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Abstract

In what follows let W(t) = (W,(¢),W,(¢),W3(¢)) be a three-
dimensional Wiener process (Brownian motion) starting at the origin.
P. Lévy has shown that the characteristic function of the random

variable X = [ [W,(£)-tW,(1)1d[W,(t)- W, (1)), which measures
the signed area of a random planar loop, is Ee™® = (2/2)¢sch(z/2).
(The corresponding density, of importance in polymer physics, is
(n/2)sech®nx). Lévy's derivation uses N. Wiener’s simple sine-cosine
Fourier expansion of white Gaussian noise. This expansion is used
here as the starting point in showing that the six-dimensional vector

(W(1), I W(t) x dW(t)), needed to characterize polarization
dlspersum effects for high speed communications over optical fibers,
also has an elementary closed form characteristic function.

Employing the same Fourier expansion we prove the following
result, generalizing the two examples: Let V be any finite
dimensional vector whose components are arbitrary linear
combinations of random variables of the form W, (1), W,(1)W,(1),

W, (1), W,(e)dt, [, W,(6)dW,(t) (1sk<3,1<1<3). The joint

characteristic function of V can be expressed in closed form using
elementary functions.
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1 Introduction

Let W(t) = (W (¢),W,(¢),W,(¢)) be a standardized Wiener process
(Brownian motion) on [0,1]. By standardized, we mean that for each
t, W(t) is distributed as N(0,zI). Every time we write an integral
sign in this paper the integral is understood to be over the unit
interval. In the next section we derive characteristic functions as
noted in the following two examples, the first of which uses only two
dimensions of W(¢) and is a known result.

Example I: Signed Area of a Random Planar Loop, X. Let
W,.(t) denote the pinned Wiener process [1-3] (also called the
Brownian bridge)

W, () & W, @) —tW,(1). (1)
Since W, (¢) starts and ends at 0, the curve [(Wl(t),W2 (tN)o<s<q 18

a random planar loop. Using Green’s Theorem (see for example, [4])
the signed loop area is given by

X=[W, () dW,@). (2)
In this case the characteristic function is
Ee™ = (z/2)/sinh(2/2). (3)
r__1

(The corresponding density is p(x) = .) This was first

2 cosh®nx
obtained by P. Lévy [5] using a series representation for W;(¢) that

was introduced by Wiener in [6] (see equation (7) below). Sparked by
interest for studying topologically constrained polymers, (3) was
recently rediscovered using different methods, in [7]. Results related
to (3) appear in [8-13].

Example II: Fiber Optical Polarization Dispersion Vector Y,
Let x denote vector cross-product

Y & (W), | Wt)xdw()) . @

Let z = (2,,25,25), { = ({,,{;,{3) be the transform variates with
denoting transpose and vector multiplication such as z’{ denoting the
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scalar product. We have

2 W+ [ Wieyxawee) _

sech|C|exp-1/2[|z|2 tarillgllt‘;l + (7;532 (1— talilg.{Cl )] (5)

See [14] for a discussion of the importance of (5) for the theory of
polarization dispersion in single mode fibers.

As we shall see, the following simple Fourier expansions [1,3] of
the white Gaussian noise processes (W, (¢)/ dt)® _, are useful in
deriving the characteristic functions for the examples

Ee

W, (1) = EF + 2% 5 (E" cos 2mjt +n sin 2mjt) . 6)
j=1

Each element of (E]',0< k<o, 1<m<3)U(N;,1<k<e0,1<m<3)
is distributed as N(0,1) and statistically independent of all the other
elements. As remarked, this was first used by Wiener [6]. A similar
expansion holds for any complete orthonormal sequence [1]. The
sines and cosines have a crucial advantage here in that the expansion
is orthogonal in more than one way as we shall see in (9) below. In
particular, the Karhunen-Loeve expansion of the Wiener process is
not the right expansion to use.
Employing the formal expansion (6) we prove the following:

Theorem. For W(t) a three-dimensional Wiener Process, the joint
characteristic function of any random variables of the form

W, (1), W,(LW,(1), W, (1) [ W,()de, [ W,(£)dW,(2)

can be expressed in closed form using elementary functions.

The theorem is valid for either Ito or Stratonovich [15,16]
integrals.

