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An instrument is a random nudge toward acceptance of a treatment that affects outcomes only to the extent that it affects acceptance of the
treatment. Nonetheless, in settings in which treatment assignment is mostly deliberate and not random, there may exist some essentially
random nudges to accept treatment, so that use of an instrument might extract bits of random treatment assignment from a setting that is
otherwise quite biased in its treatment assignments. An instrument is weak if the random nudges barely influence treatment assignment or
strong if the nudges are often decisive in influencing treatment assignment. Although ideally an ostensibly random instrument is perfectly
random and not biased, it is not possible to be certain of this; thus a typical concern is that even the instrument might be biased to some
degree. It is known from theoretical arguments that weak instruments are invariably sensitive to extremely small biases; for this reason,
strong instruments are preferred. The strength of an instrument is often taken as a given. It is not. In an evaluation of effects of perinatal
care on the mortality of premature infants, we show that it is possible to build a stronger instrument, we show how to do it, and we show
that success in this task is critically important. We also develop methods of permutation inference for effect ratios, a key component in an
instrumental variable analysis.
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1. INTRODUCTION: MOTIVATION,
EXAMPLE, AND DATA

1.1 Regionalization of Intensive Care for Premature
Infants: Does It Save Lives?

Hospitals vary in their ability to care for premature infants.
The American Academy of Pediatrics recognizes six levels of
neonatal intensive care units (NICUs) of increasing technical
expertise and capability: 1, 2, 3A, 3B, 3C, 3D, and regional cen-
ters, 4. The term “regionalization of care” refers to a policy that
suggests or requires that high-risk mothers deliver at hospitals
with greater capabilities. In other words, within a region, moth-
ers are to be sorted into hospitals of varied capability based on
the risks faced by the newborn, rather than on haphazard cir-
cumstances, such as affiliation or proximity. Regionalized peri-
natal systems were developed in the 1970s, when NICUs began
to save infants with birth weight <1500 g. In the 1990s, how-
ever, NICU services began to diffuse from regional centers to
community hospitals. Regionalization might reduce infant mor-
tality by bringing together the sickest babies and the most capa-
ble hospitals; however, regionalization might not reduce infant
mortality because the sorting by risk might be too inaccurate to
affect health, or the capabilities of high-level NICUs might fail
to deliver better outcomes.

In the current paper, we focus on whether delivering high
risk infants at more capable NICUs reduces mortality. This is
one key component in the evaluation of regionalized perina-
tal systems. More precisely, if a high-risk mother delivers at
a less capable hospital, is her baby at greater risk of death? In
a highly abstract world remote from the world that we inhabit,
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a randomized experiment could settle that question, with high-
risk mothers assigned at random to hospitals of varied capabil-
ities. In the world that we actually do inhabit, in which medical
decisions are happily constrained by considerations of sound
judgment, ethics, and patient preferences, such an experiment
is not possible. We need to make some reasonable sense of the
data that we can obtain. There is a basic difficulty, however,
that arises in many contexts in which the most intense and ca-
pable care is given to the sickest patients. If regionalization suc-
ceeded in sorting mothers by risk, then the highest-risk moth-
ers would deliver at the most-capable hospitals. The mortality
rates at the more-capable hospitals might be higher, not lower,
than those the less-capable hospitals because their patient pop-
ulations were sicker, even if the more-capable hospitals were
saving lives. A naïve comparison of mortality rate by level of
NICU would do little or nothing to clarify whether regional-
ization is or is not effective, because it would not estimate the
effect on mortality of delivery at a more-capable hospital.

Here we take an old tactic and improve it. The old tactic ex-
ploits proximity. A high-risk mother is more likely to deliver at
a hospital with a high-level NICU if such a hospital is close to
home. A pregnancy may conclude with a certain urgency, and
awareness of this possibility may lead the mother to want to
avoid a long trip. If travel time to a hospital with a high-level
NICU affected risk only if it altered whether the baby received
care at that hospital, then the so-called “exclusion restriction”
would be plausible. (See Angrist, Imbens, and Rubin 1996 for a
discussion of the exclusion restriction.) If it were also true that
the mother’s risk was unrelated to geography, then proximity
would be an instrument for care at a hospital with a high-level
NICU. In point of fact, the mother’s risk is related to geography,
largely through socioeconomic factors that vary with geogra-
phy; however, we attempted to control for this and other issues
by matching for measured covariates.
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Proximity would be a strong instrument for delivery at a hos-
pital with a high-level NICU if proximity were typically de-
cisive in determining where the mother delivered. Proximity
would be a weak instrument if it were a minor factor among
many others. (For a discussion of various issues that arise with
weak instruments, see Bound, Jaeger, and Baker 1995 and Im-
bens and Rosenbaum 2005.)

Weak instruments are invariably sensitive to very small un-
observed biases, so strong instruments are an aspect of strong
evidence. Here bias refers to nonrandom assignment of the in-
strument. Small and Rosenbaum (2008) studied the relationship
between the strength of a particular instrument and its sensitiv-
ity to unobserved biases. Their criterion was the power of a sen-
sitivity analysis with an instrument, which is the probability that
a study will reject a false null hypothesis when a specified mag-
nitude of unobserved bias in the instrument is allowed for. (See
Rosenbaum 2004, 2005a for general discussion of the power of
a sensitivity analysis.) Consider two studies, one with a strong
instrument and the other with a weak instrument. If we assume
that the instrument was randomly assigned, then the problems
caused by a weak instrument might be offset by a sufficiently
large sample size. But Small and Rosenbaum (2008) showed
that if we take into account the possibility that an instrument
is not perfectly random, then the small study with a stronger
instrument is likely to be more powerful (in terms of power of
sensitivity analysis) than the vastly larger study with a weaker
instrument; indeed, the power with a weak instrument might
tend to 0 with increasing sample size for a magnitude of bias
such that the power with a strong instrument is tending to 1. In
this article we demonstrate that, through careful design, we can
extract from a single large study with a weak instrument a more
powerful, smaller study with a stronger instrument.

1.2 Data: Covariates, NICU Level,
Travel Time, and Survival

The data describe all premature births in the Common-
wealth of Pennsylvania in the years 1995–2004 plus the first 6
months of 2005; that is, approximately 200,000 births. The data
combine information from birth and death certificates and the
UB-92 form, which hospitals provide.

Regionalization is a policy that would alter the level of the
NICU at which a high-risk mother would deliver; it is not aimed
at improving prenatal care, and is not a sensible strategy for im-
proving prenatal care. Because we are interested in comparing
the effectiveness of neonatal care provided by different levels
of NICUs, we consider variables determined before birth as co-
variates. To the greatest extent possible, we would like to com-
pare babies who were similar at birth and received the same
prenatal care but received neonatal care at NICUs of different
levels. We do not want to confuse an effect of NICU level on
perinatal care with an effect of prenatal care provided by some-
one else. These covariates include birth weight and gestational
age, prenatal care, health insurance, congenital anomalies, and
other variables listed in Table 1. If some other study were inter-
ested in the effects not of NICU level but rather of, say, prenatal
care, then some of the variables that are pretreatment covari-
ates in our study might be considered outcomes in that other
study. This is true, for example, of birth weight, which is not
materially affected by the NICU level but might be affected by

prenatal care, for instance, by coaxing a mother to abstain from
smoking.

Following Rogowski et al. (2004), we recorded a mother as
having delivered at a low-level hospital (D = 1) if that hospital
delivered an average of fewer than 50 preterm babies per year
or if its NICU was below level 3A, or as having delivered at
a high-level hospital (D = 0) if the hospital delivered at least
50 preterm babies per year and had a NICU of level 3A–3D
or 4. We investigated whether delivery of a preterm infant at a
low-level hospital increases the risk of death, and if so, by how
much?

