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An effect is attributable to treatment if it would not have been observed had the individual been exposed to control instead. Extending
earlier results on attributable effects in unmatched groups, a method of exact randomization inference and sensitivity analysis is developed
for case-referent, case-crossover, and cohort studies with matched sets, and a large sample approximation to the exact inference is given.
The unmatched case, considered previously, has certain symmetries that the matched case, considered here, does not have. As a result,
approximation for the matched case requires the use of the recently developed method of asymptotic separability, which was not needed
in the unmatched case. Several examples are presented, including a case-referent study of Helicobacter pylori infection as a cause of
myocardial infarction, a case-crossover study of alcohol as a cause of injury, a cohort study of women who gave birth at home, and a
study of the effects of cadmium exposure with a continuous outcome measuring kidney function. Unlike tests of no effect, inference
about attributable effects has a different form in case-referent and cohort studies.

KEY WORDS: Asymptotic separability; Attributable effect; Displacement effect; Randomization inference; Sensitivity analysis.

1. ATTRIBUTABLE EFFECTS IN EXPERIMENTS AND
OBSERVATIONAL STUDIES

1.1 How Does Randomization Affect Inference?

In his 1935 book Design of Experiments, Fisher care-
fully argued that the random assignment of treatments in
experiments justifies certain inferences about the effects
caused by those treatments—that randomization forms the
“reasoned basis for inference” in experiments—and that these
same inferences would not be justified by identical data
obtained in a nonrandomized study. In Fisher’s view, causal
inference depends partly on the observed data, but also partly
on how the data were obtained. This view has two desir-
able consequences. First, it serves to encourage randomized
experimentation when randomization is ethical and feasible.
Second, it forces analyses of nonrandomized or observational
studies of treatment effects to explicitly acknowledge, as part
of the quantitative findings, greater uncertainty about causal
effects than would be present had random assignment been
used.

A limitation is that many randomization tests of the hypoth-
esis of no treatment effect are not paired with confidence
intervals. If the treatment has an additive effect, � , then a ran-
domization test of no effect can be inverted to yield confi-
dence intervals and point estimates for � (see, e.g., Hodges and
Lehmann 1963; Moses 1965; Lehmann 1963, 1975; Rosen-
baum 1995a, sec. 2). The model of an additive effect is use-
ful in many settings but is inapplicable in many others—
for instance, for binary responses, where inferences typically
invoke distributional assumptions not derived from random
assignment. This article extends a line of reasoning begun in
earlier work (Rosenbaum 2001), in which attributable effects
are used to substantially expand the collection of randomiza-
tion tests that may be inverted to yield confidence intervals.
The approach also yields sensitivity analyses that measure the
added uncertainty present when treatments are not randomly
assigned.
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An attributable effect describes how treated subjects would
have responded had they been spared exposure to the treat-
ment. As a consequence, the attributable effect depends in part
on the identity of the subjects exposed to treatment, and so dif-
ferent randomizations typically produce different attributable
effects. In this sense, the attributable effect is not a parameter,
but rather is an unobserved random variable. Nonetheless,
inference proceeds along a relatively conventional path. Before
embarking on that path, I present a useful illustration.

1.2 Example: Infection as a Possible Cause of
Early Onset Myocardial Infarction

The example in this section is from an observational study
and is intended to provide the simplest illustration of the gen-
eral method developed in the current article. With this goal
in mind, the analysis presumes that matching has been effec-
tive in removing bias due to nonrandom assignment, and the
discussion is entirely informal. After notation is developed in
Section 2 and methods in Section 3, this example and sev-
eral others are discussed more formally, and some analyses
done to account for possible hidden biases due to nonrandom
assignment.

Motivated by earlier findings, Danesh et al. (1999) con-
ducted a case-referent study of Helicobacter pylori infection
as a possible cause of myocardial infarction (MI) in relatively
young people, age 30–49. This thoughtful study is of interest
not only for its medical conclusions, but also for its method-
ology. It is an epidemiologic study appended to a randomized
clinical trial, in which blood samples and questionnaires were
obtained from cases who participated in the trial and relatives
who did not. Two matched comparisons were reported, one of
the cases to their own siblings and the other to the relatives of
other cases, matching for age and gender. The authors write
(p. 1157):

We report two complementary studies, one comparing young patients with
acute myocardial infarction with young controls (which should maximize
the strength of any association) and one comparing people with myocardial
infarction at any age with an unaffected sibling (which should minimize any
artifactual association due to confounding factors).
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The sibling comparison was performed and reported as
matched pairs, thus whereas the other analysis was unmatched.
I use the sibling data to illustrate methods in this article. How-
ever, the two comparisons differ in interesting ways, and the
reader should refer to Danesh et al. (1999) for the full story.
In particular, the sibling analysis exhibited a smaller odds
ratio and marginal significance, whereas the other comparison
found a stronger and more significant association.

The matched sibling analysis is given in Table 1, which
counts pairs in the manner of McNemar’s test. For example,
in 173 pairs, both the case and the sibling were seropositive
for H. pylori.

The conditional maximum likelihood estimate of an odds
ratio that is constant over pairs is 91/67 = 1�36, and a one-
sided deviate for McNemar’s test of �91− 67�/

√
91+67 =

1�91 (MacMahon and Trichopoulos 1996, p. 288), and so
would be judged significant in a one-sided .05-level test, where
the critical value from the normal distribution would be 1.65.
This reference distribution for McNemar’s test may be derived
as the normal approximation to the randomization distribution,
so the reference distribution implicitly assumes that the hid-
den biases are absent.

Although formal justification of the analysis requires some
attention to detail, an inference about attributable effects may
be presented informally in an intuitive manner. Suppose that of
the 91 MI cases, 4 were caused by H. pylori infection; that is,
A= 4 cases of MI are attributable to infection. If this suppo-
sition were true, then without those 4 cases, the remaining 87
cases would satisfy the null hypothesis of no effect. Moreover,
McNemar’s test becomes �87−67�/

√
87+67 = 1�61, so with

87 exposed cases, the null hypothesis is barely plausible. In
contrast, with 3=A, McNemar’s test is �88−67�/

√
88+67=

1�69, and the null hypothesis is barely rejected at the one-
sided .05 level.

