The Convex Hull Relaxation for
Nonlinear Integer Programs
With
Linear Constraints

By

Aykut Ahlatcioglu
and
Monique Guignard®

OPIM Department

The Wharton School
University of Pennsylvania

Draft
20 September 2007

Do not quote without the authors’ permission

! Research partially supported under NSF Grant DMI-0400155.

1

1. INTRODUCTION

In this paper we introduce a relaxation method for computing both a lower bound on the
optimal value of a nonlinear integer minimization program (NLIP), and good integer feasible
solutions. For a linear integer program (LIP), an optimal integer solution is also optimal over the
convex hull of all integer feasible solutions, but this is not usually the case for NLIPs. Rather, the
minimization over this convex hull yields a relaxation of the NLIP, which we will call the Convex Hull
(CH) Relaxation. While we define this relaxation for arbitrary NLIPs, for computational reasons, we
restrict our attention to convex minimization problems with linear constraints, and we show that the
lower bound can then be computed using any version of simplicial decomposition, with sub-
problems that have the same constraints as the NLIP, but with linear objective functions. If these are
easier to solve than their nonlinear counterpart, as would be the case for instance for nonlinear 0-1
knapsack problems, the bound may be tight and relatively inexpensive to compute.

A byproduct of this procedure is the generation of feasible integer points, which provide a tight
upper bound to the optimal value of the problem. Indeed since no constraints are relaxed, any
integer solution generated while solving a linear integer problem is also an integer feasible solution
to the original nonlinear problem. Thus, unlike Lagrangean or primal relaxations, CHR provides
integer feasible solutions at no extra cost. From our numerical experiments, these solutions tend to
be of excellent quality.

What makes this relaxation very special is that contrary to Lagrangean relaxation (Held and Karp,
1970, 1971) or to primal relaxation (Guignard, 1994, 2003 (p. 183-185)), of which it is an extreme
case, this relaxation does not dualize or treat separately any constraints. While for nonlinear integer
problems, it cannot be directly compared with Lagrangean relaxation, it always provides a bound at
least as good as any primal relaxation. However, if (1) the linear subproblems are difficult to solve,
(2) the objective function is nonconvex, and/or (3) there are nonlinear constraints, then one should
consider using a primal relaxation instead. In other cases, this new approach appears very attractive.

In the paper, we first define the CH relaxation (CHR) in section 2, analyze the application of
simplicial decomposition to the CHR problem in section 3, give details on the algorithm in section 4,
discuss the computation of upper and lower bounds on the optimal value in section 5, and describe
the application of the approach to convex quadratic knapsack problems in section 6. The remaining
sections present the computational results.

2. PRELIMINARIES AND NOTATION

The problem which will be investigated will be the following nonlinear integer program

(NLIP)
(NLIP) min f(x)
s.t.
Ax=b
XxeY
where

f(x) is a nonlinear convex function of x, a vector pf Rn,
A is an mxn constraint matrix,
b is a resource vector in R™,

Y is a subset of R*n specifying integrality restrictions on X.

Definition 1

We define the Convex Hull Relaxation of (NLIP) to be

(CHR) min f(x)
s.t x€ECofAx=b,x€Y]}

The problem (CHR) is not in general equivalent to (NLIP) when f(x) is nonlinear, because an

optimal solution of (CHR) may not be integer, and therefore not feasible for (NLIP). However, it is
easy to see that (CHR) is indeed a relaxation to (NLIP), as

(1) {xeY|Ax<b}c Co{xeY|Ax<b}
(11) Zegr(®) = zyup(x) = f(x), YxE{Ax = b,xEY]}

This relaxation is a primal relaxation, in the x-space, and it is an extreme case of the primal
relaxation for nonlinear integer problems introduced in Guignard (1994). It is actually a primal
relaxation that does not “relax” any constraint.

The difficulty in solving (CHR) comes from the implicit formulation of the convex hull.
However the idea of decomposing the problem into a sub-problem and a master-problem, first
introduced by Frank & Wolfe (1956), and furthered by Von Hohenbalken with Simplicial
Decomposition (1973), and Hearn et al. with Restricted Simplicial Decomposition (1987), provides an
efficient way of solving (CHR) to optimality, by solving a sequence of linear integer problems and of
nonlinear problems over a simplex. Primal relaxations that also relax constraints require a more
complicated scheme, such as that described in Contesse and Guignard (1995, 2007) and Ahn,
Contesse and Guignard (1998, 2006), which use an augmented Lagrangean approach, with simplicial
decomposition used at each iteration. By contrast, here, due to the absence of relaxed constraints,
only one call to simplicial decomposition is needed.