The above result, has the immediate implication that any finite
dimensional vector, V, whose components, (V,,V,, ..., Vg), are linear
combinations of the random variables mentioned in the theorem, also
has a joint characteristic function expressible in closed form using
elementary functions. So this generalization covers the second
example. To see that the theorem itself covers the first example, use



172 G. J. Foschini and L. A. Shepp

integration by parts on the —-I tW,(1)dW,(¢) term that appears
when expanding | W,(£)dW,(¢) out into the four integrals. The
curve [Wl(t),wa(t),wa(t)} 0<t<1 is a three dimensional loop.
One could use the constructive proof of the theorem to find the joint
characteristic function of the signed areas of linear mappings of this
loop onto a finite set of planes.

The very basic example _[ W, (£)dW,(¢) is clearly covered by the
theorem. The characteristic function 11;111'115; 012.1t to be sech”z (the

X

corresponding density is ((23" 21:)'1|l"(z+t 5 )I ) We will not derive

the characteristic function explicitly in this case since the derivation
is very much along the lines of the derivation of Example II, but
simpler. The last component of Y in Example II is _f W, (@)dW,(¢) -
J W, (t)dW,(¢t). From (5) the characteristic function is sechz, so
| W, (£)dW,(¢t) and - | W,(£)dW, (¢) add like independent random
variables. (The probability density function corresponding to sechz is
1/2sech(nx/2)).

All densities mentioned thus far can be obtained from their
characteristic function using the tables [17]. As of this writing (5)
has not been inverted in closed form. We note that the six univariate
marginals densities of ¥ have precisely the same functional form as
their characteristic functions.

Lévy’s formula ((1.3.4) of [5]) is more general than (3). It is a
formula for the characteristic function of the area included by the
loop defined by a planar Brownian motion and its (origin-to-endpoint)
chord, conditioned on the chord length. This celebrated formula is a
straight-forward consequence of our equation (5).

2 Derivation of Characteristic Functions
for the Examples

The expansion (6) is formal, the integrated form

W, ()=Ert+2% 3 (2m/)" (& sin 2mjt +M]" (1 cos 2mjr)) (7)
J=1

converges uniformly with probability one [1,3,18]. Note W, (1) = Ex.
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Although the theorem generalizes the examples, the derivation of
Example I is short and serves to very simply illustrate the use of (6)
and (7). We will also derive Example II as it provides a concrete
illustration of a somewhat elaborate case and provides much of what
is needed for the theorem.

The following expansions will be needed. They follow using (6)
and (7)

W] Wirde = g5(2h/2+2* T 2md) ) 8w

Jj=1

[y W) dw, () =

(5886 /2)+ 3 (2m)) I} (B2 —2%E)* —nt (&l -2%EL)] . (8b)

j=1

Example L. Using the definitions of W,(¢) and W,(¢) in
X = W,(t)dW,(¢), and then substituting using (8a) and (8b), we
obtain on account of the orthogonality of the terms in the expansion
(7) and their derivatives,

EBe™ = [] E expliz(&}n} -&2n})/ (2x))] (9)
j=1
j=1 7 j=1
=(2/2) sinh (2/2) . (9¢)
See [19] for the last equality.

Example II. In deriving the characteristic function of the six
dimensional random vector ( W(l),j W(t) x dW(t)) we will use the
following representation of the last three components constituting the
integrated vector cross product
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[ W) x aw(e) = @[ W, (1)dW, (v) - W)W, (1),
2| Wy(0)dW, (1) - W, ()W, (1),
2[ W, (1)dW,(1) - W, (DW,(1)). (10)

We have used integration by parts, so one integral, not two, appears
in each component.

Let (p,q,r) index the cyclic permutations ((1,2,3), (3,1,2),
(2,3,1)). Form the six dimensional characteristic function as a
product over the three cycles

¢(21 :Zzsz:g:Cza,cxs !§12) =
E ei{w,u;z,+[2Iw'(cmwrcr)-w,(nw,(m;,)

{(p,q.n)}

(11)

The dual subscripting of the last three transform variables is a
temporary notational convenience. Drawing on (6) and (7) and doing
the elementary integrals we rewrite (11) as

¢(21,25,23,853,813,830) =

g, 3 [n;ca; V2R -njcg V2 ¢:>]

L)

EJ]e

{p.q,r}

(12)

where the qu WQ(I)W,(I) terms cancelled out of each sum. We will
next proceed to take the expectation in three stages: first with respect
to the 11}(-') variates, second with respect to the &}') (/ 2 1) variates, and
last with respect to the three F,f,'} variates.