Although intuitive, the analysis just presented raises sev-
eral questions. Is there some formal structure under which this
analysis is justified? Is this a randomization inference? The
analysis presumed that the MIs attributable to infection were
all to be found among the discordant pairs, so that removing
them converted discordant pairs into concordant pairs, reduc-
ing the effective sample size. Might some MIs attributable to
infection be found among concordant pairs? If so, removing
them creates discordant pairs from concordant pairs and in
turn increases the effective sample size. Why does the anal-
ysis presume that the attributable MIs are among the discor-
dant pairs? Can the analysis be extended to sensitivity analy-
ses for hidden biases, cohort studies, matching with multiple
controls, and continuous responses? If so, what changes are
needed for these extensions? The general discussion in Sec-
tions 2 and 3 addresses these issues, and later sections provide
practical illustrations.

Table 1. Helicobacter Pylori Seropositivity
for MI Cases and Siblings

Sibling+ Sibling−
Case+ 173 91
Case− 67 179

One of these issues merits motivating discussion. The issue
of attributable MIs among concordant and discordant pairs
is an aspect of the difference between the matched case,
discussed in this article, and the unmatched case, discussed
in earlier work (Rosenbaum 2001). In the unmatched case,
all treated subjects who exhibit a response are indistinguish-
able, so the number of attributable responses matters but the
identity of the respondents does not. This is not true in the
matched case. Even with matched pairs, concordant pairs dif-
fer from discordant pairs. Moreover, in matching with mul-
tiple controls, there are several types of discordant matched
sets. In saying, as before, that it is not plausible that three or
fewer of the MIs are attributable to infection but that four or
more is plausible, one is saying that no pattern yielding three
attributable effects is plausible, but some pattern yielding four
or more is plausible. In paired case-referent studies, the pat-
tern of three attributable effects that is most difficult to reject
is the pattern that assumes that all three attributable effects
are among the discordant pairs, thereby reducing the effective
sample size. If that most difficult pattern is rejected, then so
too are all other patterns, and three MIs being attributable to
infection is not plausible. Somewhat surprisingly, the situation
in paired cohort studies is entirely different; see Section 6.
These issues are clarified in Sections 2 and 3.

2. NOTATION AND REVIEW: MATCHED
EXPERIMENTS AND OBSERVATIONAL STUDIES

2.1 Notation: Treatment Assignments, Treatment
Effects, and Attributable Effects

The ith of I matched sets, i = 1	 
 
 
 	 I , contains ni ≥ 2
subjects, numbered j = 1	 
 
 
 	 ni, with N =∑

ni subjects in
total. Subjects were matched on observed pretreatment mea-
sures or covariates, such as age. In Section 1.2 there are
I = 510 pairs of two subjects, ni = 2 for i = 1	 
 
 
 	510 and
N = 2× 510 = 1	020. The subscript j is assigned at random
to subjects and therefore conveys no information about them.
Write Zij = 1 if the jth subject in set i was exposed to the
treatment, Zij = 0 if this subject was not exposed, and write
Zi+ = ∑ni

j=1 Zij for the number of exposed subjects in set i.
In Section 1.2, Zi+ = 2 for 173 concordant pairs, Zi+ = 1 for
158 = 67+ 91 discordant pairs, and Zi+ = 0 for 179 concor-
dant pairs. For any integer q with n ≥ q ≥ 0, write ��n	 q�
for the set containing the

(
n

q

)
vectors of dimension n with

q coordinates equal to 1 and n− q coordinates equal to 0,
so that, given Zi+	 it is known that Zi = �Zi1	 
 
 
 	Zi	ni

�T ∈
��ni	Zi+�. In Section 1.2 there are three relevant sets,
namely ��2	2� = ��1	1�T �	��2	1� = ��1	0�T 	 �0	1�T �, and
��2	0� = ��0	0�T �. In a matched, randomized experiment,
one treatment assignment, zi ∈ ��ni	Zi+�, would be picked
at random, each having probability

(
n

Zi+

)−1
, with independent

assignments in distinct matched sets. In an observational study,
treatments are not randomly assigned, and Pr�Zi = zi� may
not equal

(
n

Zi+

)−1
for zi ∈ ��ni	Zi+� and Pr�Zi = zi� may be

unknown. In particular, in observational studies, there is often
the concern that subjects matched for observed covariates may
differ in terms of an unobserved covariate, say uij , related
to treatment assignment. Write Z = �Z1	 
 
 
 	ZI � for the N -
dimensional vector recording all of the treatment assignments.
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Each subject has two potential binary responses, rTij and
rCij , where rTij would be observed if the subject were exposed
to treatment and rCij would be observed if not (Neyman 1923;
Rubin 1974). Here a 1 response signifies that a particular event
occurred, whereas a 0 response indicates that it did not. Fol-
lowing Hamilton (1979), it is assumed that the exposure to
treatment may cause the event in a person who would not oth-
erwise experience it, but the treatment does not prevent the
event in a person who would otherwise experience it; that is,
it is assumed that rTij ≥ rCij . Write � for the N -dimensional
vector of treatment effects, �ij = rTij−rCij , in the lexical order.
The observed response is Rij = ZijrTij + �1−Zij�rCij . Write
Ri+ =∑ni

j=1 Rij for the number of subjects who had events in
set i and rCi+ =∑ni

i=1 rCij for the number who would have had
events if exposure to the treatment had been prevented. In a
paired case-referent study, as in Section 1.2, each pair con-
tains one case with Rij = 1 and one referent with Rij = 0, so
Ri+ = 1 for every pair i.

The attributable effect is A = ∑
i	 j Zij�rTij − rCij� =∑

i	 j Zij�ij . This is the number of treated subjects who expe-
rienced events caused by the treatment, that is, events that
would not have occurred if the treated subjects had not been
exposed to treatment. For instance, in Section 1.2, the pos-
sibility that A = 3 was judged implausible, but the possibil-
ity that A = 4 was judged barely plausible. Notice that the
attributable effect is not a parameter, because assigning treat-
ments, Zij , differently would change the value of A. Rather,
A is a random variable whose value is not observed, because
rTij and rCij are never observed jointly on the same person.
The data do provide some information about A. For instance,
in a randomized experiment, if the null hypothesis of no treat-
ment effect, H0 � rTij = rCij for all i	 j, is rejected by a ran-
domization test (Fisher 1935), then it is not plausible that
A = 0. Write T =∑

i	 j ZijRij for the number of treated indi-
viduals with events, so that T −A=∑

i	 j ZijrCij is the number
of treated subjects who would have exhibited events even in
the absence of treatment. In Section 1.2, T = 173+91 = 264
of the 510 cases of MI were exposed to treatment (i.e., 264
were seropositive), but of course we cannot observe the num-
ber, A, of MIs that would not have occurred without exposure
to treatment.