3. APPLYING SIMPLICIAL DECOMPOSITION TO THE CHR PROBLEM

3.1 Assumptions

There are several assumptions that must be imposed on the (NIP) formulation in order for
the simplicial decomposition technique to effectively solve (CHR) to optimality. These are:

(i) Compactness and convexity of the feasible region

Compactness and convexity of the feasible region allows writing any element in the feasible
space as a convex combination of its extreme points. However, it is not hard to relax the
bounded assumption using extreme rays’.

(ii) Convexity of the objective function

Simplicial decomposition guarantees convergence to a local minimum. However, a local
minimum is not necessarily a lower bound for the optimal value of (NLIP). Convergence of
the global minimum is ensured if the function is taken to be pseudo-convex.’ In this paper,
we will assume that objective functions are convex, or made convex via convexification.

(iii) Linearity of the constraint set.

Although the objective function can be nonlinear, we cannot at this point allow nonlinear
constraints.

3.2 Subproblem

The first part of the decomposition problem is the sub-problem, and can also be viewed as a
feasible descent direction finding problem.* Assume we are at a feasible point of (CHR), call it xK,
For the k™ iteration of simplicial decomposition, we must find a feasible descent direction
for CofAx = b, x € X}, a polyhedron, by solving the following problem

)" x (y—x¥)

(CHS) Min, Vf(x¥) x (3
s.t.

xECofAx = b, xEY]}

We will call this the Convex Hull Sub-problem (CHS). Note that CHS is a linear program.
Therefore, unlike in nonlinear programming, (CHS) has an equivalent integer program, which we will
call the Integer Programmming Subproblem (IPS)

(1PS) Min, VE(x¥)" x (y — x¥)

? See, for instance, Section 6.3 of Hearn et al.(1987)
® For further discussion on pseudo-convexity see, for instance, Bazaraa et al.(1979) p. 106 and seq.
* For further discussion on feasible directions see, for instance, Bertsekas (2003) p.214 and seq.

Solving (IPS), for many types of integer programming problems is considerably easier
compared with solving (NLIP). The solution to (IPS) is an extreme point of the convex hull, unless xK
is optimal for the convex hull relaxation (CHR) problem. Therefore, at each iteration we obtain a
feasible point to the original (NLIP) problem. Convergence to the optimal solution will be discussed in

section IV. If x¥is not optimal, we proceed to the master problem.

3.3 Master Problem

Consider the following nonlinear programming problem with one simple constraint, which
we call the Master Problem (MP).

(MP) Min. fl\ﬁ)
Z Bi=1
1

r
1=

Bp=0i=1,..r

s t.

Xis the n X r matrix comprised of a subset of extreme points of the convex hull, along with one of

the current iterates x¥

or a past iterate. There are I' such points in X. Note that in the hypothetical
case where we know all the extreme points of the convex hull (MP) would have been equivalent to
(CHR). Naturally, if the method required such equivalence, there would be no point in using it to
solve (CHR). Luckily, any point within a convex hull of a set can be described as a convex combination

of at most n + 1 points within that set, a result of Caratheodory Theorem®. Therefore, the optimal

point can be written as a convex combination of a subset of extreme points. Simplicial decomposition
takes advantage of this observation, introducing only one extreme point obtained from the
subproblem per iteration. Then at the master problem stage, (MP) is solved, which is a minimization

problem over ar — 1 dimensional simplex. If the optimal solution of (CHR) is within this simplex,
then the algorithm terminates. If not, the optimal solution of (MP) will be the next iterate, xkH

which can be found using the following formula:

r
xkH = Z Bl XX
I=1

Then we go back to the subproblem, find another extreme point and increase the dimension
of the simplex for (MP).It may seem as if a considerable number of extreme points have to be
included in X, before finding the optimal solution. Fortunately, this is not the case, as will be shown

> For further discussion on Caratheodory Theorem see, for instance, Bazaraa (1979) p.37 and seq.

5

at section 8. This can be perhaps explained by the way extreme points are introduced to the X
matrix. At each sub-problem, the extreme point chosen ¥ ™ is the one which yields the steepest
descent direction as Vf(:xk) X (\ - xk) is minimal among all such directions. Therefore at each

iteration, we are quickly progressing toward the optimal solution, in contrast what would happen if
extreme points were to be chosen arbitrarily.

For some pathological cases, putting no restriction on r could potentially pose computational
problems. Restricted simplicial decomposition, introduced by Hearn et al. (1987) puts a restriction on
the number of extreme points which can be kept. However, even for such pathological cases, there
are certain trade-offs between restricted simplicial decomposition and unrestricted simplicial
decomposition. Discussing these tradeoffs is beyond the scope of this paper.