Travel time was determined using ArcView software (ESRI)
as the time from the centroid of mother’s zip code to the clos-
est low-level and high-level hospitals. The degree of encour-
agement to deliver at a low-level hospital was the difference
in these two travel times, high-minus-low; for brevity, this is
termed the excess travel time. Excess travel time takes a neg-
ative value if the closest hospital has a high-level NICU. Dis-
tance strongly encourages the mother to deliver at a low-level
hospital if the difference in travel time is positive and large.

Stop for a moment and think about Pennsylvania, a state with
two large cities (Philadelphia and Pittsburgh), several medium-
sized cities (e.g., Harrisburg, Allentown–Bethlehem), numer-
ous small towns, and large remote rural areas. Although many
small towns are served by small hospitals, some are not. The
highly capable medical school of Pennsylvania State Univer-
sity is in Hershey, Pennsylvania, with farming communities on
several sides. In Philadelphia, there are many hospitals, some
within walking distance of one another; thus excess travel times
are small, and excess travel time will rarely determine where
the mother delivers. In a rural area, excess travel time may be
a decisive factor. Of course, most people live in or near urban
areas. The full study (for which the current analysis is a pi-
lot study) will look at Pennsylvania, Missouri, and California
as three representative states; however, we are interested in the
effects of high-level NICUs on mortality in general, not specifi-
cally in these states. Pennsylvania yields an instrument, but per-
haps Pennsylvania is not ideally structured as a state to answer
our question. Should we take Pennsylvania as it is, or should
we improve Pennsylvania to build a stronger instrument?

2. MATCHING TO CREATE
STRONGER INSTRUMENTS

2.1 Fewer Pairs at Greater Distances

We used optimal nonbipartite matching to pair babies with
similar covariates but different excess travel times. There were
2I babies. First, a discrepancy was defined between every pair
of babies, yielding a 2I × 2I discrepancy matrix. (Here the
term “discrepancy” is used in place of the more common term
“distance,” to avoid confusing the covariate discrepancy with
the geographic distance to a NICU.) An optimal nonbipartite
matching then divided the 2I babies into I nonoverlapping pairs
of two babies in such a way that the sum of the discrepan-
cies within the I pairs was minimized. That is, two babies in
the same pair were as similar as possible. Fortran code for a
polynomial-time optimization algorithm was developed by De-
rigs (1988) and was made available inside R by Lu et al. (2009).
(For statistical applications of optimal nonbipartite matching,
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Table 1. Covariate balance and degree of encouragement in two matched comparisons. Nine rare congenital anomalies were balanced as well.
(–St-diff– = absolute standardized difference. 1/0 means 1 = yes, 0 = no. Prenatal care month refers to month in which prenatal care begain.

Mother’s education scale is a six-point scale with high school graduate scored as 3 and college graduate scored as 5.
For zip code/census data, fr = fraction of zip code.)

Weaker instrument Stronger instrument
No sinks Sinks remove 50% of babies

99,174 pairs of two babies 49,587 pairs of two babies

Near mean Far mean –St-dif– Near mean Far mean –St-dif–

Magnitude of encouragement
Excess travel time to
high-level NICU, minutes 4.48 17.98 0.78 0.86 35.08 1.97

Pregnancy and birth
Covariates

Birth weight, g 2582 2581 0.00 2584 2581 0.00
Gestational age, weeks 35.11 35.11 0.00 35.14 35.13 0.00
Gestational diabetes, 1/0 0.05 0.05 0.00 0.04 0.04 0.01
Prenatal care, month 2.31 2.30 0.01 2.22 2.20 0.02
Prenatal care missing 0.11 0.11 0.02 0.07 0.07 0.02
Single birth, 1/0 0.83 0.83 0.00 0.85 0.83 0.05
Parity 2.11 2.11 0.00 2.01 2.03 0.02

Mother
Mother’s age 28.15 28.10 0.01 27.99 27.66 0.05
Mother’s education (scale) 3.71 3.70 0.01 3.72 3.65 0.06
Mother’s education missing 0.03 0.02 0.02 0.01 0.01 0.00
White, 1/0 0.70 0.71 0.03 0.85 0.86 0.01
Black, 1/0 0.17 0.15 0.04 0.06 0.05 0.03
Asian, 1/0 0.01 0.01 0.01 0.01 0.00 0.01
Other race, 1/0 0.03 0.03 0.00 0.02 0.01 0.01
Race missing, 1/0 0.09 0.09 0.01 0.07 0.08 0.04

Mother’s health insurance
Fee for service, 1/0 0.21 0.21 0.00 0.24 0.25 0.01
HMO, 1/0 0.37 0.37 0.00 0.35 0.33 0.04
Federal/state, 1/0 0.30 0.30 0.00 0.30 0.31 0.04
Other, 1/0 0.10 0.10 0.00 0.10 0.09 0.00
Uninsured, 1/0 0.01 0.01 0.00 0.01 0.01 0.02

Mother’s neighborhood (zip code/census)
Zip code data missing 0.06 0.06 0.00 0.00 0.00 0.00
Income ($1000) 41 41 0.01 42 40 0.13
Below poverty (fr) 0.13 0.13 0.02 0.11 0.10 0.02
Home value ($1000) 95 96 0.02 97 97 0.02
Has high school degree (fr) 0.80 0.80 0.00 0.82 0.82 0.02
Has college degree (fr) 0.21 0.21 0.03 0.21 0.19 0.12
Rent (fr) 0.30 0.29 0.06 0.28 0.26 0.15

see Lu et al. 2001, Lu and Rosenbaum 2004, Lu 2005, and
Rosenbaum 2005b, and for a different application in neonatol-
ogy, see Rosenbaum and Silber 2009a and Silber et al. 2009.)

We contrast two such matchings. One matching is slightly
compulsive: it must, absolutely must, use every baby (about
200,000 babies), even though this implies that many excess
travel times are small, so the instrument is fairly weak. This
compulsion is not justified by statistical theory, which unam-
biguously shows that the problems of weak instruments are of-
ten so severe that they outweigh large increases in sample size
(Small and Rosenbaum 2008), so the compulsion has its ori-
gins elsewhere. The other matching uses about half of the ba-
bies (about 100,000), allowing pairs that are closely matched
for covariates, yet with substantial differences in excess travel
time. In the second matching, we have about 50,000 pairs of

babies closely matched for covariates, one far from the nearest
high-level NICU and the other much closer.

The second matching eliminates some babies in an optimal
manner using “sinks” (see Lu et al. 2001). To eliminate e ba-
bies, e sinks are added to the data set before matching, with
each sink at zero discrepancy to each baby and at infinite dis-
crepancy to all other sinks. This yields a (2I + e)× (2I + e) dis-
crepancy matrix. An optimal match will pair e babies to the e
sinks in such a way as to minimize the total of the remaining
discrepancies within I − e/2 pairs of 2I − e babies; that is, the
best possible choice of e babies is removed. The second match
eliminates about half of the babies.