In Fisher’s (1935) randomization inference, quantities that
depend on the random assignment of treatments, Zij , were ran-
dom variables, but other quantities were fixed features of the
finite population of N subjects. In this way, in a randomized
experiment, random quantities have distributions created by
randomization, so randomization forms the basis for inference.
The potential responses, rTij and rCij , and the treatment effect,
�ij = rTij − rCij , are fixed, but the observed response Rij =
ZijrTij+�1−Zij�rCij and the attributable effect A=∑

i	 j Zij�ij

are random variables.
This article discusses the two common situations with a

single notation and a single set of formulas. The first situation
is a cohort study in which one treated subject is matched to
ni − 1 untreated controls, so that Zi+ = 1 for i = 1	 
 
 
 	 I .
The second situation is a case-referent study in which one
case with an event is matched to ni−1 noncases or referents
without the event, so that Ri+ = 1 for i = 1	 
 
 
 	 I . One of
these two situations is assumed to hold throughout. These two

situations differ in many important ways, but the differences
do not matter for the technical details of the current argument,
so it is convenient and compact to discuss both at once. In
both situations, the number of exposed subjects with events,∑ni

j=1 ZijRij , is either 1 or 0 in each matched set i.
Attributable effects are related to measures of attributable

risk, as discussed by, for example, Hamilton (1979), Mac-
Mahon and Trichopoulos (1996), Walter (1976), and Robins
(1988). The continuous analogs of attributable effects, namely
the displacement effects discussed in Section 6, are related
to a variety of methods, including the control median test
of Gart (1963) and Gastwirth (1968), the methods based on
placements of Fligner and Wolfe (1976) and Orban and Wolfe
(1982), and the quantile comparison function of Li, Tiwari,
and Wells (1996). The attributable effect A/

∑
Zi+ is the aver-

age effect actually experienced by the
∑

Zi+ treated subjects
in the current study. If one imagined that the N subjects
were randomly sampled from an infinite population, then the
expectation of A/

∑
Zi+ averaged over the imagined random

sampling is a population parameter that has been used for vari-
ous purposes (see, e.g., Rosenbaum and Rubin 1985; Heckman
1997).

2.2 Model for Treatment Assignment

The model for treatment assignment in this section forms
the basis for randomization inference in randomized experi-
ments and for studying the sensitivity of causal inferences to
hidden biases in nonrandomized experiments. In a random-
ized experiment, the model says simply that treatments were
randomly assigned, Pr�Zi = zi� =

(
n

Zi+

)−1
for zi ∈ ��ni	Zi+�,

independently in distinct matched sets. For instance, in a ran-
domized paired experiment, every pair contains a treated sub-
ject and a control, ni = 2	Zi+ = 1, there are two possible treat-
ment assignments in each pair, ��2	1� = ��1	0�T 	 �0	1�T �,
and each assignment has probability Pr�Zi = zi�=

(2
1

)−1 = 1/2,
yielding the randomization distribution for McNemar’s test.
In an observational study, the model for treatment assignment
says two things: first, matching on observed covariates may
have made subjects somewhat similar in their chances of expo-
sure to treatment, but second, unlike a randomized experiment,
exposure to treatment may not be completely random within
matched sets, because the matching may have failed to control
for an important unobserved covariate, uij . The formal model
for treatment assignment that follows may be derived from
three assumptions: (1) that in the population before match-
ing on covariates, treatments are assigned independently with
probabilities that may vary from person to person and may be
unknown; (2) that the matching of treated subjects to controls
or cases to referents was based solely on observed covariates;
and (3) that subjects in the same matched set may differ in
their odds of receiving treatment by at most a factor of � ≥ 1.
Here � is an unknown sensitivity parameter whose value is
varied to display the sensitivity of the inference to departures
from random assignment. The derivation of the model from
these assumptions has been given in earlier work (Rosenbaum
1995a, sec. 4.2; 1995b, sec. 1.2) and is not repeated here.
The formal model for treatment assignment involves an unob-
served covariate uij with 1 ≥ uij ≥ 0, perhaps an unobserved
binary attribute, which was not controlled by matching. Write
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� = log��� and ui = �ui1	 
 
 
 	 ui	ni
�T . For zi ∈��ni	 zi+�, the

model asserts that

Pr�Z1 = z1	 
 
 
 	ZI = zI �Z1+ = z1+	 
 
 
 	ZI+ = zI+�

=
I∏

i=1

exp��zTi ui�∑
bi∈��ni	zi+� exp��bT

i ui�
� (1)

The case � = 1 or � = 0 yields random assignment of treat-
ments. Specifically, when � = 1 so that � = 0, the unob-
served covariate does not matter, and zi+ of the ni individuals
in set i receive the treatment at random with equal prob-
abilities, Pr�Zi = zi� =

(
n

zi+

)−1
, as in a randomized experi-

ment. For instance, in a paired randomized experiment, ni =
2	Zi+ = 1, expression (1) is simply 1/2I for each of the 2I

possible treatment assignments in the I treated/control pairs.
Other models for sensitivity analysis in observational studies
have been discussed by Cornfield et al. (1959), Greenhouse
(1982), Rosenbaum and Rubin (1983), Rosenbaum (1986),
Manski (1990), Copas and Li (1997), Lin, Psaty, and Kronmal
(1998), Gastwirth, Krieger, and Rosenbaum (1998), Robins,
Rotnitzky, and Scharfstein (1999), Wasserman (1999), and
Robins, Greenland, and Hu (1999).

Because rTij ≥ rCij , a treated subject without an event would
not have an event under control, and a control subject with an
event would also have an event under treatment. The hypoth-
esis � = �0 is compatible with the data if �ij = 0 whenever
either �Zij = 1 and Rij = 0� or �Zij = 0 and Rij = 1�; other-
wise, the hypothesis is incompatible (see Rosenbaum 2001 for
use of compatible hypotheses). An incompatible hypothesis
can be rejected with certainty, that is, with type 1 error rate
of 0. If the hypothesis is true, then it is compatible for every
Z, whereas a false hypothesis may be compatible for some Z
and not for others.

