiments show
that this unfriendliness can be overcome at the
expense of obtaining more projection data. In this
regard 1 have not put much effort into optimizing
the choice of directions u; along which data could
be taken. I expect that significant improvements
are possible here, although no set of directions
gives a natural tesselation of the unit sphere, as
is well known. It is likely that the sampling interval
a = 0.02 in each of the experiments described in
this section should be reduced for the case of plane
data for better results. We have kept ¢« = 0.02 for
purposes of comparison with Shepp and Logan (8).
For comparison with human dimensions, ¢« = 0.02
corresponds to sampling roughly every 2 mm, or
about 100 planes across the head in each direction.
Increasing the resolution requires decreasing a,
which in turn requires increasing m and n, however.

J Comput Assist Tomogr,Vol. 4, No. 1, 1980
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TABLE 1. The center (x,, vy, 2o). the lengths (a;. a;, ay) of the semiaxes, the incremental gray level (G) and the coordinates
(Vir, Vize Viai Varo Vozo Vaal Van Vazo Vaz) of the three orthonormal axes of each of 17 ellipsoids corresponding
to the head parts indicated.

" Xo Yo <o a; ay dy G Vi

Head part Viz Vig Vay Vay Vay V3 Vap Vi
I. Outer skull 0. 0. 0. 0.7233 0.9644 1.27 2.0000 1.0000
0. 0. 0. 1.0000 0. 0. 0. 1.0000
2. Inner skull 0. -0.0184 -0.0185 0.7008 0.9246 1.2241 —-0.9800 1.0000
0. 0. 0. 1.0000 0. 0. 0. 1.0000
3. Left eye 0.2583 0.7534 0. 0.1270 0.1270 0.1270 -1.0000 1.0000
0. 0. 0. 1.0000 0. 0. 0. 1.0000
4. Right eye —0.2583 0.7534 0. 0.1270 0.1270 0.1270 —-1.0000 1.0000
0. 0. 0. 1.0000 0. 0. 0. 1.0000
5. Nose 0. 1.1398 -0.1957 0.1270 0.3400 0.1700 1.5000 1.0000
0. 0. 0. 0.5446 —0.8387 0. 0.8387 0.5446
6. Mouth 0. 0. -0.7620 0.4575 0.6099 0.5080 —1.0000 1.0000
0. 0. 0. 1.0000 0. 0. 0. 1.0000
7. Left ear 0.7076 -0.1378 —0.1905 0.0635 0.3175 0.3175 1.0000 0.9903
—0.1085 -0.0865 0.1089 0.9941 0. 0.0860 —0.0094 0.9963
8. Right ear -0.7076 -0.1378 —0.1905 0.0635 0.3175 0.3175 1.0000 -0.9903
—-0.1085 —0.0865 —0.1089 0.9941 0. —0.0860 —0.0094 0.9963
9. Left small —0.0800 —0.6050 0.3810 0.0460 0.0230 0.0230 0.0100 1.0000
tumor 0. 0. 0. 1.0000 0. 0. 0. 1.0000
10. Center small 0. —0.6050 0.3810 0.0230 0.0230 0.0460 0.0100 1.0000
tumor 0. 0. 0. 1.0000 0. 0. 0. 1.0000
I1. Right small 0.0600 —-0.6050 0.3810 0.0230 0.0460 0.0230 0.0100 1.0000
tumor 0. 0. 0. 1.0000 0. 0. 0. 1.0000
12. OMd f 0. 0.1000 0.3810 0.0460 0.0460 0.0460 0.0100 1.0000
0. 0. 0. 1.0000 0. 0. 0. 1.0000
13. Old g 0. —0.1000 0.1270 0.2581 0.2581 0.2581 0.0100 1.0000
0. 0. 0. 1.0000 0. 0. 0. 1.0000
14. Old e 0. 0.3500 0.3810 0.2100 0.2500 0.2300 0.0100 1.0000
0. 0. 0. 1.0000 0. 0. 0. 1.0000
15. Right 0.2200 0. 0.3810 0.1100 0.3100 0.2540 -0.0200 0.9511
ventricle -0.3090 0. 0.3090 0.9511 0. 0. 0. 1.0000
16. Left -0.2200 0. 0.3810 0.1600 0.4100 0.3810 —-0.0200 -0.9511
ventricle —0.3090 0. -0.3090 0.9511 0. 0. 0. 1.0000
17. Blood 0.5600 —0.4000 0.3810 0.0300 0.2000 0.2000 0.0300 0.9192
clot —-0.3381 0.2020 0.3452 0.9385 0. 0.1896 —0.0697 -0.9794