The discrepancy matrix was built in several steps using stan-
dard devices. Because we are matching mothers from different
parts of Pennsylvania, and because socioeconomic status varies



1288 Journal of the American Statistical Association, December 2010

from place to place, it is important to compare mothers from
wealthy communities with other mothers from wealthy com-
munities and to compare mothers from poor communities with
other mothers from poor communities. The six census/zip code
measures are intended to represent local socioeconomic sta-
tus, but socioeconomic status is not six-dimensional. First, so-
cioeconomic measures describing a zip code were summarized
using their first two principal components. These two compo-
nents were combined with individual-level data about mother
and baby in calculating a Mahalanobis discrepancy between
each pair of babies; see Rubin (1980). A small penalty (i.e.,
a positive number) was added to the discrepancy for each of the
following circumstances for any pair of babies that (a) did not
agree on the number of congenital disorders, (b) did not agree
on black race, or (c) did not agree on whether zip code infor-
mation was missing. Two independent observations drawn from
the same L-variate multivariate normal distribution have an ex-
pected Mahalanobis discrepancy equal to 2L, so that, speak-
ing informally, a penalty that is typically of size 2 will double
the importance of matching on a variable. Small penalties are
used to secure balance for a few recalcitrant covariates, usually
those that are most systematically out of balance (see Rosen-
baum 2010, sec. 9.2 for a discussion). It is typical to adjust
small penalities to secure the desired balance. Finally, a sub-
stantial penalty was added to the discrepancy between any pair
of babies whose excess travel time differed in absolute value by
at most �, with � = 0 in the first match described earlier and
� = 25 minutes in the second match. Substantial (effectively
infinite) penalties are used to enforce compliance with a con-
straint whenever compliance is possible, and also to minimize
the extent of deviation from a constraint whenever strict com-
pliance is not possible. This substantial penalty used a “penalty
function,” a continuous function that is 0 if the constraint is re-
spected and rises rapidly as the magnitude of the violation of
the constraint increases. (See Avriel 1976 for a discussion of
penalty functions and Rosenbaum 2010, sec. 8.4 for a discus-
sion of the use of penalty functions in matching.)

In fact, we matched exactly on three important covariates,
year of birth and coarse categorical versions of birth weight
and gestational age. This means that we split one large match-
ing problem into several smaller matching problems, grouping
the pairs into one study at the end. Along with ensuring ex-
act matches on these three covariates, this allows a rather large
matching problem (∼200,000 babies) to be broken into several
smaller problems that can be solved separately in the manner
described earlier. Because the discrepancy matrix has size on
the order of the square of the number of babies, and the algo-
rithm has a worst-case time bound on the order of the cube of
the number of babies, splitting the problem to produce an exact
match drastically reduces the computational effort (see Rosen-
baum 2010, sec. 9.3). Inside those exact match categories, we
also used the continuous versions of birth weight and gesta-
tional age to obtain closer matches than required by the cate-
gories alone.

2.2 Two Matched Comparisons, One Stronger and
One Weaker, in the Study of Regionalization
of Perinatal Care

Table 1 shows the two matches in terms of covariate bal-
ance and difference in excess travel time. Keep in mind that

we want pairs that are similar in terms of covariates and dif-
ferent in terms of excess travel time. Table 1 shows means and
absolute standardized differences in means, that is, the absolute
value of the difference in means divided by the standard de-
viation before matching. The match on the left uses all of the
babies and forms 99,174 pairs of babies, requiring only that the
paired babies have different excess travel times. The match on
the right uses sinks in an effort to enforce a difference in excess
travel time of at least 25 minutes, thereby yielding 49,587 pairs
of babies.

In Table 1, the two matched comparisons are both well
matched for covariates. One could not choose between the two
matches based on comparability in terms of covariates. They
differ in a few ways. By design, one match uses all of the ba-
bies, and the other match uses about half of the babies; other
things being equal, this speaks in favor of the match with more
babies, but other things are far from equal. By design, there is a
larger difference in excess travel time in the match with fewer
babies, 35.08 − 0.86 = 34.22 minutes versus 17.98 − 4.48 =
13.50 minutes, or almost 2 standard deviations (SDs) versus
about 0.75 SD. Because we think that after matching on key
covariates, variation in NICU level produced by proximity to
the hospital is likely to have little to do with infant survival be-
sides influencing the choice of NICU, we prefer a larger differ-
ence in travel time. Our parallel analyses will contrast the two
matchings.

Figure 1 contrasts three matched comparisons, the two dis-
played in Table 1 and one additional comparison. In Figure 1,
All-0 refers to using all of the babies requiring only a differ-
ence in excess travel time greater than 0, and Half-25 refers to
using half of the babies requiring a difference in excess travel
time of 25 minutes. The additional comparison is All-25, which
matched all of the babies and tried to force a difference in ex-
cess travel time of 25 minutes. It is clear that All-25 is not ac-
ceptable as a match, because quite a few covariates are sub-
stantially out of balance, and the difference in mean travel time
is 23.4 minutes, compared with 34.2 minutes for the Half-25
match. In particular, in the All-25 match, 24% of mothers near
a high-level NICU were black, as opposed to 8% of those far
away from a high-level NICU, and there also was a 0.5 SD dif-
ference in the fraction of mother’s zip code that was below the
poverty line. Something has to give; it is not possible to use all
of the babies while making pairs that are both close on covari-
ates and far apart on travel time.

For many of the covariates listed in Table 1, the two matched
comparisons appear similar. For instance, for such key variables
as birth weight and gestational age, the two matched compar-
isons are similar. There are some differences, however. For in-
stance, in Pennsylvania, blacks are disproportionately in urban
areas, so it is difficult to find a pair of blacks, one far from a
high-level NICU, the other close; most blacks are not far from
a high-level NICU. The smaller stronger match is about 5%
black, whereas the larger weaker match is about 15% black.
There are also smaller differences in health insurance. These
differences would be critically important if describing Pennsyl-
vania accurately were critically important, but there is nothing
special about Pennsylvania—it was picked as one of three rep-
resentative states. Moreover, the second match is much closer
to a clean experiment in which something haphazard was often
decisive for treatment assignment.
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Figure 1. Comparison of three matched comparisons in terms of comparability on covariates and excess travel time. The match All-0 uses all
of the babies but insists only on a nonzero difference in excess travel time. The match Half-25 uses half of the babies while trying to obtain at
least a 25-minute difference in excess travel time. The match All-25 uses all of the babies while trying to obtain at least a 25-minute difference
in excess travel time. Covariate balance is measured by the absolute standardized difference in covariate means. It is clear that All-25 is not an
acceptable match; the imbalances in many covariates, including race and poverty, are quite large.

3. INFERENCE ABOUT EFFECT RATIOS

3.1 Notation: Treatment Effects, Treatment Assignments

There are I matched pairs, i = 1, . . . , I, with two subjects,
j = 1,2, one treated subject and one control, or 2I subjects in
total. If the jth subject in pair i receives the treatment, write
Zij = 1, but if this subject receives the control, write Zij = 0,
so 1 = Zi1 + Zi2 for i = 1, . . . , I. In our study in Section 1, the
matched pairs consist of one mother close to a high-level NICU
(say control) and the one mother further away (say treated).
Note that in this terminology, proximity is the “treatment,” al-
though our real interest is in the effect of delivering at a low-
level versus high-level hospital. To emphasize, there are two
matched samples in Table 1, and the notation can be under-
stood as referring to either matched sample alone, but the rel-
evant quantities and their meanings depend on which matched
sample is under consideration.

The subscripts ij are bookkeeping labels and carry no infor-
mation; all information about subjects is contained in observed
or unobserved variables that describe them. (It is easy to con-
struct noninformative labels; number the pairs i at random, then
number the subjects j at random within each pair.) The matched
pairs were formed by matching for an observed covariate xij,
but might have failed to control an unobserved covariate, uij,
that is, xij = xik for all i, j, k, but possibly uij �= uik. This struc-
ture is in preparation for the inevitable comment or concern that

the pairs in Table 1 look similar in terms of the variables in Ta-
ble 1, but the table omits the specific covariate uij, which might
bias the comparison. Write u = (u11,u12, . . . ,uI2)

T for the 2I-
dimensional vector.

