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Abstract

The literature on R&D races suggests that noncolluding firms invest excessively
in R&D. We show that this result depends critically on the winner-take-all as-
sumption. Although rents continue to be dissipated once the winner-take-all
assumption is relaxed because firms in general fail to provide the optimal R&D
effort, the mechanisms behind this rent dissipation change with the degree of
patent protection. We then illustrate how the patent system can be used to elicit
the optimal R&D effort.

1. Introduction

Do firms invest too little or too much in R&D? The literature on R&D races
suggests that noncolluding firms invest excessively in R&D (see Reinganum,
1989, for a survey). In this paper, we show that this result depends critically on
the so-called winner-take-all assumption that is typically made to facilitate the
welfare comparisons (e.g., Reinganum, 1981). According to this assumption, the
firm that wins the race is awarded a patent, whereas the others receive nothing.
The empirical evidence, however, suggests that patent protection is far from
perfect and that there are benefits to imitation (losing the R&D race) as well as
innovation (winning the R&D race) (e.g., Cohen et al., 2000). This casts serious
doubts on the winner-take-all assumption.

We show that once the winner-take-all assumption is relaxed, it no longer
can be ascertained that noncolluding firms invest excessively in R&D. In this
more realistic setting, rents continue to be dissipated because firms in general
fail to provide the optimal R&D effort. However, the mechanisms behind this
rent dissipation change with the degree of patent protection.

We use this insight to show how the patent system can be used to elicit the
optimal R&D effort. In particular, we show that, whether firms invest too much
or too little in R&D, it is always possible to replicate the planner’s solution by
offering the appropriate rewards to the participating firms.

The literature has long recognized that the degree of patent protection is a
crucial determinant of competitive behavior (e.g., Reinganum, 1982). Beath et
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al. (1989) show that whether a firm’s reaction function in an R&D race is up-
ward or downward sloping depends on the values of the firm’s reaction function
at zero (“profit incentive”) and at infinity (“competitive threat”). Our results
complement theirs in that we provide an alternative characterization of strate-
gic complements and substitutes in terms of the relative magnitude of the value
of continued play and the benefit to imitation. Going beyond Beath et al. (1989),
we also draw the comparison between noncooperative equilibrium and collusive
outcome.

The remainder of this paper is organized as follows. Section 2 devel-
ops a standard R&D race model (Lee and Wilde, 1980; Reinganum, 1981;
Reinganum, 1982). Section 3 characterizes the noncooperative equilibrium, Sec-
tion 4 the collusive outcome. Section 5 discusses the driving forces underlying
rent dissipation. The policy implications are discussed in Section 6. Section 7
concludes. All proofs are relegated to the Appendix.

2. Model

Consider an R&D race in which two identical firms are simultaneously seeking
a particular innovation. Firms compete to be the first to make the discovery. The
date of a successful innovation is assumed to be random and influenced by firms’
R&D efforts. Time is continuous and the horizon is infinite.

Let τi be the random date of a successful innovation by firm i. Following the
literature, we assume that the distribution of τi is

Pr(τi � t) = 1 − e−λui t , λ � 0.

It follows that firm i’s hazard rate of successful innovation is hi = λui .1

The firm which makes the innovation first is awarded a patent of positive
value P > 0, whereas its rival receives nothing if patent protection is assumed
to be perfect. This is the winner-take-all assumption that is typically made by
the existing literature. On the other hand, if patent protection is imperfect as
the empirical evidence suggests (e.g., Cohen et al., 2000), the loser receives a
positive payoff P , where P > P > 0. P is understood to be the expected
net present value of all future revenues from marketing the innovation net of any
costs the firm incurs in doing so. Similarly P is the expected net present value of
the all future cash flows including costs of imitation. Hence, P and P implicitly
depend on the length and breadth of patent protection and the particulars of
product market competition (as modeled in Denicolo, 1996, see also Klemperer,
1990; Gallini, 1992, and Matutes et al., 1996).

To simplify the notation, we focus on firm 1 in what follows. The derivations
for firm 2 are analogous. Let V1 denote the expected value of the race to firm 1.