“ Note that Nos. 12— 14 refer to the tumors used in ref. 9 and indicated there by f, g, and e.

Figure 20 shows the reconstruction by the
algorithm f of Eq. 2.18 from slab datam = n = 69
along the same line y = 0.23, z = 0.381 for pur-
poses of comparison.with Fig. 12 (algorithm f of
Eq. 2.14). This is a less computionally convenient
algorithm, so that we only computed the recon-
struction along a line; but as can be seen from
Fig. 20, the accuracy is poor compared to that of
fin Fig. 12 where the same input data is used.

4. NOISE AND MEASUREMENT ERRORS
One noise source is Johnson noise in the coil which
receives the NMR signal. This can be modeled in the

same way as photon noise in XCT (7,8). Suppose each
measured value of P(1;,0;, ;) has an additive uncorrelated
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random error v;, with mean zero and variance o®.
Then the (biased) error in the reconstruction f(x.v,2)
in Eq. 2.14 is
1 n‘ m—‘l 1
—— X Y sing _2[2")le‘  M-uk T 7h+w.-] 4.1
dmn 7 2, a

approximately, where / depends on x,y,z and onj and &
by Eqs. 2.14-2.15. The variance of the error in Eq. 4.1
at each point x,v,z is

2 1

~ ~ 2
0';= Wl -\_ sin*(),- —46(7'1: #
. 1°R° =y k=0 a na 4.2)
To achieve the 0.5% density resolution claimed for XCT,
i.e., oy < 0.005, for the case where m = n = 100anda =
0.02 (which corresponds to the experiments in Appendix
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FIG. 2. Front view of phantom. The various body parts—
nose, mouth, eyes, ears, ventricles, tumors, and skull—all
have densities (not shown) given in Table 1.
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FIG. 4. Top view of phantom.
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FIG. 3. Side view of phantom.
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FIG. 5. Original phantom along the line y = 0.23, z = 0.381
truncated at 0.9 and 1.1. Note this line lies in the plane of
the phantom used in ref. 8 and goes through the ventricles
(density 1.0) and large tumor density (1.03) as well as the gray
matter (1.02) (cf. Fig. 1).
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-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2

FIG. 6. Typical projection (onto the x-axis) of phantom.

0.6 0.8 1.0 10 0.8 -0.6

along x-axis.

-0.2 -0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. Back-projected second differences of projections

FIG. 8. Reconstruction in same plane
as Fig. 1 from planar datam =n = 25
with algorithm f of Eq. 2.14, truncated
at 0.9 and 1.1. Very poor reconstruc-
tion.

J Comput Assist Tomogr,Vol. 4, No. [, 1980

FIG. 9. Reconstruction under same
conditions as Fig. 8 but plane data
m = n = 69. Still a poor reconstruc-
tion.

FIG. 10. Reconstruction under same
conditions as Fig. 8 but plane data
m = n = 99. Many artifacts, but note
the three small tumors are visible.
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A with 100 measurements across the unit sphere in each
direction), we would require o < 4a2(mn/3)"? 0.005 =
0.00046. Since the central projections have values of
roughly 2 in the experiment, this represents a relative
error of 0.023%, a small tolerance on the Johnson
noise. This severe tolerance, which may not be easily
achievable, is a consequence of the second-order dif-
ferentiation in the filter in the planar case. In the linear
case, the filter requires only a first-order derivative
(and Hilbert transform, which however does not amplify
noise).