For any outcome, each subject has two potential responses,
one seen under treatment, Zij = 1, and the other seen under
control, Zij = 0 (see Neyman 1923; Rubin 1974). In Section 1,
speaking in this way of two potential responses entails imagin-
ing that a mother, ij, who lived either close to a high-level NICU
(Zij = 0) or far from one (Zij = 1) might instead have lived in
the opposite circumstances. What would have happened to a
mother and her newborn had she lived either close to or far from
a high-level NICU? Here there are two responses, (rTij, rCij) or
(dTij,dCij), where rTij and dTij are observed from the jth sub-
ject in pair i under treatment, Zij = 1, whereas rCij and dCij are
observed from this subject under control, Zij = 0. In Section 1,
(rTij, rCij) indicates infant death (1 for dead, 0 for alive) and
(dTij,dCij) indicates whether the mother delivered at a hospi-
tal without a high-level NICU (1 if yes, 0 if no). For instance,
if (rTij, rCij) = (1,0) with (dTij,dCij) = (1,0) then (a) had the
mother lived far from a high-level NICU (Zij = 1), she would
not have delivered at a high-level NICU (dTij = 1), and her baby
would have died (rTij = 1), but (b) had the mother lived near a
high-level NICU (Zij = 0), then she would have delivered at a
high-level NICU (dCij = 0), and her baby would have survived
(rCij = 0).
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Table 2. Magnitude of encouragement, level of NICU, and mortality in two matched comparisons.
(–St-diff– = absolute standardized difference. 1/0 means 1 = yes, 0 = no.)

Weaker instrument Stronger instrument
No sinks Sinks remove 50% of babies

99,174 pairs of two babies 49,587 pairs of two babies

Near mean Far mean –St-dif– Near mean Far mean –St-dif–

Magnitude of encouragement
Excess travel time to
high-level NICU, minutes 4.48 17.98 0.78 0.86 35.08 1.97

Delivery at low-level NICU, Dij
Low-level NICU, 1/0 0.35 0.53 0.36 0.31 0.75 0.88

Infant mortality, Rij
Dead, 1/0 0.0181 0.0198 0.01 0.0155 0.0194 0.03

The effects of treatment on a subject, rTij − rCij or dTij −
dCij, are not observed for any subject; that is, each mother
lives either near to or far from a high-level NICU, and the
fate of her baby under the opposite circumstance is not ob-
served. However, Rij = ZijrTij + (1 − Zij)rCij, Dij = ZijdTij +
(1 − Zij)dCij, and Zij are observed from each subject. Let F =
{(rTij, rCij,dTij,dCij,xij,uij), i = 1, . . . , I, j = 1,2}. Table 2 re-
peats the information from Table 1 about excess travel time
and adds the information about the two outcomes NICU level
and mortality. In the second match in Table 2, the difference
in excess travel times is larger, with the consequence that more
mothers far from high-level NICUs did not deliver at high-level
NICUs; that is, the instrument is stronger.

Fisher’s sharp null hypothesis of no treatment effect on
(rTij, rCij) asserts that H0 : rTij = rCij, for i = 1, . . . , I, j = 1,2.
In Section 1, this says that living close to a high-level NICU
has no effect on perinatal mortality, even if proximity shifts
some mothers to deliver at a hospital with a high-level NICU.
If Fisher’s null hypothesis were plausible, then it would be dif-
ficult to argue that regionalization of care is warranted.

In this article we make reference to the exclusion restriction,
but we do not assume that it is true. The exclusion restriction
asserts that dTij = dCij implies rTij = rCij (see Angrist, Imbens,
and Rubin 1996). In Section 1, the exclusion restriction says
that mother and baby are affected by proximity to a high-level
NICU only if proximity to a high-level NICU changes the type
of hospital at which the mother delivers. As we show, our analy-
sis does not require the exclusion restriction, but a key parame-
ter has an additional interpretation when the exclusion restric-
tion is true.

A substantial distance between mother’s home and the near-
est high-level NICU is thought to “encourage” the mother to de-
liver at a less capable but presumably closer hospital. A mother
with (dTij,dCij) = (1,0) is said to be a “complier,” in the sense
that she would deliver at a high-level NICU if one were close
by (dCij = 0), but would deliver at a less-capable hospital if she
lived far away (dTij = 1).

Write |A| for the number of elements in a finite set A.
Let Z = (Z11,Z12, . . . ,ZI,2)

T , and let � be the set contain-
ing the |�| = 2I possible values z of Z, so that z ∈ � if
z = (z11, z12, . . . , zI,2)

T with zij = 0 or zij = 1, 1 = zi1 + zi2
for i = 1, . . . , I. Write Z for the event that Z ∈ �. In a ran-
domized experiment, Z is chosen at random from �, so that
Pr(Z = z|F , Z) = 1/|�| for each z ∈ �.

3.2 Effect Ratios

The effect ratio, λ, is the parameter

λ =
∑I

i=1
∑2

j=1(rTij − rCij)∑I
i=1

∑2
j=1(dTij − dCij)

, (1)

where it is implicitly assumed that 0 �= ∑I
i=1

∑2
j=1 dTij − dCij.

Here λ is a parameter of the finite population of 2I individ-
uals whose data are recorded in F , and because (rTij, rCij)

and (dTij,dCij) are not jointly observed, λ cannot be calculated
from observable data, so inference is required. Note that under
Fisher’s sharp null hypothesis of no effect H0 in Section 3.1,
λ = 0.

The effect ratio is the ratio of two average treatment effects.
In a paired, randomized experiment, the mean of the treated-
minus-control difference provides unbiased estimates of numer-
ator and denominator effects separately, and under mild condi-
tions, as I → ∞, the ratio of these unbiased estimates is con-
sistent for λ. The effect ratio measures the relative magnitude
of two treatment effects, here the effect of distance on mortality
compared with its effect on where mothers deliver. For instance,
if λ = 1/100, then for every hundred mothers discouraged by
distance from delivering at a hospital with a high-level NICU,
there is one additional infant death. With no further assump-
tions, λ is both estimable in a randomized experiment and in-
terpretable; however, the interpretation does not explicitly link
the effects in the numerator and the effects in the denominator.

As discussed by Angrist, Imbens, and Rubin (1996), with
additional assumptions such as the exclusion restriction and
monotonicity, λ would be the average increase in mortality
caused by delivering at a less-capable hospital among compli-
ers, that is, mothers with (dTij,dCij) = (1,0), or mothers who
would deliver at a low-level NICU if and only if no high-level
NICU was close by. Our inferences are valid for λ whether
or not the exclusion restriction lends this interpretation to λ.
Here λ is unknown and is a function of F .

3.3 Inference About an Effect Ratio
in a Randomized Experiment

Consider the null hypothesis, H(λ)
0 :λ = λ0. Here H(λ)

0 is a
composite hypothesis; there are many different finite popula-
tions F in which H(λ)

0 :λ = λ0 is true. Recall that the size of a
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test of a composite hypothesis is the supremum over null hy-
potheses of the probability of rejection, and a valid test has size
less than or equal to its nominal level. We test the hypothesis
with the aid of the statistic

T(λ0)

= 1

I

I∑
i=1

{
2∑

j=1

Zij(Rij − λ0Dij) −
2∑

j=1

(1 − Zij)(Rij − λ0Dij)

}

= 1

I

I∑
i=1

Vi(λ0), say, (2)

where, because Rij − λ0Dij = rTij − λ0dTij if Zij = 1 and Rij −
λ0Dij = rCij − λ0dCij if Zij = 0, we can write

Vi(λ0) =
2∑

j=1

Zij(rTij − λ0dTij) −
2∑

j=1

(1 − Zij)(rCij − λ0dCij).