1 Doraszelski (2003) considers alternative distributions of success times.
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It is implicitly given by

rV1 = max
u1�0

h1(P − V1) + h2(P − V1) − c(u1),

where r > 0 is the interest rate and the cost incurred to exert R&D effort u1 is
c(u1) = 1

η
u

η
1. The parameter η > 1 measures the elasticity of the cost function.

The expected value V1 can be interpreted as the asset or option value to firm 1 of
participating in the race. This option is priced by requiring that the opportunity
cost of holding it, rV1, equals the current cash flow, −c(u1), plus the expected
capital gain or loss flow. The latter is composed of two parts, namely the capital
gain from winning the race, P −V1, times the likelihood of doing so, h1, and the
capital loss from losing the race, P − V1, times the likelihood of doing so, h2.

Differentiating the above equation yields the FOC for an interior solution
u∗

1 > 0. Solving gives

u∗
1 = (

λ(P − V1)
) 1

η−1 .

Since the objective function is strictly concave due to η > 1, the FOC is also
sufficient for an interior solution.

3. Noncooperative equilibrium

Since firms are identical, we focus on symmetric Nash equilibria. Hence, V1 =
V2 = V and u∗

1 = u∗
2 = u∗. The following proposition establishes the existence

of a unique symmetric Nash equilibrium.

PROPOSITION 1. There exists a unique symmetric Nash equilibrium with 0 <

V < P characterized by

(1)0 = λu∗(P + P) − 1

η
(u∗)η − (r + 2λu∗)V ,

where

(2)u∗ = (
λ(P − V )

) 1
η−1 .

There is a slight difference between our model and the one analyzed by Rein-
ganum (1981, 1982). In her model, equilibrium strategies depend on time for two
reasons. First, there is an exogenously given terminal date at which all competi-
tion ceases. Second, the costs of knowledge acquisition are discounted over time
whereas the benefits accruing from innovation are not. Proposition 1 shows that
if Reinganum’s (1981, 1982) model is modified by discounting the benefits as
well as the costs and if it is given an infinite horizon to eliminate end effects,
then firms do not alter their R&D efforts over time (similar to Lee and Wilde’s,
1980 model). Eliminating this somewhat artificial time dependency simplifies
the characterization of the equilibrium and, in effect, enables us to obtain novel
insights into the welfare properties of R&D races.



6 U. Doraszelski

4. Collusive outcome

We study the welfare implications of our R&D race model by comparing the
outcome of the noncooperative game to the collusive solution. The colluding
firms strive to maximize the expected value W of making the discovery and
receiving Q = P + P , which is implicitly given by

rW = max
u1�0,u2�0

(h1 + h2)(Q − W) − c(u1) − c(u2).

Carrying out the indicated maximization yields

u∗∗
1 = u∗∗

2 = u∗∗ = (
λ(Q − W)

) 1
η−1 .

As in the case of the noncooperative game, we establish the existence of a
unique solution.

PROPOSITION 2. There exists a unique solution with 0 < W < Q character-
ized by

(3)0 = 2λu∗∗Q − 2

η
(u∗∗)η − (r + 2λu∗∗)W,

where

(4)u∗∗ = (
λ(Q − W)

) 1
η−1 .

The collusive solution is a special case of the planner’s solution in which a
planning authority strives to maximize the benefits of the innovation to society.
The difference is that in the planner’s solution the social benefits Q need not be
equal to the private benefits P + P .

It has long been argued that, from society’s point of view, Q > P +P for sev-
eral reasons. First, an important part of the value of an innovation are the benefits
accruing to consumers. Second, R&D generates knowledge. This knowledge is
valuable to the extent that it leads to spillovers across time or firms. For exam-
ple, a firm’s current R&D efforts may help it in making other discoveries in the
future, or they may benefit firms in other industries that are engaged in similar
R&D projects. Both consumer surplus and spillovers are neglected in P +P . In-
deed, based on case studies of 17 industrial innovations, Mansfield et al. (1977)
estimate a median social rate of return of 56% compared to a median private rate
of return of 25%.