To reduce noise, filters may be used in the back-
projection (at the expense of resolution), as was done
by Shepp and Logan (8) in XCT. Indeed, if Q«,6,@) in
Eq. 2.16 is replaced by
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FIG. 11. Reconstruction along the same line as in Fig. 5
from planar data with m = n = 69 by algorithm f of Eq.
2.14 (cf. Fig. 5).

FIG. 12. Reconstruction along the same line as in Fig. 11
but with slab datam =n = 69 corresponding to a smoothed
version of f (Appendix 2); (cf. Fig. 6).

FIG. 13. Same as Fig. 11 but with m = n = 99; plane

data. Note that the three small tumors are visibly recon-
structed (cf. Fig. 5).

Qolt,0.a) = .\_ Plla,8.0)dt —la)a

(4.3)
l=-=x
where ¢ is linear between la <t < (/+1)a and
dw) =a N exp(—ivla)pla) = v,  small |o
I=—x
4.4
then we may form the approximation
noom—-1
folern) = —— NN Gin00.0.6.0) . (4.5)

amn ;7

This should perform well, and the smaller qu the better

J Comput Assist Tomogr,Vol. 4, No. 1, 1980
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FIG. 14. Reconstruction in same plane as Fig. 1 from s/ab
datam = n = 25. Very poor reconstruction similar to Fig. 8,
with which it should be compared.

FIG. 16. Reconstruction under same conditions as Fig. 14
but slab data m =n = 49.

the noise reduction, since the argument in 4.1 gives in
the same way

. LS a0 N
. S 29, 2] 2
o3 lomnt = = sin*6,o = d*(la)a
-9 NI la) = au 2
32mn “ = $tla) 32mn f ¢
cla 1 f -
= — : . 4.6
R2mn 2w ¢ 4.6)
The choice in Eq. 2.16 is ¢ = ¢,{1), where
2 1
d)n(o) = _,;: dlxa) = — -
o a
dotka) = 0: k=1 4.7

J Comput Assist Tomogr,Vol. 4, No. 1, 1980

FIG. 15. Reconstruction under same conditions as Fig. 14
but slab datam =n = 35.

FIG. 17. Reconstruction under same conditions as Fig. 14
but slab data m = n = 69. The three small tumors are not
visible, probably because of the smoothing.

On the other hand, the advantage of the latter choice is
the ease of forming the convolution 2.16 involving only
three terms.

A second measurement difficulty is due to the fact
that the creation of a magnetic field gradient whose
level surfaces are exactly planes has nonclosed flux
lines and is thus impossible (because of the divergence
theorem), although in principle it may be arbitrarily well
approximated. How close tolerances are required on the
curvature of the level surfaces? We consider in Appendix
C replacing the integrals P(t,u) over planes by integrals
P,(t,u) over a sphere of (large) radius R which is per-
pendicular to u and passes through ru. For the function

fs. which is unity inside the unit sphere § and zero

outside, we show that the reconstruction of f; at the
center of S from Eq. 2.13 using P, instead of P has
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FIG. 18. Reconstruction under same conditions as Fig. 8;
plane data m = n = 25 but where the high-contrast out-
of-plane objects (eyes, ears, nose, and mouth) have been
removed and no longer cast tangents. Compare the quality
of this reconstruction with that of Fig. 8. The three small
tumors are clearly visible.

error O(R"?). This gives at least qualitative reassurance
that the level surfaces do not have to be exactly planar.

CONCLUSION

The experiment described in Section 3 and Fig.
18, where the nose, ears, eyes, and mouth are
“temporarily removed,"" shows that from a mathe-
matical viewpoint, reconstruction from plane inte-
grals is as convenient and accurate as reconstruct-
ing from line integrals. However, from a medical
point of view, the fact that the high-contrast body
parts are not removable will cause some difficulties
with any procedure which depends on algorithmic
reconstruction from plane integrals, although with
increased data the technique using the NMR
gradient technique and the algorithm given here
seems to hold much promise to compete with XCT.