(3)

We define yTij,λ0 = rTij − λ0dTij, yCij,λ0 = rCij − λ0dCij, and

S2(λ0) = 1

I(I − 1)

I∑
i=1

{Vi(λ0) − T(λ0)}2.

Propositions 1 and 2 state certain facts about the behavior
of T(λ0)/S(λ0) as a statistic for testing the composite hypoth-
esis H(λ)

0 :λ = λ0. More or less, under reasonable conditions,
Propositions 1 and 2 state that the test works. The propositions
are followed by several remarks that set these facts in either a
historical or practical context. The central result of Section 3.3
is the inequality (10) on tail probabilities for T(λ0)/S(λ0) when
the composite hypothesis H(λ)

0 :λ = λ0 is true. Because this is
an inequality, not an equality, one might mistakenly believe that
the use of (10) yields a conservative test of the composite hy-
pothesis H(λ)

0 :λ = λ0, and the remarks are largely intended to
clarify why such a thought is indeed a mistake. The issue turns
on the fact that the size of a test of a composite hypothesis is
a supremum of the probability of false rejection over all sim-
ple null hypotheses contained in the composite null hypothesis.
Because the inequality (10) is an equality for some simple null
hypotheses within the composite null hypothesis, in large sam-
ples, a test that derives p-values from (10) has an actual size
close to its nominal level; it is not conservative as a test of the
composite hypothesis.

Proposition 1. In a randomized experiment with Pr(Z =
z|F , Z) = 1/|�| for each z ∈ �, the Vi(λ0) are mutually in-
dependent given F , Z , and

E{Vi(λ0)|F , Z} = 1

2

(
yTi1,λ0 − yCi1,λ0 + yTi2,λ0 − yCi2,λ0

)
= μi,λ0 , say, (4)

var{Vi(λ0)|F , Z} = 1

4

(
yTi1,λ0 − yTi2,λ0 + yCi1,λ0 − yCi2,λ0

)2

= νi,λ0 , say, (5)

E{T(λ0)|F , Z} = (λ − λ0)
1

2I

I∑
i=1

2∑
j=1

(dTij − dCij)

= 1

I

I∑
i=1

μi,λ0 = μλ0
, say, (6)

var{T(λ0)|F , Z} = 1

I2

I∑
i=1

νi,λ0 , (7)

E{S2(λ0)|F , Z} − var{T(λ0)|F , Z}

= 1

I(I − 1)

I∑
i=1

(
μi,λ0 − μλ0

)2
. (8)

Proof. Given F , Z in a randomized experiment, E(Zij) =
1/2, so (4) and (5) follow from (3). The (Zi1,Zi2) in distinct
matched pairs i are mutually independent, so the Vi(λ0) are in-
dependent, and (7) follows from this. Using this in (2) yields

E{T(λ0)|F , Z} = 1

2I

I∑
i=1

2∑
j=1

{(rTij − rCij) − λ0(dTij − dCij)},

so that (6) follows from the definition (1) of λ. Finally, (8) fol-
lows directly from the work of Gadbury (2001, sec. 3) with, for
instance, his Xi = (yTi1,λ0 +yTi2,λ0)/2, εi = (yTi2,λ0 −yTi1,λ0)/2.

For large I, the hypothesis H(λ)
0 :λ = λ0 is tested by compar-

ing T(λ0)/S(λ0) to the standard normal cumulative distribution,
�(·). In the limiting argument here, with I → ∞, there is no
sampling of pairs from a population, but instead random treat-
ment assignment is being applied to an ever-larger number, I,
of pairs (e.g., Welch 1937). A moment’s thought reveals that
T(λ)/S(λ) might not converge in distribution to �(·) if, as pairs
are added to the experiment, these new pairs became increas-
ingly unstable (as they would, for instance, if the rTij’s were
sampled independently from a Cauchy distribution). Proposi-
tion 2 is substantially more general than anything needed for the
present work, because in the example the I inputs to T(λ)/S(λ)

share a finite support and have bounded moments of all orders.
In particular, condition (9) permits the matched sets to become
increasingly unstable as I increases but limits the rate at which
this happens. In Proposition 2, it would be sufficient that I in-
creased without bound over a set of values I1 < I2 < I3 < · · ·,
not necessarily 1, 2, . . . , with ρI and δI fixed.

Proposition 2. Consider a sequence of ever-larger paired
randomized experiments, (FI, ZI), where as the number I
of pairs increases, I → ∞, both ρI = 1

2I

∑I
i=1

∑2
j=1(rTij −

rCij) and δI = 1
2I

∑I
i=1

∑2
j=1(dTij − dCij) remain fixed at ρ

and δ, with δ > 0. Write λ = ρ/δ. With ϑIi = E{|Vi(λ) −
μi,λ|3|FI, ZI} and κIi = E[{Vi(λ)}4|FI, ZI], assume that

0 = lim sup
I→∞

∑I
i=1 ϑIi

(
∑I

i=1 νi,λ)
3/2

and

(9)
I∑

i=1

κIi = o(I2) as I → ∞.
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Then, for each k > 0,

lim sup
I→∞

Pr

{
TI(λ)

SI(λ)
≤ −k

∣∣FI, ZI

}
≤ �(−k) and

(10)

lim sup
I→∞

Pr

{
TI(λ)

SI(λ)
≥ k

∣∣FI, ZI

}
≤ �(−k).

Proof. The proof depends on two observations. (a) First,
observe that the right-side condition in (9) ensures that the
weak law of large numbers (Serfling 1980, sec. 1.8C, p. 27)
applies to IS2

I (λ), which, by (8), ensures that for all ε > 0,
δ > 0, there exists an I∗ such that for I ≥ I∗, δ > Pr[IS2

I (λ) −
I var{TI(λ)|FI, ZI} < −ε]. In words, in a sufficiently large ex-
periment, it is nearly certain that IS2

I (λ) does not greatly un-
derestimate I var{TI(λ)|FI, ZI} = (1/I)

∑I
i=1 νi,λ = ςI , say. (b)

Second, by Proposition 1, 0 = E{TI(λ)|F , Z} = (1/I)
∑I

i=1 μi,λ

for all I. From Proposition 1, the Vi(λ) − μi,λ are indepen-
dent with expectation 0 and variance νi,λ, so, given FI, ZI ,

the quantity
√

ITI(λ) = (1/
√

I)
∑I

i=1{Vi(λ) − μi,λ} has expec-

tation 0 and variance (1/I)
∑I

i=1 νi,λ. Using a version of the
central limit theorem (thm. 9.2 in Breiman 1968, p. 186), the
left-side condition in (9) implies that

√
ITI(λ)/

√
ςI converges

in distribution to the standard normal distribution as I → ∞.
Combining (a) and (b) yields (10).

Remarks 1 and 2 consider an older and simpler situation
than the main topic of this article—namely, the situation where
dTij − dCij = 1 for all ij, so that there are simply treated sub-
jects with Dij = Zij = 1 and controls with Dij = Zij = 0; that
is, everyone is a complier. Remarks 1 and 2 relate to an old
disagreement between Fisher and Neyman about the appropri-
ate definition of “no treatment effect.” Fisher (1935) defined
no effect as H0 : rTij = rCij, for i = 1, . . . , I, j = 1,2. In con-
trast, Neyman (1935) defined “no treatment effect” as no effect
on average, which is essentially the same as H0 :λ = 0 when
dTij −dCij = 1 for all ij. For the current discussion, the key point
is that Neyman’s H0 :λ = 0 is a composite hypothesis that in-
cludes Fisher’s hypothesis such that (10) holds as an equality
when Fisher’s hypothesis is true; thus a test using p-values de-
rived from (10) is not conservative as a test of Neyman’s com-
posite hypothesis, because the nominal level is achieved for
large I when Fisher’s hypothesis is true.