Expectation over the 1 Variates

In preparation for taking the expectation over the n7, n}, ] variates
we collect n}') terms with the same superscript. Collecting and taking
the expectation
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®(2,,25,23,023,813 ,C12)

,%j{n;u,ts.; -V2y0)-2, 4 -V2¥; >l}

TE, =

= Fe H H e (133)
Jj=1 {r,q,p}
1
g o (=012, (&) -V2E)-2,, (&) -V2 &)Y
BT ITe © : (13b)
Jj=1 (r,q,p}

For this example dual subscripting on the three { variables is no
longer useful. We will employ the following notation

e (8,842 (14a)
¢4 (L,,8,,0s) in place of ({gg,851,812) (14b)
gl & G+23+83 (140)
B AL E) J=20. (14d)

The next step is, for each j = 1, to collect the quadratic forms in
each vector & j-2"" &o- We express ¢(z,) using an infinite product of
exponentials of quadratic forms

02,0 = Be*S I T AG T (15)
Jj=1
where A j is the 3 X 3 matrix
A, = @) 2LPI-ELD (16a)
=del/mp? a-cg 11eky . (16b)

For short we are writing A ; instead of A;({). Notice
A = (gl /mi® a-gg 1P an
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Expectation over the §; Variates

To take the expectation over each € (J21), a triple integral is
required where the integrand of the exponent is

—1/20(8;-2"8,)" A;(8;-2"8,) + &/IE,] . (18)
To evaluate the triple integral we rewrite (17) as a single quadratic
form in §;. Then the triple integral, with &, fixed, can be viewed as
the integral over all of three dimensional space of an unnormalized
trivariate Gaussian density. The triple integral can be easily
evaluated, by comparing the integrand with the corresponding
trivariate Gaussian probability density (same mean and variance-

covariance matrix) that is properly normalized (integrates to unity).
We begin this evaluation process by rewriting (17) as

—1/20G; 1)) (A;+D(Ej-1)) + 28548, - W(A;+Dp;]  (19)
where we solve for H; s0 (17) and (18) are equal. The solution is
W =2"(4;+D7 AL, (20)

which, when used in the last term of (19), gives

—1/z{(g,.—u,.J’(A,.+z>(¢j-uj)+2§;[Aj-Aj(I+Aj)"Aj1go}. 21)

Conditional on the value of & o We use (21) to get

Ee'““"z't-)"""‘*"""5-’= |I+AJ- I_5e—5§;2IAJ-AJ(I+A1)'1AJ]§. . (@2
Here the |7+A;| means the determinant of 7 + A -
The formula for ¢(2,{) can now be written
0(2,0) = Ee™% 55 ﬁl 1+4,* 23)
I
where
B(L) = 2_&1 [A;-A;T+A;)7"4,] . (24)
=

For short we will write B instead of B( L)
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Closed Form Representation for Infinite Product and Infinite
Sum

To express (23) is closed form we need to evaluate an infinite product
and an infinite sum. We do the infinite product first. The matrix
I + A; has eigenvalues of 1 with multiplicity one and 1 + (|| /n)? of
multiplicity 2. Therefore

IT I1+4;1™* = [T A+dgl/mi?) (25a)
Jj=1

Jj=1
= |¢|/sinh ] . (25b)

Now we turn our attention to finding B in closed form. We
evaluate B by rewriting (24) as

B=2%(4,-A2+A%-At+...) (262)
j=1

23 T (DML R)PUI-T /1L (26b)

Jj=1 k=1

= 2% (¢l /xj)? = - /1P (260
& e gy E- @8 /1T ¢
- 2

=25 &=l e ey (264)

j=1 J2+1C/nl?

i, (ta_ihﬁm _1) - /1. (26e)

The passage from (26d) to (26e) uses the following well known series
representation which appears in reference [20]

2lt/xl2 3 1 __led 27
C/ﬂ: j§1j2+|c'fn|2 tanhm ( )
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Expectation over g,

We use the same sort of trick to evaluate the last expectation as we
used to evaluate the previous expectation. Here the evaluation is
much easier since we have no need to complete the square. We get

Eei"§o-5‘-§;3§¢ = IB +I|—Ke-yaz’a+3)-lz (28)
From (26e)
4 ( Id ) 44
I+B= ] CI-&» 1 tanhlT] Tk (29)

It is straightforward verification to show

(I+B)! = ta“‘g' |I+(1—th|—c1l'g)(%)' (30)