APPENDIX A

The first program below generates NsaMpP(=101) planar
integral projections P (statements 340-520), over each
of NTH(=99) and NAL(=99) values of # and «, from the
17 ellipsoids using (3.2) whose parameters are read in
(160) from Table 1. The second difference Q(530—550)
of P is then back-projected (570—-710) onto the plane
Vi + vy + vy = (x,y.2) as ry, and r, range in steps of
size SF over (—sIzE,s1zE). To save execution time we
only back-project onto points (x,v,:) inside the sphere
of the projections 7(K), in this case this is the unit sphere.
(This is the purpose of restricting 1x in 670 and 1v in 570.)

The second program below is identical to the first
except for the choice of the number of angles (69 x 69)
and the fact that each projection P is now the integral
of f over a slab of thickness sLABWDTH (here taken to be
three times the sampling distance in 110) computed in

1.10

1.08

1.04

1.02 /
1.00

! )

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0

FIG. 19. Reconstruction along same line as in Fig. 5 from
plane data with m = n = 25, but the high-contrast out-
of-plane objects, which would otherwise cast tangents have
been removed in calculating the projection data. Note the
two blips in {x| > 0.8 indicating high oscillations (>0.9)
outside the skull due to the casting of the tangents (cf.
Fig. 5).

1.04 M
1.02 ¥ [\

1.00 |

-
~7

i

-1.0 -0.8  -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0
FIG. 20. Reconstruction along the same line as in Fig. 5
but using the algorithm f in Eq. 2.18 instead of f in Eq. 2.14,
m =n = 69 (cf. Figs. 5 and 12).

350-590, instead of a plane. As shown in Appendix B,
this is equivalent to taking the planar integrals of a
smoothed version of f.

APPENDIX B

As before we denote by P,(r.6.«a) the integral of f =

J Comput Assist Tomogr Vol. 4, No. |, 1980
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generation
of the pro-
jection data
by planar
integrals

filtering {

back-
projection
with linear
interpolation

L. A. SHEPP

PROGRAM 1.

W0l PAPAMETER NSAMP=101,NTH=99 ,NAL=39,NREC=128

50 DIMENSION W(NREC,NREC),R(NREC)

60 DIMENSION X0UL7),¥0(17)920(17)4AL3417)+GULT )4V I(3:43417)
70 DIMENSION AF(L7) ,SUM(17),SQ(17),T0(17)

80 DIMENSION P(NSAMP),Q(NSAMP) T (NSANP)

90 DIMENSION U(3) 4¥1(3),V2(3),4V3(3)

100 PI=34101592653P12=c«*PICON=1e7/(4e *NTH®NAL)

110 ASA=2./(NSAMP~1.) JASA2=ASA®ASA INSANMPL=NSAMF=-1
120 V1(1)=0.3V1(20=0,3v1i(3)=.381

130 V2(1)=1.3V2(2)=043¥2(3)=0.

1640 V3I(1)=0,3V3(2¥=1,3V3(3)=D,

156 00 2 L=1,17

160 READ(10,100C) XTCL) »YOUL) oZ0(C ) 4A{14L)4AL25L)sAL34L ),
L1700 GUL) v (UVII o Jel ) 9214304121, 3)

180 AF(L)I=ALL4LIRAC2,L)%A(3,L)*PTI*G(L)

19C 2 CONTINUE

200 1000 FORMAT(B8FB8.4)

210 DO 5 K=1,NSAMP

220 5 TUK)==1,¢(K=10%2./(NSAMP=-1,)

230 SIZE=1.3SF=2.*S1Z2/NREC

260 DO 3 I=1,NFFC

250 3 R{II=SIZE*(=1.¢{1~14)%2.,/NREC)

260 SC=SQT(1.-V1(1)%*42-V1i{(2)**2-V1(3)**2)

270 IYMN=14¢¢5¥NREC*(1+=SO/SIZE) SIVYMN=MAX(IYMN,1)
280 IYMX=1,¢,5*NREC*(1.+SO/STZEN S IVMA=MIN(IYMX 4NREC)
290 DELX=V2{1)*SFSuELY=V2(2)*SF}DELZ=V2(3)*SF