If the null hypothesis H0� �= �0 were true, then rCij would
be known for all i	 j, because rCij would equal the observed
quantity, Rij −Zij�0ij . Write A0 =

∑
i	 j Zij�0ij , so that under

the null hypothesis, T −A0 = ∑
i	 j ZijrCij . Now

∑
i	 j ZijrCij

is the sum of I independent binary random variables, where
Bi =

∑
j ZijrCij . Write �i = Pr�Bi = 1�, which is unknown in

observational studies because uij is unknown. Keeping in mind
that either Zi+ = 1 for i= 1	 
 
 
 	 I for a cohort study or Ri+ =
1 for i= 1	 
 
 
 	 I for a case-referent study, one can show that
�i is bounded above by a quantity �̄i, where

�̄i =
�Zi+rCi+

�Zi+rCi++ni−Zi+rCi+
≥ Pr�Bi = 1�

≥ Zi+rCi+
Zi+rCi++��ni−Zi+rCi+�

	 (2)

and, in particular, in a randomized experiment, � = 1, so that

Pr�Bi = 1�= �i = �̄i =
Zi+rCi+

ni

� (3)

(See Rosenbaum 1988 for proof in a cohort study and Rosen-
baum 1991 for the quite different proof in a case-referent
study.) For example, in Section 1.2, if infection never causes
MI, so rTij = rCij for every i	 j, then the 67+ 91 discordant
case-referent pairs all have ni = 2	Zi+ = 1, and rCi+ = 1, and

�̄i = �/�� + 1�; in particular, if there is no hidden bias, so
� = 1, then �̄i = 1/2 as in a randomized experiment.

It is important to note that when the hypothesis H0� �= �0

is true, �̄i can be calculated from the observed data and the
hypothesis. In Section 3.1, this means that it is straightfor-
ward to test any one hypothesis, H0� � = �0, because the
needed quantities can be computed by combining the infor-
mation given by the data with the information given by the
hypothesis.

3. INFERENCE

3.1 Testing a Specific Hypothesis About �

Consider testing the null hypothesis H0� �= �0 against the
alternative H1� �≥ �0, � 
= �0. If the null hypothesis is incom-
patible, then reject it immediately with type 1 error rate of 0.
Otherwise, if the null hypothesis were true, then it would fol-
low that rCij = Rij −Zij�0ij , and T −A0 =

∑
i	 j ZijrCij =

∑
i Bi

would be distributed as the sum of I independent binary tri-
als with Pr�Bi = 1� = �i. Write ��k	�� for the probability
of at least k successes in I independent binary trials, where
trial i has probability of success �i and � = ��1	 
 
 
 	�I�

T .
If � were known, the tail probability Pr�

∑
i Bi ≥ k�= ��k	��

would be the one-sided significance level for testing the null
hypothesis when it is computed at the observed value of the
statistic, k = T −A0.

In a randomized experiment, under the null hypothesis
H0� � = �0, one computes first rCij = Rij −Zij�0ij , next rCi+,
then �i = �̄i = Zi+rCi+/ni using (3), and finally the exact tail
area Pr�

∑
i Bi ≥ k� = ��k	��. In a sensitivity analysis with

� > 1 in an observational study, the tail area Pr�
∑

i Bi ≥ k�=
��k	�� cannot be computed because the uij are unknown;
however, a sharp upper bound on the tail area is given by
��k	 �̄�≥ ��k	��. In either case, as I →�	��k	 �̄� may be
approximated by

��k	 �̄�→ 1−"

(
k−∑

i �̄i√∑
�̄i�1− �̄i�

)
� (4)

To illustrate, return again to the example in Section 1.3
and assume there is no hidden bias, so � = 1. There were
T = 173+91 MIs among infected cases, and 91 of these are
in discordant pairs. Suppose that the hypothesis H0� � = �0

results in exactly A0 = ∑
i	 j Zij�0ij = 3 MIs attributable to

infection, and all 3 are among 91 discordant pairs. Under this
hypothesis, Ri+ = rCi++1 for these 3 pairs and Ri+ = rCi+ for
the remaining 507 pairs, and in a paired case-referent study,
Ri+ = 1 for every pair. From (2) or (3), there are four situa-
tions: (1) �̄i = 1 for the 173 concordant pairs with Zi+ = 2, (2)
�̄i = 0 for the 179 concordant pairs with Zi+ = 0, (3) �̄i = 0
for the three discordant pairs with Zi+ = 1 and rCi+ = 0, and
(4) �̄i = �/�� + 1� = 1/2 for the remaining 155 discordant
pairs with Zi+ = 1 and rCi+ = 1. Then T −A0 = 173+91−3
has null expectation

∑
i �̄i = 173+ 155/2 and null variance∑

�̄i �1− �̄i� = 155× 1/2× 1/2, yielding the standardized
deviate

T −A0 −
∑

i �̄i√∑
�̄i�1− �̄i�

= �173+91−3�− �173+ �155/2��√
155× �1/2�× �1/2�

= 88−77�5√
38�75

= 1�69	
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which is identical to the result in Section 1.2. In this very
simple case, the exact test of H0� � = �0 based on ��k	 �̄�
can be computed from the binomial distribution with 155 tri-
als and probability �̄i = 1/2 of success. Notice also that a
different result might be obtained with a different hypothesis,
and, of course, there are many possible hypotheses. The goal
in Section 3.4 is to identify a single hypothesis to test.

If �0 and �̃0 are two compatible hypotheses with �0 − �̃0 ≥
0, then say that �0 is higher than �̃0, so �0 attributes more
events to treatment than �̃0 does. If H0� � = �0 is rejected
as too small—that is, if it is rejected against the alternative
H1� � ≥ �0	� 
= �0, and if �0 is higher than �̃0—then �̃0 is
also rejected. The proof of this important but intuitive fact is
given in the Appendix.

3.2 Confidence Sets for �

In principle, a one-sided 100�1−#�% confidence set � for
� may be obtained by testing each hypothesis of the form
H0� � = �0 against the one-sided alternative using the proce-
dure in Section 3.1, retaining in � all values of �0 not rejected
by the test. There is no difficulty with this in principle. How-
ever, the set estimate � of � obtained in this way is a set,
perhaps quite a large set, of N -dimensional vectors of 1 and
0, so � is not easy to describe and interpret.

Notice that if �0 is higher than �̃0, and if �̃0 ∈ � , then
�0 ∈ � .