This inverse has eigenvalues 1, with multiplicity one, and
|¢I"* tanh|¢| , with multiplicity two, so

|B+II"™ = [¢|"*tanh|]. (31)
Therefore
¢(z,0) =
_w/|optanhlgl  '0)' [ tanhZ|
le] . mble] er st (o)
Finally
—w]|ptanhltl D) [ tanhlg|
¢(z,0) = sech|lle 5[| " _EEF_(I ¢ )] (33)

3 Proof of the Theorem

3.1 Paring the Listed Variates

It is easy to see that if the theorem is true, it remains true for new
variates defined in terms of the original variates V; listed in the
theorem,
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f}j =a;V; +B; (o; and B; constants) . (34)

So if the theorem is true for either of the Ito or Stratonovich
interpretation, it is true for the other, since the difference in
interpretation amounts to a constant offset. The only terms sensitive
to the choice of interpretation, are the J'Wk(t)dwk(t) terms, and
since linear combinations of 1 and Wi (1), span both interpretations it

suffices to prove the theorem with Iol W, (t)dW (¢) omitted from the
variates listed in the theorem. For [#k, it follows from the
integration by parts formula

[ W,()dW,(8) = W, ()W, (1)- | W,(£)dW, ) (35)

that terms of the form |W,(¢)dW,(¢) can also be dropped from the
list. So it suffices to prove the theorem with all terms of the form
I W,(¢)dW , (t) with & > [ omitted from the list. It is therefore enough
to prove the theorem with only the 21 variates (W,(1) 1<k <3;
W (DW,(1) 1<I<sks<3; W) [W,()dt 1s<l, k<3
| W,(£)dW,(¢) 1< < k < 3) on the list.

Let V be a 21 dimensional random vector with each of the 21 listed
variates the sole occupant of one component. Let U be the 12
dimensional vector with the W,,(t)'l- W,(t)dt variates occupying the
first nine positions in the order (%,l)=(1,1), (1,2) --- (3,3) and the

Iol W, (¢)dW,(t) variates occupying the last three coordinates in the
order (&,l)=(2,3), (1,3), (1,2). We shall see that we can essentially
limit our consideration to U.

Before we show how to use U to complete the proof of the theorem
we need the following notation:

The twelve dimensional vector transform variate:

Z= (zll’zlzs --«:333,§23,C13 :Cza) (36a)

and random vectors, the first three dimensional, and the last two
infinite dimensional with all components i.i.d. standard normal:
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&0 = (&, &5, &o) (37b)
§=(§i:§§-§?s§;,§§s§g. ) (370)
n-= (ﬂ}:ﬂ?.ﬂisﬂ;,ﬂg,ﬂg: ) (37d)

Suppose, upon taking the two inner expectations on the right-
hand side of

E?Y = E, E;E % (38)
we have an equation of the form

EeZU - Et. eE.CE.Hr Eo+Y (39)

with the entries of the matrix C, the vector ¢, and the scalar y are
deterministic closed form expressions involving the transform
variables. Then the expectation in (39) can clearly be carried out to
express Ee‘fv in closed form. Consequently, the characteristic
function of V is also expressible in closed form. So we need only
establish the form of (39) and that C,c and y are expressible in closed
form. We refer to the exponent on the right-hand-side of (39) as a
quadratic form in £, (meaning second order and lower).

Expectation With Respect to

We proceed now to take the expectation with respect to n and then
with respect to &. To begin this process for 1, we look at iZU and use
(8) and the (p,q,r) cycle notation of Example II to express the n} term

r

. Tl [
z{ 2o (L, (6 ~2"E0)- L, (& -2 E0)

+ 24y B g ez ) 40)

Fors =1,2,3let
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£ 8 (& -2%ep)

JYe
i

IERGRH

z, & (2,,,29,,23,)

8’ 2 term in () in equation (40)
u, £2%2.8,

p* 2l pg +pg.

181

(41a)
(41b)
(41¢)
(41d)
(41e)

(41)

Using (41d), independence of the n j» and the characteristic function

formula for a univariate Gaussian we get

iy (e} +8]+8))

ZU _ i
Ee™” =E.e

_ ﬁ E ei(e}+e,'+e;)
n,

j=1

Jj=1
Working out this exponent in detail, we have
-1/2(2%/)72((8])* +(87)*+(8})%) =

2

-2 T {8 -G8 2t e)] -
{(p,q,r)}

~-1/2(2xj)"2 208942 _o E9EP
/ {@Er)] [CP &7 -25,85%

+ C:(Ef )2+2Cpéfur-2Cq§fu,+uf] '

IT exp-%(2n) 2 ((8})2 +(82)2+(8)?) .