3.4 Convergence to the Optimal Solution of CHR

Because the objective function is convex, the necessary and sufficient optimality condition
for x* to be the global minimum is®,

vi(xk) (v —xK) =0

Lemma 2 of Hearn et.al (1987) proves that if x¥is not optimal, then f(xk"'i) < f(xk), o)
that the sequence {xk} is monotonically decreasing.Finally Lemma 3 of Hearn et al. (1987) shows
that any convergent subsequence of {xk} will converge to the global minimum. The result is proved

using contradiction that one cannot have a subsequence such that
Vi(x=)(y*=—x*) = 0 where x¥ = x=,y¥ = y=

4. ALGORITHM

The algorithm used in this study follows the restricted simplicial decomposition (Hearn et al.
1987). The parameter R denotes the maximum number of extreme points allowed to be used in
solving the master problem. In the test runs done for this paper, the number of extreme points
stored in the matrix X was manageable, so that we put no limit on R, making the algorithm below
equivalent to the unrestricted simplicial decomposition method of von Hohenbalken (1977) ’. The
stopping condition for the algorithm is taken from Contesse & Guignard (2007).

Note that in this notation:

(1) [Ws]k is the collection of extreme points stored at iteration k,

(2) [W,I¥stores at most one point. It could be empty, a current iterate or a past

iterate.

Then,with this notation the master problem introduced in section 3.3 will be:

® For proof see, for instance, Bertsekas(2003) p.194

” The original name of the method is ‘Simplicial Decomposition’, but in this paper | will call it ‘Unrestricted
Simplicial Decomposition’ to differentiate it from the ‘Restricted Simplicial Decomposition’

6

Min. f(XB)
s t.

r
Z B=1
i=1

B=0l1=1,..,r
X = [wlku [W,.]k = [w]k

An important point to note is that we discard those points within [W.]¥** and [W,]*** with
B1 = 0 after solving the master problem. This prevents an excessive increase in the number of

extreme points stored in [W_]¥*1,
Step 0: Take a feasible point x°. Set k = 0, [W.]° = 0, [W,]° = {x°}

Step 1: Solve min{Vf(xk)y: vV E S} and let y¥ = argmin{Vf(xk)y:y € S}.

@ I [[W.¥| < R, set [W,]<*t = [W,]xU {y*}, and [W,]J<*t = [W,]
If, | [WJ| = R,
(ii) take the element of [W.]¥ with the minimal weight out and put y¥ in instead to obtain

[W.]%*2, and let [W, J**1 = {x*} Set Wk*1 = [W,]*** U [W,]**%,and go to step 2
e X e X g p
Step 2: Let x¥*1 = argmin{f(x):x € H(W¥*1)} and write x**1 as xk*1 = T}, By W,

Then take all elements with weight B; = 0 out of [W]¥*1.Set k = k + 1 and go to step 1.

Step 3: If [x¥— x*1| < g, x max{|x¥|,[x*71|} or [f(x¥) — f(xk)| < g¢ x |fxF)] xXis a

solution , then terminate. Otherwise, go to step 1.

5. CALCULATING LOWER AND UPPER BOUNDS

As stated in Definition 1, (CHR) is a relaxation to the (NLIP). Simplicial Decomposition finds
an optimal solution, say, X*, to (CHR), and this provides a lower bound on v(NLIP):

LBcyg = f(x*)

On the other hand, at each iteration k of the subproblem an extreme point of the convex hull is
found , which is an integer feasible point of (NLIP). Each point yy, yields an Upper Bound (UB) to the

optimal value of the (NLIP), and the best upper bound on v(NLIP) can be computed as
UBcyug = Min {f(y}),f(y7), ..., ()}

6. APPLICATION OF CHR METHOD TO CONVEX QUADRATIC ANTI-
KNAPSACK PROBLEMS

As an example problem we implemented CHR to find a lower bound on the optimal value of
guadratic anti-knapsack problems. The Quadratic Anti-Knapsack Problem (QKP) is as follows:

n n n
(NLIP) Min.Zdi X +ZZ Ciir* Xj " Xjr
i i i

s t.

Zai-xi =b

i

x €{0,1} Vi

where

d; is the linear cost incurred by selecting item 1.
Ciir is the quadratic cost incurred by selecting items iand i’ concurrently.
a; is the space filled if item iis selected.

b is the total minimum space needed to be filled in the knapsack.

Following the discussion above, the Convex Hull Relaxation (CHR), its subproblem (IPS) and
its master problem (MP) will be as follows:

n n n
(CHR) Min.Zdi X + ZZ Ciir® Xj " Xjr
i i 1

s. t

n
xECo{Zai-xﬁ_’b,xE BE}

i

r M n n E
(IPS) Min. (Z di + Z Z Ciir + Ciri) ¥
-1 i1 .

s t.