3.3 Attributable Effects

Is it plausible that a or fewer of the treated subjects had
events caused by their exposure to the treatment? In other
words, is it plausible that for a or fewer of the treated subjects,
the effect is �ij = rTij−rCij = 1, so that a≥A=∑

i	 j Zij�ij? Is
there a �0 ∈ � such that a ≥∑

i	 j Zij�0ij? Or, alternatively, is
a ≥∑

i	 j Zij�0ij only for values of �0 that have been rejected
as implausible and are not in �?

There are three ways to answer this question. One way is
of theoretical importance, because the inference is an exact
randomization inference, but it can be tedious to use. A second
way is a large-sample approximation to the exact inference,
which is almost as tedious to use. The third way is also a
large-sample approximation to the exact inference, this time
using asymptotic separability; it is easy to use, requiring only
simple arithmetic.

The exact inference uses the exact confidence set �
in Section 3.2 derived from the exact bound ��k	 �̄� in
Section 3.1. One simply checks whether there is a �0 ∈ �
such that a ≥ ∑

i	 j Zij�0ij . If there is no �0 ∈ � such that
a ≥ ∑

i	 j Zij�0ij , then one has rejected as implausible every
possible pattern �0 of treatment effects with a or fewer events
caused by the treatment. The tedium arises because � must be
computed explicitly and each �0 ∈ � must be checked.

The conceptually simple but nonetheless tedious approx-
imation uses the same procedure, but replaces ��k	 �̄� by
the approximation derived from the normal distribution. This
saves a little effort by avoiding the computation of ��k	 �̄�,
but leaves the tedious task of constructing � and checking
each �0 ∈ � .

It would be convenient if, instead of checking every �0 ∈ � ,
one could check a single �0 and on the basis of that one

�0 reach a conclusion about all of � . This is possible using
the notion of asymptotic separability (Gastwirth, Krieger, and
Rosenbaum 2000), which is simply an approximation theorem
for a sensitivity bound that is similar to an approximation for
a single distribution based on a central limit theorem.

3.4 Approximation Using Asymptotic Separability

The approximation will find one �0 with a = ∑
i	 j Zij�0ij

that is hardest to reject; it then must be checked whether
this �0 is in � . If this �0 ∈ � , then it is plausible that
a ≥ ∑

i	 j Zij�0ij , and it is plausible that a or fewer events
among treated subjects were caused by treatment; however, if
this �0 � � , then this �0 and all others with a ≥ ∑

i	 j Zij�0ij

have been rejected, so it is not plausible that a or fewer events
are attributable to treatment. This is a large-sample approxi-
mation based on a limiting normal distribution characterized
by its expectation and variance.

The approximation will construct one �0 such that in a of
the matched sets with

∑ni
j=1 ZijRij = 1, the event was indeed

caused by the treatment, so that a = ∑
i	 j Zij�0ij . Which a

sets should be affected? The approximation considers each
matched set, one at a time, and determines by how much
the maximum expected contribution �̄i from this set would
decline if it were assumed that a treated subject in this set
had an event caused by the treatment. The decline is given
by

=
%i −%̄i, where

=
%i is the value of �̄i in (2) if the event in

matched set i was not attributable so that
∑ni

j=1 Zij�0ij = 0 and
Ri+ = rCi+, whereas %̄i is the value of �̄i in (2) if the event
in matched set i was attributable so that

∑ni
j=1 Zij�0ij = 1 and

Ri+ = rCi++1; specifically,

=
%i=

�Zi+Ri+
�Zi+Ri++ni−Zi+Ri+

and

%̄i =
�Zi+�Ri+−1�

�Zi+�Ri+−1�+ni−Zi+�Ri+−1�
�

To illustrate these formulas, return to the example of
Section 1.2, where ni = 2 and Ri+ = 1 for every i, and
assume that there is no hidden bias, so � = 1. There were
173+91 matched pairs in which the MI case was infected, so∑ni

j=1 ZijRij = 1 in these pairs. In the 173 concordant pairs with

Zi+ = 2, if Ri+ = rCi+, then
=
%i= 1, whereas if Ri+ = rCi++1,

then %̄i = 0, so that
=
%i −%̄i = 1−0 = 1. In a such a concordant

pair, attributing the MI to infection reduces �̄i from 1 to 0. In
the 91 discordant pairs with Zi+ = 1 and

∑ni
j=1 ZijRij = 1, if

Ri+ = rCi+, then
=
%i= 1/2 if � = 1, whereas if Ri+ = rCi++1,

then %̄i = 0, so that
=
%i −%̄i = 1/2−0 = 1/2. In such a discor-

dant pair, attributing the MI to infection reduces �̄i from 1/2
to 0.

The �0 formed using the a smallest declines,
=
%i −%̄i, has

the highest expected number of events among treated sub-
jects. Ties are broken by picking the sets that do the least
to decrease the variance, the decrease being

=
&i −&̄i, where

=
&i=

=
%i �1−

=
%i� and &̄i = %̄i�1− %̄i�. Proposition 1 of Gastwirth

et al. (2000) says that as I →�, the largest approximate sig-
nificance level ��k	 �̄� is obtained from the normal reference
distribution with the highest expectation, and where there are
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several normal distributions with the same highest expecta-
tion, the one among these with the highest variance. A nor-
mal distribution with a high expectation and variance attaches
high probabilities to large values. Asymptotic separability is
an approximation that works as I →�.

The following steps find the �0 with a = ∑
i	 j Zij�0ij that

maximizes the expectation
∑

i �̄i, and if several �0 do this,
then finds among these the one that also maximizes the vari-
ance

∑
�̄i�1− �̄i�:

1. If a≥∑
i	 j ZijRij , then a or fewer of the treated subjects

had events, whether caused by exposure or not, so it is cer-
tain that a or fewer had events caused by the exposure; stop.
Otherwise, if

∑
i	 j ZijRij > a, then continue with step 2.

2. For each matched set i with
∑ni

j=1 ZijRij = 1, calculate
=
%i	 %̄i,

=
&i, and &̄i.