Remark 1. Under Fisher’s sharp null hypothesis of no ef-
fect, H0 : rTij = rCij, for i = 1, . . . , I, j = 1,2, the effect ratio λ

equals 0, and μi,λ = 0, so there is equality in (8) and (10). In
this case, T(0)/S(0) is the permutational t-statistic for testing
the null hypothesis of no effect, and Propositions 1 and 2 de-
scribe its moments and limiting distribution, so in this case, the
results closely resemble results of Fisher (1935), Welch (1937),
and Robinson (1973), among others.

Remark 2. If dTij − dCij = 1 for all ij, then λ in (1) is the
average treatment effect, where the effect rTij − rCij may vary
from one subject to another. In this case, Propositions 1 and 2
describe the behavior of the permutational t-statistic in testing
the composite hypothesis that the average treatment effect λ

is some number λ0. (In this case, there is a link to Neyman
1935 and Gadbury 2001.) If the treatment effect were an addi-
tive constant, rTij − rCij = λ0 for all ij, then (a) μi,λ0 = 0 for

all i; (b) expression (8) equals 0 and there is equality in (10);
(c) as I → ∞, a test that rejects Hc

0 : rTij − rCij = λ0 for all ij
when TI(λ0)/SI(λ0) ≥ k has size �(−k); and (d) because Hc

0
is one of the hypotheses in the composite hypothesis about the
average treatment effect, H(λ)

0 :λ = λ0, as I → ∞, the size of
the test of the composite hypothesis tends to �(−k).

Remark 3 is parallel to Remarks 1 and 2 except for the re-
moval of the restriction that dTij − dCij = 1. In particular, within

the composite hypothesis H(λ)
0 :λ = λ∗, there is a specific hy-

pothesis (11) such that equality holds in (10).

Remark 3. The model that asserts that the effect of the treat-
ment Zij on (rTij, rCij) is proportional to its effect on (dTij,dCij)

asserts that there is a λ∗ such that

rTij − rCij = λ∗(dTij − dCij) for i = 1, . . . , I, j = 1,2, (11)

and in this case λ in (1) equals λ∗ and μi,λ = 0, so with λ0 =
λ∗ expression (8) equals 0, and there is equality in (10). So,
as in Remark 2, because (11) is one of the hypotheses in the
composite hypothesis H(λ)

0 :λ = λ∗, as I → ∞, the size of the
test that rejects when TI(λ)/SI(λ) ≥ k tends to �(−k).

In a randomized clinical trial, say, we genuinely random-
ize treatment assignment, but the patients in the trial are not
a random sample from a population. Remarks 4 and 5 connect
Propositions 1 and 2 to random samples from an infinite pop-
ulation, as opposed to randomized treatment assignment in a
finite population. In particular, there is a sense, admittedly in-
formal, in which the inequality in (10) would be an equality if
we were sampling an infinite population. Importantly, Propo-
sition 2 shows that TI (̃λ)/SI (̃λ) yields appropriate inferences
without the fanciful notion that randomized experiments are
performed on a random sample from a population. Also, Re-
mark 5 shows that the common linear structural equation (12)
is a special case of the hypothesis (11), which is a special case
of the composite hypothesis H(λ)

0 :λ = λ∗.

Remark 4. Imagine that F was obtained by sampling a
superpopulation of matched pairs such that (a) distinct pairs
are mutually independent; (b) within pairs, subjects are ex-
changeable but perhaps not independent; (c) the distribution of
(rTij, rCij,dTij,dCij,xij,uij) is the same for all ij; (d) (rTij, rCij,

dTij,dCij) have expectations and variances; and (e) E(dTij) −
E(dCij) > 0. Then write λ̃ = E(rTij − rCij)/E(dTij − dCij). In this
superpopulation, the effect ratio λI based on a sample of I pairs
in Proposition 2 is a random variable that converges in proba-
bility to λ̃ as I → ∞. Also, in the superpopulation (i.e., without
conditioning on F ), the quantity Vi(̃λ) has expectation 0 and
constant variance σ 2 = E{Vi(̃λ)2}, so that I · S2(̃λ) converges
in probability to σ 2. Also, unconditionally, the Vi(̃λ) are iid, so
TI (̃λ)/SI (̃λ) converges in distribution to �(·). This is an alter-
native view of the approximation (10).

Remark 5. The most basic view of instrumental variables
links them to a linear structural equation,

Rij = θi + λ∗Dij + εij with εij ⊥⊥ Zij, (12)

and the current remark relates structural equations to Proposi-
tions 1 and 2. Unlike a regression, in a linear structural equa-
tion (12), it is imagined that if Dij were changed to Dij + δ,
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then Rij would change to Rij + δλ∗, in accordance with (12).
In (12), θi is a fixed, unknown matched-pair parameter link-
ing observations in the same pair. In T(λ0), differencing elimi-
nates θi. Contrast setting Dij = dTij with response Rij = rTij, say,
and Dij = dCij with response Rij = rCij, say, in (12). Then, us-
ing (12), it follows that rTij − rCij = λ∗(dTij − dCij), so that (11)
holds, and once again, λ in (1) equals λ∗, μi,λ = 0, and ex-
pression (8) equals 0, and there is equality in (10). In this case
TI (̃λ)/SI (̃λ) is similar to the Anderson–Rubin (1949) statistic
and the solution to TI (̃λ) = 0 is the Wald (1940) estimator.

3.4 Application to the Study of Perinatal Care

Recall that the effect ratio, λ, is the ratio of the increase in
mortality to the increase in use of a low-level NICU that oc-
curs with increased distance to a high-level NICU. Under the
exclusion restriction, λ is the effect on mortality among moth-
ers who would change the level of the NICU depending on their
distance from a high-level NICU. Recall from Table 2 that the
infant mortality rate for mothers far from a high-level NICU
was on the order of 2%. Among mothers who would switch
from a low-level NICU to a high-level NICU if one were close,
what is the estimated reduction in mortality?

In Table 3, the 95% confidence interval (CI) for λ is the solu-
tion to T(λ0)/S(λ0) = ±1.96, and the point estimate is the so-
lution to T(λ0)/S(λ0) = 0. In Table 3, the point estimates from
the two matched samples are similar, but the CI is shorter with
a stronger instrument. (This is not the principal reason for pre-
ferring a stronger instrument; see Section 4.)

The point estimate, 0.0090, is substantial, almost half the in-
fant mortality for mothers living far from a high-level NICU.
The lower endpoint of the 95% CI from the strong instrument,
0.0057, is also substantial; it is more than one-quarter of the
infant mortality for mothers living far from a high-level NICU.

It is natural to ask how Table 3 compares with two-stage least
squares applied to all the babies, with excess travel time as an
instrument for a low-level NICU. It should be emphasized that
two-stage least squares is not strictly appropriate here, for sev-
eral reasons. Using all of the babies means that most mothers
live in or near urban areas, and excess travel time rarely de-
cides where mother delivers, so it is a weak instrument in this
case. Two-stage least squares can give misleading answers with
a weak instrument (Bound, Jaeger, and Baker 1995), whereas
this problem does not arise with pivotal methods of the type in
Section 3.3 (see Imbens and Rosenbaum 2005). Moreover, both
Rij and Dij are binary, but two-stage least squares ignores this,
producing 4965 negative predicted values for Dij and 4236 pre-
dicted values for Dij that are >1; also, 97,035 babies (49%)
have negative predicted probabilities of death in the second
stage. Conceivably, negative probabilities of death for half of
the babies do no harm in two-stage least squares, but they are at

least disconcerting, and perhaps worrisome. In contrast, in Sec-
tion 3.3 binary responses are treated as binary responses. With
these caveats in mind, two-stage least squares yields a point
estimate of λ of 0.0083 and a 95% CI [0.0050,0.0116], with
length 0.0067; thus, compared with the strong instrument in Ta-
ble 3, the two-stage least squares yields an estimated effect that
is about 8% smaller (0.0083 vs. 0.0090) with a CI that is slightly
longer.