300 DC 10 JTH=1,4,NTH

310 STH=SINI(JTH=S)*PI/NTHISCTH=COSC(JTH=-45)*FI/NTH)
320 00 2G JAL=1,NAL

330 SAL=SIN((JAL=1, P*PI2/NAL) {CAL=COS((JAL=1«)*FI2/NAL)
3u0CCCC  GFT P

350 U(1)=STH*CALIULZ)=STH*SAL3U(3)=CTH

3¢0 DO 22 L=1y17

370 SuUM{(L) =0,

380 D0 23 M=1,3

390 23 SUMIL) =SUMILI+(LUL)I*V M, 1oL00U(2)*V (M, 2400+
GOCE U(3)*VI(Me3,L 1) *A(M,LII**2

410 SQ(L)=SQART(SUM(L))

420 TOMLI=U(L1)*XI(LIeU(2)3YOLLICU(3DI*ZG(L)

430 22 CONTINUT

4L 00 24 K=1,NSAMP

450 PIK)I=T,

weld DO 25 L=1,17

W70 TT=AT(K)=TCAL )} **2

GEC IFLSUMIL)WLEL.TT)IGU TC 25

WSC PUKI=P KIS (SUF(LI=TTI®AF(LI/ (SUM(L)I*SCIL))

5C0 25 CONTINUE 24 CONT INUE

S10 IF(ITHEQeINTHE 1)/ 2. AND «JALEQL1)PRINT,F

520CCCC P GOT

5302C TAKE 3:5COND DIFFcPENCES

540 DO 50 K=2 NSAMP =1

550 50 Q(KI=CON*(-PIK-1V-P(K¢1)+2.*P(K})/ASA2

560 DE.={(OELX®*STA*CAL*DELY*STH*SAL¢OZ.Z*CTHI*(NSAMP=1,)/2s
570 DO 30 IY=IYMN,IVYMX

580 SO0=S0%50-F(IY)®RUIY)IIF(SO0LELB4)GO TG 20

560 SO00=SQART(S00)

€00 IXMN=1e¢¢5*NREC*(14=S00/5I2c) tIXMN=FAX(IXMN,1)
610 IXMX=1¢#6*NRLGC*(1e+500/51Z5) §IXMX=MINLIAMX4NREC)
6c0 X=ViI(L)+RIIXMN) *V2L L) ¢R(TYI*V3II1)

630 Y=VL(2)+RUIXMNI®V2(2)eRIIY)I*¥3(2)

BL0 Z=VI(3)¢RIIXMN) *V2(3) ¢k (IVY)*V3(3)

650 TT=X®*STH®CAL¢Y*STH*SAL+Z*CTH

6h0 PP=L#{TT+1.)*INSaMP=1,)/2,-0EL

670 DO «0 IX=IXMN,IXMX

680 RF=R3+0EL

690 LL=RRILIFCLLeLFeleOReLLeGESN>AMFLIGO TO 40

700 WEIXoIY)SWEIX IVYI+#STHH(QILL) #(GILL#1)-Q(LL)I*(RR=-LL))
710 40 CONTINUES3C CONTINUC

720 20 CONTINUF

730 10 CONTINUE

760 00 60 1Y=1,NREC

750 WRITZ(12) (WOIXWIY),IX=19NREC)

760 IF(IVYeEQebSaO0ReIVeEQeBOIPKRINT yU(WIIXoIY) IX=24NKEC)HIY
770 60 CONTINUE

780 STOPIEND

7903 tEXECUTE

BCOZtPPMFLEL0yR/Wyy LAS/LMPDATAZ

8103 2PRMFL212,R/W s LAS/RPOPI3

8203 8LIMITSI160450Kyy2K

8303 4ENDJYIR

J Comput Assist Tomogr. Vol. 4, No. I, 1980
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PROGRAM 2.