3. Select exactly a of the matched sets i with∑ni
j=1 ZijRij =1 having the smallest values of

=
%i −%̄i. If ties

among the
=
%i −%̄i mean that several different groups of a

matched sets all have the smallest values of
=
%i −%̄i, then

among these several groups with the smallest
=
%i −%̄i, pick

any one group with the smallest values of
=
&i −&̄i. For the

selected a matched sets, let �̄i = %̄i, whereas for the remain-

ing I −a matched sets, let �̄i =
=
%i. If a+∑

i �̄i ≥
∑

i	 j ZijRij ,
then there is one u and one �0 with a = ∑

i	 j Zij�0ij events
caused by treatment that would lead us to expect more than
the observed number

∑
i	 j ZijRij of events among treated sub-

jects; conclude that this a is plausible and stop; otherwise,
continue with step 4.

4. Calculate the large-sample approximation to the upper
bound on the significance level ��k	 �̄� in Section 3.1. If
��k	 �̄� is small (say, less than .05), then conclude that every
compatible �0 with a≥∑

i	 j Zij�0ij may be rejected as implau-
sible at the ��k	 �̄� level; that is, conclude that it is not
plausible that exposure to treatment caused a or fewer events.

4. EXAMPLE: CASE-REFERENT STUDY

The informal analysis in Section 1.2 is the simplest illus-
tration of the general procedure developed in Section 3.
The purpose of this section is to derive the calculations in
Section 1.2 from the general theory in Section 3, thereby jus-
tifying Section 1.2 and illustrating Section 3.

McNemar’s test applies when there is no hidden bias, � = 1.
Each matched set contains ni = 2 subjects, one of whom is
a case, Ri+ = 1. Table 2 presents the formal details of the
procedure in Section 3.4, which exhibit many simplifications
in this special case. If 0 = ∑

j ZijRij , then the case in pair i
was not exposed, so the MI could not have been caused by
the exposure, and such a matched pair cannot contribute to
the attributable effect A; hence the “na” in the table signifying
not applicable.

We are considering the possibility that A= 4 cases had MIs
caused by exposure. These 4 could come from the 91 discor-
dant pairs with an exposed case or from the 173 concordant
pairs with an exposed case. If the 4 MIs caused by exposure
were deleted from the 91 discordant pairs with an exposed
case, then for each of these 4 pairs, the expected number of
exposed cases would drop from

=
%i= Zi+Ri+/2 = 1/2 to %̄ =

Table 2. Formal Calculations for
a Case-Referent Study

Count 179 67 91 173∑
j ZijRij 0 0 1 1

Ri+ 1 1 1 1
Zi+ 0 1 1 2
=
�i 0 1/2 1/2 1
�̄i na na 0 0
=
�i −�̄i na na 1/2 1
=
�i −�̄i na na 1/4 0

Zi+�Ri+ −1�/2 = 0. If instead the 4 MIs caused by exposure
were deleted from the 173 concordant pairs with an exposed
case, then the expected number of exposed cases in the pair
would drop from

=
%i=Zi+Ri+/2= 1 to %̄=Zi+�Ri+−1�/2= 0.

It follows that
=
%i −%̄i is 1/2 in the discordant pairs and 1 in

the concordant pairs, so step 3 in Section 3.4 always assigns
the attributable effects to discordant pairs. In Step 4, the 179
concordant pairs with no exposure have no chance of expo-
sure �̄i = 0, whereas 173 concordant pairs with two expo-
sures have �̄i = 1; these have the effect of deleting concordant
pairs from �

∑
Bi−

∑
i �̄i�/

√∑
�̄i�1− �̄i�. Four of the 91 dis-

cordant pairs with an exposed case have Rij −Zij�ij = 1−
1 × 1 = 0; they reduce

∑
Bi by 4,

∑
i �̄i by 4 × 1/2 = 2,

and
∑

�̄i�1− �̄i� by 4× 1/4 = 1, with the consequence that
�
∑

Bi −
∑

i �̄i�/
√∑

�̄i�1− �̄i� drops from 1.91 to 1.61. The
remaining 67+ �91−4� discordant pairs have �̄i = 1/2 as in
McNemar’s test. In short, after simplification, the procedure
in Section 3.4 yields exactly the informal analysis.

5. EXAMPLE: A CASE-CROSSOVER STUDY

5.1 Alcohol as an Immediate Cause of Injury

Case-crossover studies were proposed by Maclure (1991)
to study treatments that have immediate, transient effects
(see also Maclure and Mittleman 2000). In such studies, a
case’s recent exposure to treatment is compared to the case’s
own previous history of exposure to the treatment, assum-
ing that long past exposures do not have current effects. For
instance, case-crossover studies have been used to study the
effects of anger on risk of myocardial infarction (Mittleman et
al. 1995). Use of sensitivity analysis in related contexts was
mentioned by Mittleman, Maldonado, Gerberich, Smith, and
Sorock (1997).

Vison et al. (1995) conducted a case-crossover study of
alcohol consumption as a proximate cause of injury. Table 3
describes 340 patients in their study, all of whom were treated
for acute trauma at an emergency room of one of two mid-

Table 3. Alcohol and Injury

Injury day

0–3 drinks ≥ 4 drinks

Day before 0–3 drinks 320 15
≥4 drinks 3 2
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western hospitals. The table records alcohol consumption dur-
ing the six hours before injury and the corresponding six
hours on the previous day. McNemar’s one-sided deviate
is �15 − 3�/

√
15+3 = 2�83, with approximate significance

level .0023 and odds ratio 15/3 = 5. One premise is that a
drink taken more than 24 hours ago does not increase the cur-
rent risk of injury.

5.2 A Sensitivity Analysis

Of the 17 = 15+ 2 injuries following 4 drinks, how many
are attributable to drinking? In the absence of hidden bias, that
is, with � = 1, it is not plausible that 6 or fewer injuries are
due to drinking as �15−6−3�/

√
15−6+3= 1�73> 1�65, but

it is just plausible that 7 or more are attributable to drinking
as �15−7−3�/

√
15−7+3 = 1�50. If there is an unobserved

time-dependent covariate, uij , strongly associated with injury
and � = 1�5 times more common on heavy drinking days, then
it is still not plausible that A = 2 or fewer of the 17 injuries
following heavy drinking are attributable to drinking, because
the deviate for A= 2 is 1.74, but it is plausible that A= 3 or
more are attributable, because the deviate for A= 3 is 1.58. If
the unobserved covariate is twice as common on heavy injury
days, � = 2, then it is plausible that none of the injuries is
attributable to drinking, because the deviate for A= 0 is 1.5.