Zai-yifjb

i

v; €{0,1} vi
(MP) Min.Zdi-(X}'Bl)*”zzcm'(S‘qlBI)(X}"BI)
i V=1 ; i 1=1 /N)

s t.

We can calculate the next iterate, using the following formula:

r
Xg+1 = Z By - x!
=1

7. GENERATION OF THE DATA

As noted previously, the objective function needs to be taken convex, for the CHR method to
produce a lower bound for the (NLIP) problem. To come up with convex objective functions for
(QKP), we used the following fact which enables us to produce positive definite matrices.

FACT 1

Assume we have the following matrices at hand:

(i) Ann X ndiagonal matrix D with positive entries, hence positive definite
(ii) An 1 X m matrix A with rank m, where n = m

Then C = AT -D- Ais positive definite. (Proof at section 10.2 Appendix B)

Then it is not hard to generate positive definite matrices using the random number generator
(RNG) installed in GAMS for the nonlinear part of the objective function represented
by Xi XiCiir - X X' . Similarly, data for the linear part of the objective function and the constraint

vector are generated through RNG. The elements of the matrix C is populated
around [55000,90000], d; is uniformly distributed on [30000,100000] and a; is uniformly
distributed on [15000,75000].

The runs have been made for 100, 200 and 400 decision variables, which are items in this
problem. For each of these, the right hand side denoted by b is changed to observe how the capacity
of the knapsack influences the performance of the CHR method. Five different values of b are tried
and represented by case | through case V. Case | represents the knapsack with minimum capacity,
and Case V represents the maximum. One should note that ¥,;a; , the total space filled if all items
were taken into the knapsack, increase in proportion to the number of variables. Therefore for each
case to represent the equivalent effect, values for b are set in proportion to the number of items.
These values can be seen in Table 1 below.?

Table 1- b values for different cases

No. of Case l Case Il Case lll Case IV Case V

variables

® For a more detailed account of the results, see Section 10.1 Appendix A.

9

100 5000 125,000 500,000 1,250,000 2,500,000
200 10000 250,000 1,000,000 2,500,000 5,000,000
400 20000 500,000 2,000,000 5,000,000 10,000,000

The problem is run using the CHR method, as well as built-in MINLP solvers of GAMS, namely
CPLEX and AlphaECP. At the end comparisons are made for their performances. Results below are

obtained using GAMS 2.25 on Dell OptiPlex745.

8. DISCUSSION OF THE RESULTS

8.1 Improvement Over the Continuous Bound

The improvement over the

continuous bound provided by CHR bound is very high, when introduction of one item is
sufficient to satisfy the knapsack constraint. (Case I). This is expected, and therefore not
taken into consideration when calculating the percentage improvement values below. Table

1 below shows percentage improvements for all the 15 instances.

Table 1- % Improvement over the continuous bound

Casel Casel ll Case lll Case IV CaseV
% 100 3310 13.6 12.1 24.5 53.2
©
E 200 1392 19.4 0.25 2.00 0.14
§ 400 537 1.24 0.19 0.30 0.06

One could talk of decrease of percentage improvement as number of variables increase. The
only exception to this is at case Il. On the other hand, it is hard to extract a similar strong relation

between the knapsack capacity and percentage improvement. Excluding case |, average percentage

improvement for the remaining 12 runs is:
% Improvement = 10.57 %
8.2 Gap Between the CHR Lower Bound and the Optimal Value

The CHR bound provides a remarkably tight bound for the optimal value. Table 2 shows that
calculating the CHR bound could indeed be useful in providing a tighter lower bound compared to
the one obtained through continuous relaxation (Compare with Table 1).

Table 2- % Gap between the CHR lower bound and the optimal value

Case | Case ll Case Il Case IV Case V

100 9.41 4.94 0.70 0.12 ~0

No. of
Variable

10

200 14.9 2.64 0.05 0.03 ~0

400 13.7 1.29 0.09 ~0 ~0

Excluding case |, average gap between CHR bound and the optimal value is
% Gap = 0.82%
We see that as we require more variables to get into the knapsack (note the decrease from case | to
case V), the gap closes up.
8.3 Gap Between the CHR Upper Bound and the Optimal Value

The CHR upperbound also provides a very tight bound for the optimal value. In fact, for most
of the instances we tried, it returned the optimal solution. However to verify this remarkable
strength of the upper bound, there is need for testing the algorithm for other type of problems,
especially those known to be difficult to solve to optimality.