60 PARAMETER NSAMP=1D01,NTH=69,NAL=69,NREC=128

50 DIMENSION WINRECNREC) RINREC)

60 DIMENSION XO0C17) o¥Y0U17)9Z0C17)4A(3517)4G(17),V(3,3,17)
70 JIMENSION AF(17) 4SUN(17),SQ(L7),T0(17)

80 DIMENSION PUNSANMP) ,QUINSAMP) 4T (NSAMP)

90 JIMENSION UL(3) ,¥1(3),4V2(3),V3(3)

100 PI=34181592653PI2=2."PICON=147(4¢*NTH*NAL)

110 SLAGWDTH=3.%2 ./ NSAMP JH=SLAGHOTHIH2=H/ 2,

120 ASA=2 o/(NSAMP=1,) SASAZ=ASA®ASA INSAMPL1=NSANF=-1

130 V1(1)=0.3V1(2)=D.3V1(3)=, 381

160 V2(1)=1,3V2(2)=0.3V2(3)=0.

150 V3(1)=0.3V3(2)=1.3V3(3)=0,

160 DO 2 L=1,17

170 READ(10,1000) XOCL) o YBC(L) »ZDULYALL4L)sA(2,LD4A(3,4L),
1800 GIL) y ((VIIsJelDsJU=1+3),1=1,3)

190 AF(L)I=A(1,L)%A(2sL)*A(3,L)*PI*GIL)/H

200 2 CONTINUE

210 1009 FORMAT(8FB.4)

220 D0 5 K=1,NSAMP

230 S TIK)==Lle#(K=14)*24/7(NSAMP=1,)

240 STZE=1,35F=2.%SIZE/NREC

250 00 3 I=1,NFEC

260 3 R(LV=SIZE*(=1.#(i=-14)%2./NREC)

270 SO=SQART(1.=V1i{10¥%%2-V1(2)**2-V1(3)**2)

280 IYMN=1.4 S5*NREC*(1.-SC/SIZE) $IYMN=MAX(IYMN,1)

290 IYMX=14+e5*NREC*(14¢SO/SIZE) I IYMX=MINCLIVYMX4MNREC)
300 DELX=V2(1)*SFIUELY=V2(2)*SFF0ELZ=V2(3)*SF

310 DO 10 JTH=14yNTH

320 STH=SINCG(JTH= ,S)*PI/NTH) $CTH=COS((JTH=4S)I*FI/NTH)
330 00 20 JAL=1,NAL

340 SAL=SIN(C(JAL=-1.)*PL2/NALY SCAL=CCS({JAL=1,)*FI2/NAL)
3503CCC  GET P

360 UIL1)=STH®CALIUC2)=STH*SAL 3U(3)=CTH

370 00 22 L=1,17

380 SUM(L)I=0.

390 D0 23 M=1,3

400 23 SUMIL)=SUMIL I (ULLI PV (M1 ) +U(2)*V(MyZoL) 4+
K100 UI3I®VIM,34L ) *A(MyL)I*"2

420 SQIL)=SQRT(SUMIL))

430 TOML)=ULL)*XO(LPeUE2)I®YOLL)I+U(3)*ZD (L)

440 22 CUNTINLE

450 00 24 K=y.NSAMP

46l 2(K)=0.

470 DO 25 L=1,17

480 TN=T(K)}=TL(L)-H2

650 TP=TNeH

500 IF(TP(LT+=SQILIIGO TO 253 IF(TN.GT.SGI(L)IGO TO 25
510 QN=SJM(L)*TN=(TN*TN*TN)/3¢3QP=0UMIL)®*TP~-(TF*TP*TP}/ 2,
520 IF(TP.GTeoUlL))GCP=2,.2SUMILI®*SQIL)/3.