(42a)

(42b)

(42¢)

(43a)

(43b)

(43¢)
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Expectation With Respect to &

To proceed with the proof that the form of E; E,e™" is as indicated in
(39), collect terms in (43c) that involve §; with j an arbitrary fixed
index strictly greater than zero. In carrying out the integration
required for taking the expectation with respect to §; the exponent of
the integrand is obtained by subtracting —1/ 2(5_.;1 §;) from (43c).
Employing A; from Example II, we rewrite the integrand exponent as

- 1/2{(§j—2“§o)'Aj(E_,j-2”§o) + E‘,;F;J +
(2rj)~ [2(3po—Cokas §1ls—CsMys oy —CiHo )'(gj—2%§o)]

+||.L/21tj|_2}. (44)
Let
a = 2({gny—Loms,Cyms—Lshy, Lok —Cinp) . (45)

We complete the square for (44) rewriting it as

-1/2{(8,-0,)" (4,+D;-0)-0j(4; +Da,

+ 2654 8o~ (2m)) 225 o' By +(2m)) 2 |u12} (46)

where ®; is defined to be the vector required for (44) and (46) to be
equal.
If we sum the last three terms in (46)

~1/2 3 [280A,8—-(2mj) 22" a'Eo +(27)) 2 [uE)P1 @7
j=1
it is evident that we obtain a closed form quadratic form in §,.
Summing the first term in (46) over j=1, 2, ... gives rise to a closed
form multiplier that does not depend on &, in the expression for the
characteristic function (just as in the examples).
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Checking for Closed Form

From the above paragraph, the only term we need to consider further
to see if it is a closed form quadratic form in &, is

~1/2% @(4;+Do, (48)
j=1

where the vector (0}, which gives equality between (44) and (46), is
©; = (2%, A;-%(2mj) 2’ (T+A,)". (49)
Writing out (46), with the ®; expression from (49) substituted, gives
(50)
i} z{(z"A_,.go- 1/22m) @)’ (T+4,07 (24,8, - 1/ 2(2x/) 2 t) }

Multiplying out, we get four terms in the brackets, two of which are
the same. The distinct terms are

285 A;(T+A)7'A (51a)

-2%(2mj) e’ (T +A;) A, &, =

-2%(2nj) Q' [I-(T+A,)"'1E, (51b)
1/4@2r)*a' T+A)™. (51c)

The middle equality comes from replacing A; by I +A;-I1. From
Example II, upon summing over j 2 1, expression (51a) leads to a
closed form expression.

Looking at (51b) and (51c) it is enough to check that the following
two matrices can be expressed in closed form

T (2nj) (I +A))! (52a)
Jj=1

and
> @r)T+A)" . (52b)

J=1
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A simple check shows

Crd) w——t e s 1 . (53)

T+t RiP T @A+ R

From (53), closed form for (52a) and (52b) turns on closed form for the
left-hand sides of

# - |
AC/mlP+®) =1/2ln/gP —5-|—|l -1 (54a)
(16/m0 4 mi (tanhC )

J=

s i 2t/ xl+2) = I/ CRI(n? /1 6)+1/ 2|7/ LI
=1

J

- (n/2)|n/CPeothlC] (54b)

T AT/l 2 = @/ 1L S G- R 427 . (Bde)
Jj=1 Jj=1
The right-hand side of (54a) comes from (27), which comes from

reference [20] as does (54b). Equation (54c) is just elementary
algebra. The right-hand side of (54c) is closed form from (54b) and

the result that f: ji~* = (x*/90) as given in reference [19].
j=1

4 Closing Remarks

By generalizing beyond the examples, we demonstrated that closed
form joint characteristic functions for certain Wiener functionals are
not just a fluke. No attempt was made to find a maximal list in the
statement of the theorem and we would be extremely surprised if the
list could not be greatly expanded. From [21], we see that the joint
characteristic function of W, (1), IW,,, (t)dt, |W2dt can be
expressed in closed form. While there are many ways to seek to
generalize the theorem, perhaps the next logical step is to check and
see if the theorem remains true if all random variables of the form
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[w,)de, [Wi)dt, [W,()dt[W,(t)at

are added to the list.
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