More recent evidence suggests that patent races reflect excessive patenting
from a social perspective. In particular, the building of patent fences around
some core innovation and the amassing of large patent portfolios are indicative
of socially wasteful investment in R&D. Patent fences may not only preclude
innovations that substitute for the core innovation but also innovations that im-
prove upon it (see Scotchmer, 1991, for evidence and Scotchmer, 1996, and
Denicolo, 2000, for models along this line). Similarly, the amassing of large
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patent portfolios may impede entry into the industry and the spur to innova-
tive activity that usually accompanies it (Cohen et al., 2000). This suggests that
Q < P + P .

In the next section, we focus on the special case where social and private
benefits are equal (Q = P +P ), and study the welfare implications of our R&D
race model. In Section 6 we turn to the general case (Q �= P + P ).

5. Rent dissipation

If firms behave noncooperatively, then there is in general a misallocation of
resources. In particular, since the colluding firms maximize the sum of the in-
dividual payoffs and are free to replicate the noncooperative outcome, the value
of the race to the colluding firms must be at least as big as the combined value
of the race to firms 1 and 2, i.e., 2V � W . The reason for this rent dissipation,
however, depends critically on the degree of patent protection.

To illustrate this, we provide two numerical examples. Our first example illus-
trates a winner-take-all situation in which the winning firm is awarded a patent
of positive value whereas the losing firm receives nothing, P = 0.23 and P = 0.
The remaining parameter values are λ = 1, r = 0.05, and η = 2. This ensures
that the expected duration of the race is three years. Using Propositions 1 and 2
we obtain 2V = 0.1282 < 0.1455 = W . The reason for this rent dissipation is
that u∗ = 0.1667 > 0.0853 = u∗∗, i.e., each firm invests excessively in R&D.
Since the two firms compete for the same discovery, each additional dollar in-
vested in R&D brings a firm closer to winning the race and, at the same time,
brings its rival closer to losing the race. Hence, its R&D efforts impose a neg-
ative externality on its rival, and the firm consequently invests excessively in
R&D.

Our second example illustrates the polar case in which the loser can costlessly
and immediately imitate the winner and thus both firms receive the same payoff,
P = P = 0.23. There is again rent dissipation (2V = 0.3163 < 0.3326 = W ),
but the reason is now that firms invest too little in R&D: u∗ = 0.0726 <

0.1290 = u∗∗. In contrast to a winner-take-all situation, each additional dol-
lar invested in R&D brings both firms closer to the finish line. Hence, a firm’s
R&D efforts impose a positive externality on its rivals, which causes the firm to
underinvest in R&D.

To clarify the distinction between the two scenarios, let u∗ denote firm 1’s
equilibrium strategy and let u denote an arbitrary strategy for firm 2. Then Equa-
tions (1) and (2) can be rewritten as

0 = λu∗P + λuP − 1

η
(u∗)η − (r + λu∗ + λu)V,

0 = λ(P − V ) − (u∗)η−1.

Total differentiation yields

dV

du
= λ(P − V )

r + λu∗ + λu
,
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du∗

du
= −λ2(P − V )

(η − 1)(u∗)η−2(r + λu∗ + λu)
.

Hence, P < V if and only if dV
du

< 0 if and only if du∗
du

> 0. That is, if
P < V , then reaction functions are upward sloping and firms’ R&D efforts are
strategic complements. On the other hand, if P > V , then reaction functions are
downward sloping and firms’ R&D efforts are strategic substitutes. It follows
that a firm’s R&D efforts impose a negative externality on its rival whenever
P < V and a positive externality whenever P > V . In other words, depending
on whether or not the benefit to imitation P is less than the value of continued
play V , the character of the R&D race changes from a preemption game into a
waiting game. If patent protection is perfect and thus P = 0, then the R&D race
always has the character of a preemption game, whereas if imitation is costless
and immediate and thus P = P , then the R&D race always has the character
of a waiting game. Finally, if 0 < P < P , then the preemption as well as the
waiting incentive is operative.

The following proposition formally shows that there is indeed overinvestment
(underinvestment) in R&D if and only if a firm’s R&D efforts impose a negative
externality (positive externality) on its rival.

PROPOSITION 3. Let Q = P + P . Then u∗ ≷ u∗∗ if and only if V ≷ P .