530 IF(TPeLT+=SQELIIAP==24*SUMILI*SQ(L)/3.

540 IF(TN.GT.SQIL)ION=2.*SUMIL)I*SGIL)/3.

550 T F(TNeLT+=SQEL)IAN==2*SUMIL)I*SQ(L) /3.

560 P(K)=P(KI®AF{LI*(QP-QN)/Z(>uM(L)*SQ(L))

570 25 CONTINUE24 CONTINUE

580 IF(JTHEQ.(NTH+1)/72+ANOJAL.EQe1)PRINT»F

590CCCC P GOT

600CC TAKE SECOND UIFFERENCES

610 00 50 K=2,NSAMP=-1

620 50 QUIK)=CON*{-P (K-1)=P(KE1)+2,%P(K))I/ASA2

630 DEL=(DELX*STH*CAL+OELY*STH3SAL¢ICLZ*CTH)*(NSAMP=1,)/2,
640 DO 30 IY=IVMN,IVMX

650 S00=S0*SO-FIIY)*R(IY)IIF(SCOeLE«Ds)GO TO 30

660 S00=SQRT(S00)

670 IXMN=1e¢oS5*NREC*(1e=S00/SI2E) § IXMN=MAX(IXMN,1)
680 IXMXZ1++ 5*NRIC*(10+S00/S1ZE); IXMX=MINLLIXMX 3 NREC)
690 X=V1(1)+RIIXMNI *¥2(L1I+RIIYI*VI(L)

700 Y=V 1{2)+RIIXMNI®V2(2)+RIIYI*V3(2)

730 Z=VI(I)+R{IXMN) *92(3) ¢ (IVI*VI(I)

720 TT=X*STH*CAL+Y*STH®*SAL+Z*CTH

730 RP=1.4(TT+1.)*(NSAMP~-1.)/2.~0EL

740 00 &0 IX=IXMN,IXMX

750 RR=RR+DEL

760 LL=RRIIF(LLeLEe1eOReLLIGE«NSANPL)IGO TO 40

770 WUIXoIY) =WIXIYD#STH* (QILL) +(QILL+1) -Q (L ) I*IRR=LL))
780 0 CONTINUES3C CONTINUE

790 20 CUNTINUE

800 10 CONTINUE

810 DO 60 1Y=1,NREC

820 WRITEZ(12) (WUIXsIY)sIX=1yNRFC)

830 IF(IYeEQebS5eOReIYeEQeBOIPRINTy (WIIXoIY)sIA=14NKECI,1IY
840 60 CONTINUE

850 STOPIEND

8608 s EXECUTE

8708 POMFLIL104R/ W9 LAS/LMPDATAJZ

B80St PRMFL212yR/H 49 LAS/RPDSE9

8903 tLIMITS:9S,50K,y 42K

9008 1ENDJOB
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fix,y.2) over the plane (1,6, a) defined by sinf(x cosa +
y sina) + 7 cosé =1. Letg =f+ k be the three-dimensional
convolution of f with a spherically symmetric kernel &,

Six =Xy —¥z -0
k((x2 + ¥ + 22V di dv dz. (B1)
We show that the plane projection of g, P, satisfies

gly,y.2) =

P,t.0,0) =_[ Pt —5.,0,0)W(s) ds (B2)

That is, P, is a weighted, or filtered, version of P;
with filter weight W(¢), where

W(s) =27 f rk(r) dr . (B3)

This may be inverted to give

1 d
k(s) = = — —
! 27s ds
If P,(r,u:h) is the integral of f over the slab of thickness

h centered at ru divided by /i as defined in Section 3,
then

W(s) . (B4)

hi2

Puh) = Il Pit—s.u)ds
1

~hi2

| Pu-suwds (B3

where

1/h, -2 <s <h/i2
W,,(S) ={ (86)

0, |\\ > N/2

From Eq. B4 the corresponding smoothing kernel, &) is
knls) = — 8(s~hi2) (B7)
wh*

where & is unit point mass at zero. Thus Pdr,u:i) =
P,(t,u), where g = k), * fis (wh*)"! times the integral of
[ over the surfuce of a sphere of radius /1/2 about any
point. Thus the experiment in Section 3 involving slab-
type projection data is the same as if one used plane
projection data for a smoothed function ¢ = &, *f, which
may be a more realistic model of a human head. i.e.,
the transitions between various head parts being perhaps
not so sharp as the discontinuities of f.

Equation B2 is proved by several changes of variables
as follows. Note first that

Patte) = | [ firurevi e, de dn

= ff Jit siné cosa + £ cosf cosa

—7 sina.7 sind sina + £ cosé sina
+m cosa,r cos — £ sinf) d¢ dn (B8)

where u = (sinf cosa, siné sina, cosd),v, = (cosd
cosa, cosf sina, —sind), and v, = (—sina, cosa, 0), since
v,,V3,u are orthonormal.