The inferences in Table 3 assume that within pairs matched
for covariates, living close to or far from a high-level NICU
occurs at random; that is, Pr(Z = z|F , Z) = 1/|�| for each z ∈
�. In the next section, Section 4, we consider the possibility
that this assumption is false.

4. SENSITIVITY ANALYSIS: WHAT IF THE
INSTRUMENT IS NOT RANDOMLY ASSIGNED?

4.1 General Method: Quantifying Departures From
Random Assignment

In previous sections, our inferences acted as if, within pairs
matched for xij, proximity to a high-level NICU is random, in
the sense that Pr(Z = z|F , Z) = 1/|�| for each z ∈ �. The sen-
sitivity analysis asks how unmeasured biases in assignment of
proximity might alter these inferences. The sensitivity analy-
sis imagines that before matching, mother ij had a probability
πij = Pr(Zij = 1|F ) of living far from a high-level NICU with
independent assignments for distinct mothers, and two mothers,
say ij and ij′, who might be matched because they have the same
observed covariates, xij = xij′ , might differ in their odds of liv-
ing far from a high-level NICU by at most a factor of � ≥ 1, so

1

�
≤ πij(1 − πij′)

πij′(1 − πij)
≤ �, for all i, j, j′, with xij = xij′ . (13)

Then the distribution of Z is returned to � by conditioning
on the event Z that Z ∈ �. It is straightforward to show that
this sensitivity model is exactly equivalent to assuming that for
z ∈ �,

Pr(Z = z|F , Z) = exp(γ zTu)∑
b∈� exp(γ bTu)

with u ∈ [0,1]2I,

(14)
where γ = log(�). [See Rosenbaum 1995, sec. 1.2, 2002,
sec. 4.2 for the quick, elementary steps demonstrating the
equivalence of (13) and (14), and see Wang and Krieger 2006
for related discussion.] If � = 1, so γ = 0, then πij = πij′ when-
ever xij = xij′ in (13) and Pr(Z = z|F , Z) = 1/|�| in (14) is the
randomization distribution. For fixed � > 1, the πij = Pr(Zij =
1|F ) are unknown to a bounded degree, so that an inference
quantity, such as a p-value or an estimate, is unknown but con-
fined to an interval. For several values of �, a sensitivity analy-
sis computes the range of possible inferences (say, the range

Table 3. Inference about the effect ratio λ under the assumption of random assignment of excess travel time within pairs matched for covariates

Weaker instrument Stronger instrument
99,174 pairs of two babies 49,587 pairs of two babies

Point estimate 0.0092 0.0090
95% CI 0.0036 0.0148 0.0057 0.0123

Length of 95% CI 0.0112 0.0066
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of possible p-values), thereby indicating the magnitude of bias
that would need to be present to alter the qualitative conclusions
reached assuming random assignment.

As noted in Section 3.1, Fisher’s sharp null hypothesis of
no treatment effect on (rTij, rCij) asserts that H0 : rTij = rCij, for
all ij. As noted in Section 3.2, if H0 were true, then the ef-
fect ratio λ would be 0, I · T(0) equals

∑I
i=1{

∑2
j=1 ZijrCij −∑2

j=1(1 − Zij)rCij}, and the randomization distribution of T(0)

yields the same p-values for testing Fisher’s null hypothesis
H0 as the permutational t-test (e.g., Welch 1937), and it was
used in Section 3.3 to test H(λ)

0 :λ = 0. If Fisher’s H0 were
true, then standard methods of sensitivity analysis might be ap-
plied to T(0). (See Rosenbaum 1987, 1991, 2002, secs 4.4–5,
2007; Rosenbaum 1999 for a sensitivity analysis with an instru-
ment; and, e.g., Gastwirth 1992, Marcus 1997, Lin, Psaty, and
Kronmal 1998, Robins, Rotnitzky, and Scharfstein 1999, Copas
and Eguchi 2001, Imbens 2003, and Small 2007 for alternative
methods of sensitivity analysis.)

4.2 Application to the Study of Regionalization
of Perinatal Care

In the case of matched pairs with binary responses, as in Sec-
tion 1, say that pair i is discordant if it contains exactly one
death, Ri1 + Ri2 = 1, and let I∗ ≤ I be the number of discor-
dant pairs and D be the set of the indices i of the I∗ discor-
dant pairs, so that |D| = I∗. If Fisher’s sharp null hypothesis of
no effect, H0 : rTij = rCij for all ij, were true, then the number
of pairs with Ri1 + Ri2 = 0, Ri1 + Ri2 = 1, and Ri1 + Ri2 = 2
would be determined by F , and hence fixed by conditioning
on F , but whether or not the one death in a discordant pair is
a treated death (i.e., whether

∑2
j=1 ZijRij equals 1 or 0) is not

a function of F alone, and is determined by the treatment as-
signment Zij within discordant pairs. In testing Fisher’s H0 in
matched pairs with binary responses, the distribution of T(0)

under (14) receives a nondegenerate contribution from matched
pair i only if the pair is discordant. In this case T(0) is effec-
tively the same as McNemar’s statistic; that is, under H0, as z
varies over �, the statistic T(0) is a linear function of the num-
ber of deaths, T∗, among treated subjects in discordant pairs,
T∗ = ∑

i∈D
∑2

j=1 ZijRij. In a randomized experiment under H0,
the randomization distribution of T∗ is binomial with sample
size I∗ and probability of success 1/2. Under H0, the bounds
on p-values from (14) are provided by comparing T∗ to two bi-
nomial distributions, one with sample size I∗ and probability of
success �/(1 +�) and the other with sample size I∗ and proba-
bility of success 1/(1 + �) (see Rosenbaum 1987, 1991, 2002,
sec. 4 for detailed discussion).

Tables 4 and 5 display the data in the form used for
McNemar’s test. Specifically, these tables count pairs, and dis-
cordant pairs fall in the off-diagonal cells. In Table 4 there are
I∗ = 554 + 748 = 1302 discordant pairs, and the upper bound
0.037 on the one-sided p-value is obtained by comparing 748
deaths among distant mothers to the binomial with 1302 tri-
als and probability �/(1 + �) = 1.22/(1 + 1.22) of an event.
As is shown more clearly in Table 6, the two quoted values
of � in Tables 4 and 5 (� = 1.07 and � = 1.22) are to two
decimals the values of � in which the conventional 0.05 signif-
icance level is achieved. In Tables 4 and 5 the larger study with

Table 4. Mortality in the 25-minute, 50-sinks match with 49,587
pairs. The upper bound on the one-sided p-value is 0.037 for � = 1.22

Near high-level NICU
Zij = 0

Alive, Rij = 0 Dead, Rij = 1

Far from high-level Alive, Rij = 0 48,070 554
NICU, Zij = 1 Dead, Rij = 1 748 215

a weaker instrument is quite a bit more sensitive to unmeasured
biases (� = 1.07 vs. � = 1.22), despite the larger sample size,
which is precisely the prediction of statistical theory (Small and
Rosenbaum 2008).