Table 3- % Gap between the CHR Upper Bound and the optimal value

Case | Case ll Case lll Case IV CaseV
% 100 0.0 0.0 0.0 0.0 0.0
©
E 200 0.0 0.12 0.0 0.0 0.0
§ 400 0.0 0.0* 0.0 0.0 0.0

8.4 Run Time and Reliability of the CHR Method

As important as obtaining tight bounds, is the cost of obtaining that bound, as well as the
reliability of the bound or the optimal value obtained. The obvious measure of cost is the CPU time it
takes for the algorithm to converge and return upper and lower bounds, and how this compares with
the existing MINLP solvers in GAMS. Reliability can be measured whether the algorithm is able to
turn in a bound or an optimal solution for all instances with precision in a reasonable amount of
time. Table 3 below shows CPU time in seconds for CPLEX, AlphaEcp and CHR. Comparing the
average run times, one could see that AlphaEcp is not comparable to CPLEX or CHR. Although CPLEX
performs better than CHR on average, this is mostly because of one particular instance where CHR
performs poorly (400 variable, case IlIl). Excluding the worst performances, CHR indeed performs
better than both CPLEX and AlphaEcp. In fact 7 out of the 15 runs, CHR terminates with the shortest
run time.

One should also note that CPLEX is only able to solve problems with quadratic objective
functions, whereas CHR does not take advantage of the quadracity of the objective function, and will
work just as well for a non-quadratic objective function. Table 3 also sheds light on the reliability of
these algorithms. For two instances, AlphaEcp fails to terminate in less than 30 minutes. On the other

11

hand, CPLEX terminated with a feasible but not optimal integer solution for four instances due to
worsening of the objective function of the nonlinear objective function.

Table 3- Run times in seconds

of Variables Case CPLEX | AlphaEcp CHR
100 I 1.01 10 1.07
100 I 1.10 9 0.62
100 1 1.26* 251 2.44
100 A 0.76 32 2.84
100 Y 0.83 2 0.57
200 I 2.40 53 2.95
200 I 4.10* 1611 4.28
200 1 2.98 2 1.4
200 A 2.59 25 6.81
200 V 2.40 3 1.78
400 I 15.16 376 5.65
400 I 19.54* N/A** 27.79
400 1 15.77* N/A** 90.68
400 A 10.25 4 1.00
400 V 11.04 7 8.12
Average (all) 6.08 183.46 10.53
Average (excluding the 512 64.5 48
worst)

*CPLEX Warning: The search was stopped because the objective function of the NLP subproblem

started to deteriorate
**Unable to terminate in less than 30 minutes

Especially, in two instances CHR found an upper bound with a lower objective function value,
compared to the value returned by CPLEX as the optimal value, while AlphaECP could not solve the

problem. Table 4 focuses on these two instances.

of Variables | Case CHR CPLEX AlphaEcp
400 Il 3,358,685 3,359,690 N/A
400 1 49,337,624 49,344,302 N/A

12

As seen, CHR performs better than CPLEX and AlphaEcp in terms of returning a feasible
solution with the lowest objective function. However, one should note that this feasible solution is
still a upper bound, but can not be proven optimal.

9. CONCLUSIONS AND FUTURE DIRECTION OF RESEARCH

The Convex Hull Relaxation (CHR) provides tight lower and upper bounds by (1)
transforming a nonlinear integer optimization problem in one over the convex hull of all feasible
solutions, and (2) replacing this problem by a sequence of linear programs and simple nonlinear
programs. The potential strength of the proposed algorithm is that the difficulty of the problems
solved at each iteration stays relatively unchanged from iteration to iteration. It will be most suitable
for those nonlinear integer problem types that would be much easier to solve with a linear objective
function. One should expect that CHR will have a robust performance for large-scale problems if one
has access to solvers able to handle large linear programs and simple nonlinear programs efficiently.
Further testing is needed for larger problem sizes and other problem types.

The most important restriction of the method seems to be the convexity requirement on the
objective function, and linear constraints. But there is no further structural requirement on the
objective function, in contrast to available MINLP solvers such as CPLEX, which require a quadratic
objective function.

10. APPENDIX

10.1 Appendix A: Computational Results in Detail

Note thatfor the data sets used we have
¥:a; = 4315000 for 100 variable data set

¥:a; = 8930700 for 200 variable data set
¥:a; = 17424000 for 400 variable data set

Therefore, capacity requirements corresponding to each case has been chosen accordingly.
A. # of variables =100

Table 1

13

Casel Case ll Case lll Case IV CaseV
(b=5000) (b=125,000) (b=500,000) (b=1250,000) (b=2500,000)
Cont. Bound 2649.7 263,678 3,479,767 19,156,699 74,612,738
Convex Hull
90377.4 299,457 3,899,468 23,857,310 114,289,200
Lower Bound
Convex Hull
99766.8 315,028 3,927,058 23,885,029 114,289,580
Upper Bound
% Improvement 3310.9 13.57 12.06 24.5 53.2
Optimal value
99766.8 315,028 3,927,058 23,885,029 114,289,580
(AlphaECP)
Optimal value
99766.8 315,028 3,937,286** 23,885,029 114,289,580
(CPLEX)
% lower bound
9.41 494 0.70 0.12 3.3249e-004
gap
% upper bound
0.0 0.0 0.0 0.0 0.0

gap

** CPLEX Warning: The search was stopped because the objective function of the NLP subproblem
started to deteriorate.

Table 2- Run times in seconds (b=5,000)