Thus from Eq. Bl,

J Comput Assist Tomogr,Vol. 4, No. [, 1980

P,t.0,a) = ffffflf(t sinfcosa + £ cosf cosa

—~ 7 sina — X,f sinf sina + ¢ cosd sin «

+ n cosa — ¥,r cos — £ sinf — 2)

K(E24+72 423 dx dy dZ d€ dn (B9)
Introducing new variables ¢',n’,s in place of £,m, I by
£ =¢'+c, n =17'+d, T =5 cosf — ¢ sind

where
¢ = (¥ cosa + ¥ sina — s sin@)/cosf

d = — X sina + ¥ cosa (B10)

Eq. B9 becomes

P,t,0,a) = ffff‘[:f((t—s)sinﬂ cosa + ¢’ cosh cosa
-7’ sina, (t—s) sind sina + £’ cosf sina
+%' cosa, (1—s) cosf — &' sinf)
k(X2 +¥2+3)"0)J d¢' dn' ds dx dy (B11)

where the Jacobian J = d¢ dn dZ/d¢’ dn' ds = l/cosé.
Comparing the integral over ¢’ and n' with Eq. BS,
we have

P,t.6.a) = fffl dx dv ds Pd{t—s,6,a)

k((x'-’+)_72+5")|/2) _]_

cosé
= fT Pt —s5,0,0)W(s) ds (B12)
where
! om0 = 1
§) = d.‘d—,/‘ .’_+_,2+:2 12 _° 13
Wi(s) fj:, v dy K((x*+y ) cosd (B13)

with T given by Egs. B9 and B10. Finally, letting
X cosa + ¥ sina = u cosf + s sind
— X sina + ¥ cosa = v (B14)

and noting that d¥ dv/du dv = cosfl, we have

W(s) = ff 7 die dv k(@ +vi+s3)' 3) (B15)

which reduces to Eq. B3 on changing to polar coordinates
i = (F*=s)" cos, v = (r*—s3)"? sing since du dvidr dé =
r.

APPENDIX C

Here we suppose that instead of measuring P, u),
the integral of f over the plane ®(¢,u) whose normal from
the origin is ru, we suppose that the gradient field has
curvature R at tu. More precisely we suppose we
measure P,(f,u) the integral of f over the spherical sur-
face 8,(r.u) which is centered at (+R)u and has radius
R, so that §,(t,u) passes through ru just as ®(r,u) does.

Let us suppose that f = 1 inside a sphere § of radius
p centered on the z-axis at (0,0,2) and /' = 0 outside the
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sphere. Then the distance between the centers of the
two spheres is, from the law of cosines,

T = (224+(+R)? - 2z(t +R)cosH)"? (CDhH

where u makes an angle 6, 0 < 6 < 7, with the positive
z axis. The projection P,(t,6.a) along 8,(r,u) is the area
of that part of §,(r,u) inside S or

P,(t.0,0) = (mRI7) (a*—(7—R)»)* (C2)

for any a where 0 < a < 27, as a simple calculation
shows. Differentiating twice we get, for [1—R| < a,

a*—R? ) + (R-—u' _ 1)7”}

'r" :
(C3)

2
where 7" = d*7/dt* = —()¥r + l/r and ' = dr/dt =
(t+R -z cosh)/r. For the centerof S, t = z cos# and 7% =
R? + 2% sin%g and

Pit,6,a) = 7R |2

%= 1+0(R), 7 =1+0R3, 1 =0R?
(C4)
so that
Py(z cos8,0,a) = =27 + O(1/R?) as R — x. (C%)

From Eq. B13 we obtain that the approximate recon-
struction of f(0,0,z) = 1 is f,(0,0,2) = 1 + O(I/R? as
R — =, Of course this argument is crude and hardly
convincing that curved level surfaces in magnetic gra-
dient fields do not cause serious problems, but there
are many other methods that could be used to make cor-
rections as long as the level surfaces are repeatable and
known, i.e., remain constant each time the measurement
P(t,u) is taken.
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