6. EXAMPLE: A COHORT STUDY

When testing the null hypothesis of no effect, McNemar’s
test handles matched pairs in a similar manner in case-referent,
case-crossover, and cohort studies. This is no longer true when
the null hypothesis is false and inferences are made about
attributable effects. The reason is that a matched-pair case-
referent study always has one case or outcome event in each
pair, Ri+ = 1 for each i, but a cohort study may have Ri+ =
0	1, or 2 outcome events in a matched pair. In a case-referent
study, the separable algorithm attributes effects to discordant
pairs �Ri+ = 1	Zi+ = 1�, whereas in a cohort study, it turns
out that effects are first attributed to certain concordant pairs
�Ri+ = 2	Zi+ = 1�.

Table 4 is from a matched pairs cohort study reported
by Ackermann-Liebrich et al. (1996) comparing women who
planned to deliver children at home with women who planned
to deliver in a hospital. Between 1989 and 1991, 214 women
in Zurich who planned to deliver at home were matched to
214 women planning to deliver in a hospital. Note that the
groups are defined by where they planned to deliver. The
matching was based on age, parity, medical history, partner
situation, social class, and nationality. In the months before
delivery, a few women miscarried, leaving 207 pairs in which
both women delivered. Table 4 describes induction of labor in
the planned-home/planned-hospital pairs. [Table 4 is deduced
from table 5 in Ackermann-Liebrich et al. 1996, where an
odds ratio based on discordant pairs is given as .18 together
total frequencies of induced labor of 7 at home and 35 in the
hospital, so ��7−x�/�35−x�� = �18 has solution x = 1. The
166 = 207− �6+ 34+ 1� may be off by one or two because
of deliveries in taxis, etc.; however, the 166 figure does not
affect the analysis.] Women who planned to deliver in the
hospital were more likely to be induced. In principle, either

Table 4. Induction of Labor in Home/Hospital Pairs

Planned hospital

Induced Not induced

Planned home Induced 1 6
Not induced 34 166

planned-home or planned-hospital delivery could be the treat-
ment; however, because the notation assumes a nonnegative
effect, rTij ≥ rCij , no change in notation is required if hospital
delivery is taken to be the treatment.

Table 5 shows the separable calculations, which differ in
important ways from those in Table 2. Notice that among
pairs with an induced hospital patient—that is, among pairs
with

∑
j ZijRij = 1—the change in expectations is the same,

=
%i −%̄i = 1/2, for both for the one concordant induced/induced
pair, and for the 34 discordant pairs with

∑
j ZijRij = 1. This

tie is broken by looking at the change in variances,
=
&i −&̄i.

Changing any of the 34 discordant pairs into a concordant pair
reduces its variance from 1/4 to 0, whereas changing the con-
cordant pair into a discordant pair increases the variance from
0 to 1/4. If the change in expectations is the same, then it will
be harder to reject a �0 that increases the variance.

Suppose that we wish to ask whether A = 1 is plausible
assuming no hidden bias, � = 1. There are

∑
i	j ZijRij = 35

induced births in the hospital, and if A = 1 is attributable to
the hospital, then 34 would have happened anyway; that is,∑

i	j ZijrCij = 34. There are seven induced births at home, six
in discordant pairs and one in a concordant pair. If A = 1,
then

∑
i	j ZijrCij has expectation 20�5 = 1+6×1/2+33×1/2

if the A= 1–attributable induction is among the 34 discordant
pairs, and expectation 20�5 = 7×1/2+34×1/2 if the A= 1–
attributable induction is in the single concordant pair with two
inductions, so the expectations are the same. However, if A=
1, then

∑
i	j ZijrCij has variance 9�75 = 0+6×1/4+33×1/4

if the A= 1–attributable induction is among the 34 discordant
pairs, and variance 10�25 = 7× 1/4+ 34× 1/4 if the A = 1
attributable induction is in the single concordant pair with two
inductions. The standardized deviates for the corresponding
two McNemar test statistics are �35−1−20�5�/

√
9�75 = 4�36

and �35− 1− 20�5�/
√

10�75 = 4�22, so it is clear in either
case that A = 1 is too low, but the significance level is a lit-
tle higher—less significant—when the attributable induction is
in the one concordant pair. Again, this is simply the separa-
ble algorithm at work—it looked at the expectations and vari-
ances and approximated the largest significance level using the

Table 5. Formal Calculations for a Cohort Study

Count 166 6 34 1∑
j ZijRij 0 0 1 1

Ri+ 0 1 1 2
Zi+ 1 1 1 1
=
�i 0 1

2
1
2 1

�̄i na na 0 1
2=

�i −�̄i na na 1
2

1
2=

�i −�̄i na na 1
4 − 1

4
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normal distribution. In testing A= 2, the separable algorithm
would take as the null hypothesis that the 1 concordant pair
and 1 of the 34 discordant pairs had the inductions attributable
to the hospital, and so forth.

7. DISPLACEMENT EFFECTS

7.1 Effects of Treatments on Quantiles

Suppose that the jth subject in matched set i would exhibit
ordered response yTij under treatment and yCij under control,
where it is assumed that the treatment may increase but that
this will not decrease the response, so yTij ≥ yCij . Arrang-
ing the N potential responses to control, yCij , into decreasing
order gives the order statistics of potential responses to con-
trol, namely yC�N� ≥ yC�N−1� ≥ · · · ≥ yC�1�. Notice that, because
some of the N subjects did not receive the control, yC�k� can-
not be determined from observed data.

Fix a k so that yC�k� is the k/N quantile of responses that
would be seen if all subjects received the control. Let ) be
a value strictly between yC�k� and yC�k+1�, so that yC�k+1� >
) > yC�k�. The data will indicate whether such a ) exists.
For instance, if N were even and k = N/2, then ) would be
a median, that is, a value strictly between the two middle-
order statistics that would have been observed had all subjects
received the control. Subject j in set i has a displacement
around ) if yTij > ) > yCij . For instance, with N even and
k = N/2, there is a displacement if the subject would have
had a response below the median ) under control but would
have had a response above the control median ) had the sub-
ject received treatment instead. Alternatively, if k/N = �95,
then a displacement might be described as signifying a sub-
ject whose response would have been fairly typical under con-
trol and usually high under treatment. In the unmatched sit-
uation, displacement effects were discussed in earlier work
(Rosenbaum 2001). Let Yij = ZijyTij + �1 − Zij�yCij be the
response observed from the jth subject in matched set i, and
let the observed order statistics of the values of the Yij be
Y�N� ≥ Y�N−1� ≥ · · · ≥ Y�1�.