NLP MIP ECP TOTAL
CPLEX 0.88 0.13 - 1.01
AlphaECP - 9.00 1.00 10.00
CHR 0.78 0.29 - 1.07
Table 3- Run times in seconds (b=125,000)
NLP MIP ECP TOTAL
CPLEX 0.97 0.13 - 1.10
AlphaECP - 8.00 1.00 9.00
CHR 0.43 0.19 - 0.62

Table 4- Run times in seconds (b=500,000)

14

NIP MIP ECP TOTAL
CPLEX 1.02 0.24 - 1.26
AlphaECP - 246.98 4.02 251.00
CHR 1.66 0.780 - 2.440
Table 5- Run times in seconds (b=1,250,000)
NIP MIP ECP TOTAL
CPLEX 0.65 0.11 - 0.76
AlphaECP - 28.00 4.00 32.00
CHR 2.10 0.74 - 2.84
Table 6- Run times in seconds (b=2,500,000)
NIP MIP ECP TOTAL
CPLEX 0.66 0.17 - 0.83
AlphaECP - 2.00 0.00 2.00
CHR 0.44 0.13 - 0.57

Table 8- Analysis of Simplicial algorithm (# of variables =100)

Max. no of
No. of extreme
b Simplicial points at a
Iterations given
iteration
5000 12 12
125000 7 7
500000 15 15
1250000 11 11
2500000 3 3

15

B. # of variables =200

Table 9
Case | Casel ll Case lll Case IV Case V
(b=10000) (b=250000) (b=1000000) (b=2500000) (b=5000000)
Cont. Bound 6181.1 915,114 12,782,780 83,464,883 394253860
C ex Hull
onv 92261.1 1,091,412 12,814,670 85,137,220 394,794,400
Lower bound
Convex Hull
105,980.6 1,123,458.7 12,820,782 85,158,703 394,794,740
Upper Bound
% Improvement 1392.6 19.37 0.25 2.00 0.14
Optimal value
P 105,980.6 1,122,090 12,820,782 85,158,703 394,794,740
(AlphaECP)
Optimal value
P 105,980.6 1,137,485** 12,820,782 85,158,703 394,794,740
(CPLEX)
% lower bound
0 14.87 2.64 0.05 0.03 8.6121e-005
gap
% upper bound 0.0 0.12 0.0 0.0 0.0
gap

**CPLEX Warning: The search was stopped because the objective function of the NLP subproblem
started to deteriorate.

Table 10- Run times in seconds (b=10,000)

NLP MIP ECP TOTAL
CPLEX* 2.31 0.09 - 2.40
AlphaECP - 46.00 7.00 53.00
CHR 2.56 0.39 - 2.95

Table 11- Run times in seconds (b=250,000)

NLP MIP ECP TOTAL
CPLEX 3.73 0.32 - 4.05
AlphaECP 1600 11 1611
CHR 3.42 0.860 - 4.28
Table 12- Run times in seconds (b=1,000,000)
NIP MIP ECP TOTAL
CPLEX 2.79 0.19 - 2.98
AlphaECP 1.00 1.00 2.00
CHR 0.89 0.51 - 1.40
Table 13- Run times in seconds (b=2,500,000)
NIP MIP ECP TOTAL
CPLEX 2.25 0.34 - 2.59
AlphaECP - 24.00 1.00 25.00
CHR 5.88 0.93 - 6.81
Table 14- Run times in seconds (b=5,000,000)
NIP MIP ECP TOTAL
CPLEX 2.19 0.21 - 2.40
AlphaECP - 3.00 0.0 3.00
CHR 1.57 0.21 - 1.78

Table 15- Analysis of Simplicial algorithm (# of variables =200)

No. of
Simplicial
Iterations

Max. no of
extreme
points at a
given
iteration

17

10000 15 15
250000 16 16
1000000 |5 5
2500000 11 11
5000000 | 3 3
C. # of variables =400
Table 16
Casel Case ll Case lll Case IV Case V
(b=20000) (b=500000) (b=2000000) (b=5000000) (b=10000000)
Cont. Bound 14383 3,275,799 49,203,510 328,628,230 1,661,081,100
Convex Hull
91684 3,316,422 49,298,830 329,626,900 1,662,065,000
Lower Bound
Convex Hull
106,260 3,358,685 49,337,624 329,626,924 1,662,065,750
Upper Bound
% Improvement 537.4% 1.24% 0.19% 0.3% 0.06%
Optimal value
106,260 N/A* N/A* 329,626,924 1,662,065,750
(AlphaECP)
Optimal value
106,260 3,359,690** | 49,344,302** 329,626,924 1,662,065,750

(CPLEX)

18

% lower bound
13.7 1.29 0.09 6.0675e-006 4.5125e-005
gap
% upper bound
0.0 0.0 0.0 0.0 0.0

gap

*Fail to terminate in less than 30 minutes.
** CPLEX Warning: The search was stopped because the objective function of the NLP subproblem

started to deteriorate.