It follows that P = 0 (P = P ) implies u∗ > u∗∗ (u∗ < u∗∗). Hence, a suffi-
cient condition for overinvestment (underinvestment) is that patent protection is
perfect (imitation is costless and immediate).

6. Policy implications

In this section, we study the policy implications of our R&D race model. Propo-
sition 4 shows that a planning authority can always redistribute (part of) the
social benefits of an innovation Q to replicate the planner’s solution. That is, the
planning authority can always choose rewards P and P with P + P < Q that
elicit the optimal R&D effort. Note that while we think of P and P as being im-
plicitly determined by the patent system, choosing rewards is clearly tantamount
to assigning property rights (as analyzed in Mortensen, 1982). To emphasize the
dependence of the value and policy functions on the offered rewards, we write
V (P , P ) and u∗(P , P ) in what follows.

PROPOSITION 4. Given Q there exist P and P with P + P < Q such that
u∗(P , P ) = u∗∗.

In the remainder of this section, we provide a numerical example to show
that there is in general more than one combination of P and P that leads to
the optimal R&D effort. This enables the social planner to influence the firms’
valuation of participating in the R&D race. We set Q = 0.23 and, for purposes
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Figure 1. Replicating the planner’s solution.

W and u∗∗ refer to the planner’s solution (dashed line), V and u∗ to the noncooperative game in
the absence of a social planner (dotted line). V (P, p) and u∗(P, p) are as defined in the text with
P = P and p = P (solid line).

of comparison, P = Q and P = 0. By Proposition 3 this leads to overinvestment
in R&D. As the right panel of Figure 1 shows we can achieve u∗(P , P ) = u∗∗
for any P and P such that P = 0.1122 + 0.6304P . As the left panel shows
V (P , P ) ranges from 0.0269 at (0.1122, 0) over 0.0727 at (0.1580, 0.0727) to
0.1455 at (0.23, 0.1881). Consequently, the social planner is free to choose the
rewards to make firms either worse or better off than in the absence of a planning
authority (V = 0.0641).

7. Conclusions

The literature on R&D races suggests that noncolluding firms invest excessively
in R&D. We show that this result depends critically on the winner-take-all as-
sumption. Once the winner-take-all assumption is relaxed, it no longer can be
ascertained that noncolluding firms always invest excessively in R&D. On the
contrary, firms sometimes invest too little in R&D. We show that although rents
continue to be dissipated because firms in general fail to provide the optimal
R&D effort, the mechanisms behind this rent dissipation change with the degree
of patent protection: As patent protection becomes less effective, the character
of the R&D race changes from a preemption game with overinvestment into a
waiting game with underinvestment in R&D.

Our results allow us to illustrate how the patent system can be used to elicit
the optimal R&D effort. Starting from perfect patent protection in which the
winner-take-all assumption is warranted, the misallocation of resources in the
noncooperative game can be reduced by reducing the asymmetry in the rewards
to winning and losing the R&D race. One way to accomplish this is to partially
insure the participating firms against losing the R&D race, e.g., by making patent
protection less than perfect. Another way is to “throw money” at all participating
firms. In either case reducing the asymmetry in the rewards reduces the negative
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externality stemming from firms’ R&D efforts. This in turn moves the R&D race
away from a preemption game and overinvestment towards a waiting game and
underinvestment in R&D.
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Appendix

PROOF OF PROPOSITION 1. Equations (1) and (2) follow from symmetry. Sub-
stitute Equation (2) into (1) to define

Δ(V ) = (
λ(P − V )

) η
η−1

(
1 − 1

η

)
+ λ

(
λ(P − V )

) 1
η−1 (P − V ) − rV .

At V = P , we have

Δ(P ) = −rP < 0.

At V = 0, we have

Δ(0) = (λP )
η

η−1

(
1 − 1

η

)
+ λ(λP )

1
η−1 P > 0

since η > 1. Since Δ(V ) is continuous in V , there exists a solution to Δ(V ) = 0
by the intermediate value theorem.