In brief, with a strong instrument in Table 4, results are sen-
sitive to an unmeasured bias of magnitude � > 1.22, whereas
with a weak instrument in Table 5, results are sensitive to an un-
measured bias of magnitude � ≥ 1.07. To put this in perspective
using techniques not described here, an unobserved covariate
associated with a doubling of the odds of death and a doubling
of the odds of delivering at a low-level NICU corresponds to
� = 1.25, whereas an unobserved covariate associated with a
doubling of the odds of death and a 25% increase in the odds
of delivering at a low-level NICU corresponds to � = 1.08.
[See Gastwirth, Krieger, and Rosenbaum 1998 and Rosenbaum
and Silber 2009b for a detailed discussion of two correspon-
dences between one-parameter (�) and two-parameter sensitiv-
ity analyses of the type just mentioned.]

Although Tables 4 and 5 pay attention to which mother in a
pair has a greater excess travel time to a high-level NICU, they
ignore the actual magnitude of the time. For the match with the
stronger instrument, the mean difference is about 34 minutes,
but this difference does vary from pair to pair. Presumably, the
encouragement to deliver at a low-level NICU is greater if the
excess travel time to a high-level NICU is 45 minutes rather
than 25 minutes. Would the findings be different if we took
into account the magnitude of the difference in excess travel
time? This is a natural question to ask because one conventional
method (two-stage least squares) does take into account such
magnitudes. McNemar’s test focuses on pairs discordant for in-
fant mortality, relating mortality in these pairs to the binary in-
dicator of proximity. Among randomization tests, a familiar test
that takes into account magnitudes is Wilcoxon’s signed-rank
test applied within pairs discordant for mortality, where the test
is applied to the difference in magnitude of excess travel time.
Wilcoxon’s test gives greater weight to a discordant pair if the
difference in travel times is larger. (See Rosenbaum 1991, 2002,
sec. 4 for details on the sensitivity analysis for Wilcoxon’s test

Table 5. Mortality in the 0-minute, 0-sinks match, with 99,174 pairs.
The upper bound on the one-sided p-value is 0.070 for � = 1.07

and 0.97 for � = 1.22

Near high-level NICU
Zij = 0

Alive, Rij = 0 Dead, Rij = 1

Far from high-level Alive, Rij = 0 96,044 1226
NICU, Zij = 1 Dead, Rij = 1 1391 574
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Table 6. Sensitivity analysis, unweighted and weighted, with a stronger and a weaker instrument. The table gives upper bounds on the
one-sided p-value for testing no effect on mortality for a given value of �. In each column, the last p-value less than or equal to 0.05 is in bold

Instrument

Weaker Stronger

Measure: Mortality Weighted Mortality Weighted
� n = 99,235 n = 99,235 n = 49,587 n = 49,587

1 0.0006 0.0001 0.0000 0.0000
1.05 0.0239 0.0034 0.0000 0.0000
1.1 0.2147 0.0346 0.0001 0.0004
1.15 0.6348 0.1671 0.0021 0.0040
1.2 0.9238 0.4401 0.0177 0.0233
1.22 0.9681 0.5659 0.0352 0.0414
1.23 0.9804 0.6263 0.0481 0.0539
1.24 0.9884 0.6834 0.0644 0.0690
1.25 0.9933 0.7360 0.0845 0.0871

applied to pairs discordant for a binary outcome.) Table 6 dis-
plays four sensitivity analyses, two with the stronger instrument
and two with the weaker instrument, and two using McNemar’s
test and two using a weighted test. In Table 6 the weighting is
of some help to the weak instrument—it downweights pairs in
which the difference in excess travel time is too small to in-
fluence hospital choice—but there is less sensitivity to unmea-
sured bias with a stronger instrument, despite the reduction in
sample size.

5. DISCUSSION: WHAT CHANGES WHEN AN
INSTRUMENT IS STRENGTHENED?

Pairing all of the babies in Pennsylvania using observed co-
variates yields 99,174 pairs and a weak instrument. Pairing
about half of the babies in Pennsylvania using observed co-
variates and excess travel time yields 49,587 pairs and a much
stronger instrument. Making an instrument stronger in this way
changes a few things that must be noted; however, none of
the changes are particularly worrisome, because they were pro-
duced in a known, algorithmic way using only observed covari-
ates and travel time.

In the first instance, the population under study has changed
slightly, but the changes are clearly indicated in Table 1, be-
cause these are the variables used to change the population.
The biological aspects of babies and mothers are largely the
same in the two matched samples, as are measures of education
and income. Notable in Table 1 is the reduction in the propor-
tion of blacks from 15% in the 99,174 pairs to about 5% in
the 49,587 pairs. Why did this happen? Because most blacks
in Pennsylvania live in or near urban areas, they are typically
close to a hospital with a high-level NICU, and it is hard to
pair them with blacks living far from high-level NICUs. The
larger match also contains slightly more people who rent rather
than own their homes, and slightly fewer mothers with fee-for-
service health insurance (e.g., Blue Cross) and slightly more
with a health maintenance organization (HMO). Within pairs,
these covariates are balanced, but the population of pairs has
shifted slightly. In brief, the smaller match is explicitly less of-
ten black and implicitly less often urban. In terms of the shift in
the population, when building a stronger instrument, the inves-
tigator should describe and discuss the shift using, for instance,
a table similar to Table 1.

In the second instance, if the instrument is stronger, then
mothers are more likely to comply, and thus the meaning of
a “complier” has changed. Importantly, we did not use compli-
ance behavior in building the matched sample; rather, we used
excess travel time, whether or not travel time influenced where a
mother delivered. In the larger match, the average difference in
travel time within pairs was less than 14 minutes, whereas in the
smaller match, it was more than 34 minutes. Imagine being in
labor with the knowledge that it will take an extra 34 minutes to
reach a hospital with high-level NICU beyond the time it takes
to reach a hospital with a low-level NICU. It is easy to imagine
a mother who would comply in response to 34 extra minutes,
but not to 14 extra minutes. It is not the mother that changes;
rather, it is the incentive on an offer for compliance. To the ex-
tent that the Wald estimator estimates the average causal effect
on compliers (Angrist, Imbens, and Rubin 1996), it is estimat-
ing an average over different groups of mothers with a strong
instrument and a weak instrument. If one believes that the typ-
ical mother will comply for an extra 34 minutes but not for an
extra 15 minutes, then the smaller match with a stronger instru-
ment will be somewhat more likely to describe the effect for a
typical mother. That is, the smaller match looks a little less like
Pennsylvania than the larger match, but compliance behavior is
normal behavior in the smaller match, and it is less common
behavior in the larger match, so an average effect over compli-
ers is an average over normal mothers in the smaller match and
an average over somewhat unusual mothers in the larger match.
We would prefer a study in which a strong incentive to comply
was offered to some mothers and denied to others in an essen-
tially random manner; the typical mother would then respond
to the strong incentive.

6. SUMMARY: STRONGER INSTRUMENTS
BY DESIGN

In Pennsylvania, excess travel time is a fairly weak instru-
ment for delivery at a hospital with a low-level NICU, because
most people live in or near urban areas, so they live close to
several hospitals of varied capabilities. We could have accepted
Pennsylvania as it is, accepting also a weak instrument, or could
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have searched for another state or cross-state region whose ge-
ography made excess travel time into a stronger instrument. In-
stead, we built a matched study in which very similar moth-
ers and babies were paired with very different excess travel
times; that is, we built a study with a stronger instrument. The-
ory from Small and Rosenbaum (2008) and the empirical re-
sults presented here support the conclusion that a smaller study
with a strong instrument is preferable to a larger study with a
weak instrument. Confidence intervals were shorter and con-
clusions were less sensitive to unmeasured biases in the smaller
but stronger matched comparison.

[Received August 2009. Revised February 2010.]
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