Table 17- Run times in seconds (b=20,000)

NLP MIP ECP TOTAL
CPLEX* 15.00 0.16 - 15.16
AlphaECP - 332.01 43.99 376
CHR 5.18 0.47 - 5.65
Table 18- Run times in seconds (b=500,000)
NLP MIP ECP TOTAL
CPLEX 18.03 1.51 - 19.54
AlphaECP FAIL TO TERMINATE
CHR 17.59 10.20 - 27.79
Table 19- Run times in seconds (b=2,000,000)
NIP MIP ECP TOTAL
CPLEX 15.16 0.61 - 15.77
AlphaECP FAIL TO TERMINATE
CHR 14.54 126.34 - 140.88
Table 20- Run times in seconds (b=5,000,000)
NIP MIP ECP TOTAL
CPLEX 9.95 0.30 - 10.25
AlphaECP - 1.00 3.00 4.00

19

CHR

0.81

0.19

1.00

Table 21- Run times in seconds (b=10,000,000)

NIP MIP ECP TOTAL

CPLEX 10.55 0.49 - 11.04
AlphaECP - 4.00 3.0 7.00
CHR 7.59 0.53 - 8.12

Table 22- Analysis of Simplicial algorithm (# of variables =400)

Max. no of
No. of extreme
b Simplicial points at a
Iterations given
iteration
20000 16 16
500000 30 30
2000000 19 10
5000000 2 2
10000000 4 4

10.2 Appendix B: Proof of Fact |

20

FACT | :
Assume we have the following matrices at hand:

e A n X ndiagonal matrix D with positive entries, hence positive definite

e AN X M matrix A with rank m, wheren = m

Then C = AT - D - A is positive definite.

PROOF :
Because D is positive definite,

(AX)T-D-(AX)=0—>XT-(ATDA)-X =0

Hence, the matrix C is positive semi-definite. To show that it is also positive definite, it suffices to
show that,
Vx € R™, AX # 0. This immediately follows from the assumption that A is a matrix of rank m.

10.3 Appendix C: GAMS CODE OF THE CHR ALGORITHM

Stitle Gams Code for QKP problem of 200 variables
Seolcom!
option limrow=0,limcol=0,solprint=off,sysout=off;
Soffsymlist offsymxref offlisting
option NLP=minos;
option optcr=0;
sets i jobs / i1*i200/
k this is for set of ext points generated for rest simp decomp/k1*k1000/
iter set for simplicial iterations /it1*it5000/
ind(k)'indicator yes when the extreme point remains'
alias(i,ir);
scalars ro
flag
flagS
r
iteration
ex
ef
fnew
fold
mini
maxix
normold
normnew
foptimal
counter

21

cccmaster
cccsub
ccc;
variables y(i)
beta(k)
z1
z2;
positive variables beta(k);
binary variables y(i);

parameters xA(i,iter)
u(i)
x(i)/i1*i150 1/
xold(i)
x0(i)
t(k)
w(i,k)
ayk(i)
opt;

equations objgrad
obj
beqgn
capacity
MC;
*E*X*¥*Important Parameters to set*****

r=200; 'Number of allowable extreme points for restricted simplicial decomposition. 100 seems to
be fairly safe, and makes it act like unrestricted SD.'

I'These are needed for stopping condition. Decreasing them may naturally cause more iterations,
but improve accuracy.'

ef=0.000000000000000000001;

ex=0.0000000000000000000001;

scalar b /5000000/;
sets j /j1*j500/
alias (j,jr);
parameters m(i,j)
d(jr.j)
a(i,j)
c(i,ir)
install(i)

a(i);

22

d(jr,j)=0;

m(i,jr)=uniform(0,10);
d(jr,jr)=uniform(0,10);
a(i,j)=sum(jr, m(i,jr)*d(jr.j));
c(i,ir)=sum(jr,q(i,jr)*m(ir,jr));
install(i)=uniform(30000,100000);
a(i)=uniform(15000,75000);

* EQUATIONS =
Yooz == == —==—===—=—====== == == =—====== ==

obj.. sum(i,install(i)* sum(kSind(k),beta(k)*w(i,k)))