It remains to establish uniqueness of the solution. We have

Δ′(V ) = −2λ
(
λ(P − V )

) 1
η−1 − λ2

η − 1

(
λ(P − V )

) 2−η
η−1 (P − V ) − r,

Δ′′(V ) = 3λ2

η − 1

(
λ(P − V )

) 2−η
η−1 + λ3(2 − η)

(η − 1)2

(
λ(P − V )

) 3−2η
η−1 (P − V ).

Rearranging yields

Δ′′(V ) = λ2

η − 1

(
λ(P − V )

) 2−η
η−1

(
3 + 2 − η

η − 1

P − V

P − V

)
.

Note that the term in parenthesis governs the sign of Δ′′(V ). Differentiating it
yields

−2 − η

η − 1

P − P

(P − V )2
,

which is nonnegative if η � 2 and nonpositive if 1 < η < 2. Consider the case
of η � 2 first. Then the term in parenthesis is nondecreasing in V and achieves
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its minimum of

3 + 2 − η

η − 1

P

P
� 2

at V = 0, where the last inequality uses the facts that 0 � P

P
� 1 and −1 �

2−η
η−1 � 0 whenever η � 2. Hence, Δ′′(V ) � 0 and the claim follows. Consider

the case of 1 < η < 2 next. Then the term in parenthesis is nonincreasing in V ,
achieves its maximum of

3 + 2 − η

η − 1

P

P
� 3

at V = 0, and approaches −∞ as V approaches P . By continuity it follows that
Δ′′(V ) � 0 around V = 0 and Δ′′(V ) � 0 around V = P . Since the term in
parenthesis changes sign at most once, so does Δ′′(V ), and the claim follows. �

PROOF OF PROPOSITION 2. Equations (3) and (4) follow from symmetry. De-
fine

Δ(W) = 2
(
λ(Q − W)

) η
η−1

(
1 − 1

η

)
− rW.

At W = Q, we have

Δ(Q) = −rQ < 0.

At W = 0, we have

Δ(0) = 2(λQ)
η

η−1

(
1 − 1

η

)
> 0

since η > 1. Since Δ(W) is continuous in W , there exists a solution to Δ(W) =
0 by the intermediate value theorem. Uniqueness of the solution follows from
noting that Δ(W) is decreasing in W . �

PROOF OF PROPOSITION 3. We have u∗ = (λ(P − V ))
1

η−1 ≷ (λ(P + P −
W))

1
η−1 = u∗∗ if and only if W ≷ V + P . From the proofs of Propositions 1

and 2, we know that the solution to the noncooperative game and to the planner’s
problem are characterized by the zeros of

ΔV (V ) = (
λ(P − V )

) η
η−1

(
1 − 1

η

)
+ λ

(
λ(P − V )

) 1
η−1 (P − V ) − rV

and

ΔW(W) = 2
(
λ
(
(P + P ) − W

)) η
η−1

(
1 − 1

η

)
− rW,
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respectively. Let V solve ΔV (V ) = 0 and consider W = V + P as a candidate
solution to ΔW(W) = 0. Rewriting yields

ΔW(V + P) = 2ΔV (V ) + (
r + 2λ

(
λ(P − V )

) 1
η−1

)
(V − P).

Since ΔV (V ) = 0, ΔW(V + P) ≷ 0 if and only if V ≷ P . Since ΔW(W) is
decreasing, this implies that the actual solution to ΔW(W) = 0 satisfies W ≷
V + P if and only if V ≷ P . �

PROOF OF PROPOSITION 4. Set P = 0. Hence, 0 � P � Q. We have
V (0, 0) = 0 and u∗(0, 0) = 0 � u∗∗. Since the value of the race to the
planner exceeds the combined value of the race to firms 1 and 2 whenever
Q = P + P , we have 2V (Q, 0) � W which, in conjunction with 0 < V (Q, 0),
gives V (Q, 0) < W . We therefore have Q−V (Q, 0) > Q−W and u∗(Q, 0) =
(λ(Q − V (Q, 0)))

1
η−1 > (λ(Q − W))

1
η−1 = u∗∗. Since u∗(P , 0) is continuous

in P , there exists a solution to u∗(P , 0) = u∗∗ by the intermediate value theo-
rem. �
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