+sum((i,ir), c(i,ir)*sum(kSind(k),beta(k)*w(i,k))*sum(kSind(k),beta(k)*w(ir,k)))=e=z2;
objgrad.. sum(i,[install(i)+sum(ir,[c(i,ir)+c(ir,i)]*x(ir))]*(y(i)-x(i)))=e=21;

capacity.. sum(i,a(i)*y(i))=g=b;

begn.. sum(kSind(k),beta(k))=e=1;

Yooz == == —==—===—=—====== == == =—====== ==
* MODELS =
Yooz == == —==—===—=—====== == == =—====== ==

model sub/objgrad,capacity/;
model master/obj,beqn/;

* Rest of the Initialization =
*======== == == e —— == == =—====== ==

*These initializations are not meant to change under normal conditions.
cccmaster=0;
ccecsub=0;
flag=1;
w(i,k)=0;
t(k)=0;
ind(k)=no;
ind('k1')=yes;
fnew=100;
fold=0;
maxix=0;
flagS=1;
iteration=1;
normnew=100;
counter=0;
wi(i,'k1")=x(i);

file count/count.dat/;
file upperbounds/upperbound.dat/;

23

while(((flagS=1) or ((normnew>ex*maxix) and (abs(fnew-fold)>ef*abs(fold)))),
xA(i,iter)S(iteration=ord(iter))=x(i);
flagS=0;
solve sub using mip minimizing z1;
cccsub=cccsub+sub.resusd;
if((counter<r),
loop(kS((flag=1) and (ord(k)>=2)),
if((t(k)=0),
w(i,k)=y.I(i);
opt=sum(i,install(i)*y.I(i))+sum((i,ir), c(i,ir)*y.I(i) *y.I(ir));
put upperbounds;
put opt///;
ind(k)=yes;
counter=counter+1;
flag=0;
); lendift
); !endloop k
); !end if counter
flag=1,;
if((counter=r),
mini=smin(k$(ord(k)>=2 and ord(k)<r+1),t(k));
loop(kS(ord(k)>=2 and ord(k)<=r+1),
if((mini=t(k)),
wi(i,k)=y.I(i);
); !end if mini
); !end loop k
w(i,'k1')=x(i);
); !end while flagS=1
put count;
put counter///;
solve master using nlp minimizing z2;
cccmaster=cccmaster+master.resusd;
t(k)=beta.l(k);
loop(kS(ord(k)>=2 and ind(k)),
if((t(k)=0),

ind(k)=no;
); lendifk
); end loop k

xold(i)=x(i);

x(i)=sum(kSind(k),t(k)*w(i,k));
fold=sum(i,install(i)*xold(i))+sum((i,ir), c(i,ir)*xold(i)*xold(ir));
fnew=sum(i,install(i)*x(i))+sum((i,ir), c(i,ir)*x(i)*x(ir));

24

normold=sqrt(sum(i,sqr(xold(i))));
normnews=sqrt(sum(i,sqr(x(i))));
maxix=max(normnew,normold);

iteration=iteration+1;

); ! end while counterA=1
foptimal=sum(i,install(i)*xold(i))+sum((i,ir), c(i,ir)*xold(i)*x(ir));
ccc=ccecmaster+cccsub;

display foptimal,cccmaster,cccsub,ccc;

11. REFERENCES

Ahn, S., L. Contesse and M. Guignard, “An Augmented Lagrangean Relaxation for Nonlinear
Integer Programming Solved by the Method ofMultipliers, Part Il: Application to Nonlinear Facility
Location,” Working Paper, latest revision 2007.

Bazaraa, M.S. and C.M Shetty., “Nonlinear Programming Theory and Algorithms”, John Wiley
& Sons, Inc., 1979.

Bertsekas D., “Nonlinear Programming”, Athena Scientific, 2d printing, 2003.

Contesse L. and M. Guignard, “An Augmented Lagrangean Relaxation for Nonlinear Integer
Programming Solved by the Method of Multipliers, Part |: Theory and Algorithm,” Working Paper,
OPIM Department, Univ. of Pennsylvania, latest revision 2007.

Guignard, M., 'Primal Relaxation in Integer Programming,” VIl CLAIO Meeting, Santiago, Chile,
1994, also Operations and Information Management Working Paper 94-02-01, University of
Pennsylvania, 1994.

Guignard, M., “A New, Solvable, Primal Relaxation For Nonlinear Integer Programming

”

Problems with Linear Constraints,” Operations and Information Management Working Paper,
University of Pennsylvania, 2007.
Hearn, D.W., Lawphongpanich S. and Ventura J.A, “Restricted Simplicial Decomposition:

Computation and Extensions”, Mathematical Programming Study 31, 99-118, 1987.

25

26