Write rCij = 1 if yCij > ) and rCij = 0 otherwise. In par-
allel, write rTij = 1 if yTij > ) and rTij = 0 otherwise. Then
there is a displacement if �ij = rTij − rCij = 1 and no displace-
ment if �ij = rTij−rCij = 0. Notice carefully that because yC�k�
cannot be observed, neither rCij nor rTij can be calculated,
unlike the situation in Section 3. The number of displacements
attributable to treatment is A=∑

i	j Zij�rTij−rCij�=
∑

i	j Zij�ij

and A = 0 under the null hypothesis of no effect, H0� yTij =
yCij . The following result is a trivial extension of an earlier
result (Rosenbaum 2001), where there are no matched sets.
Because the proof is brief and provides insight, it is repeated
here.

Proposition 1. If a=∑
i	j Zij�ij , then Y�k+1−a� > ) >Y�k−a�.

Proof. There are exactly N − k subjects with yCij > ),
and because yTij ≥ yCij , it follows that these N − k subjects
all have Yij > ). Because a = ∑

i	j Zij�ij , there are exactly
a other subjects not included among the N − k subjects,
with Yij = yTij > ) > yCij . For the remaining k− a subjects,
) > Yij . So there are exactly N − k+a subjects with Yij > )
and exactly k− a subjects with ) > Yij . This means that
Y�N� ≥ Y�N−1� ≥ · · · ≥ Y�k+1−a� > ) > Y�k−a� ≥ · · · ≥ Y�1�.

Notice that if a = ∑
i	j Zij�ij but Y�k+1−a� = Y�k−a�, then it

must be the case that yC�k+1� = yC�k� and no ) strictly between
yC�k+1� and yC�k� exists.

If a =∑
i	j Zij�ij , then it follows from the proposition that

Rij =ZijrTij+�1−Zij�rCij = 1 if Yij > Y�k−a� and Rij = 0 when
Y�k−a� ≥ Yij . Hence for each particular a, the Rij may be cal-
culated and the method of Section 3.4 applied. In particular,
for matched pairs, ni = 2 for all i, the calculations reduce to
those in Table 5.

7.2 Kidney Function in Cadmium Workers

In an effort to estimate the effects of cadmium exposure
on kidney function, Thun et al. (1989) compared workers
exposed to cadmium with unexposed controls in terms of �-
2-microglobulin in +g/g of creatinine (see also Thun 1993).
Male workers at a cadmium recovery plant in Colorado were
compared to unexposed male workers at a Colorado hospital,
after “frequency matching” for an important covariate, age. As
in Rosenbaum (1996, sec. 4.3), frequency matching is replaced
by pair matching for age, yielding 23 pairs, one cadmium
worker, one hospital control. Their data, given in Table 6,
show much higher levels of �-2-microglobulin among some
of the cadmium workers than among controls.

There are 46 = 2×23 subjects, each of whom has a poten-
tial response, yCij , in the absence of cadmium exposure.
Because 46× �8 = 36�8, the 80th percentile of these potential
responses is any value ) strictly between rC�36� and rC�37�, nei-
ther of which is observed, because only 23 of the 46 values
of yCij were observed. It is assumed that cadmium exposure
does not improve kidney function, so yTij ≥ yCij for all i	 j.
A displacement around the 80th percentile point means that
yTij > ) > yCij , and the task is to draw inferences about the
number of displacements among the 23 treated subjects. A
treated subject with a displacement had a �-2-microglobulin
above 80% of the responses that would have been seen without

Table 6. Kidney Function of Cadmium Workers and
Unexposed Controls

Pair Cadmium worker Hospital control

1 107�143 311
2 33�679 338
3 18�836 159
4 173 110
5 389 226
6 1144 305
7 513 222
8 211 242
9 24�288 250

10 67�632 256
11 488 135
12 700 96
13 328 142
14 98 120
15 122 376
16 2302 173
17 10�208 178
18 892 213
19 2803 257
20 201 81
21 148 199
22 522 114
23 941 247
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cadmium exposure, and would have had a �-2-microglobulin
below this 80th percentage point had he been spared cadmium
exposure.

If there were no displacements attributable to treatment,
so A = 0, then the proposition implies 941 = Y�37� > ) >
Y�36� = 892. In this case there are 10 matched pairs discor-
dant for having Yij > 892, and in all 10 pairs, it is the cad-
mium worker who has Yij > 892 (Table 7). In the absence
of hidden bias, � = 1, this yields a standardized deviate of

�10 − 10/2�/
√

10× 1
4 +13×0 = 3�16 with an approximate

one-sided significance level of �00078. If there was one dis-
placement attributable to treatment, A = 1, then exactly one
of the observed responses among treated subjects is above )
because of the treatment and would have been below ) under
control, so that 892 = Y�36� > ) > Y�35� = 700. In this case,
there are 11 discordant pairs for Yij > 700, and in all 11 pairs,
it is the cadmium worker who has Yij > 700. In the absence
of hidden bias, � = 1, the statistic T −A = 11− 1 has null
expectation

∑
�̄i = �11−1�×1/2+ �12+1�×0 = 5 and null

variance
∑

�̄i�1− �̄i� = �11− 1�× 1/4+ �12+ 1�× 0 = 2�5,
giving the same standardized deviate of �10−5�/

√
2�5 = 3�16

with an approximate one-sided significance level of �00078.
Without hidden bias, � = 1, when A = 9, the one-sided sig-
nificance level is �0289, but when A = 10, it is �103, so it is
not plausible that 9 or fewer displacements are attributable to
treatment, but it is plausible that 10 or more are.

Although in practice one simply applies the separable algo-
rithm, it is useful to inspect what this algorithm does in
one particular case. When A = 9, there are 9 displacements
above ) among the treated subjects, so 328 = Y�36+1−9� > ) >
Y�36−9� = 311. Now, in 1 pair, namely pair i= 2, both responses

Table 7. Calculations for Displacement Effects in Matched Pairs

A= 0
Cadmium worker

Yij > 892 892≥ Yij

Control Yij > 892 0 0
892≥ Yij 10 13

10−5√
2�5

= 3�16� 1− �3�16�= �00078

A= 1
Cadmium worker

Yij > 700 700 ≥ Yij

Control Yij > 700 0 0
700≥ Yij 11 12

10−5√
2�5

= 3�16� 1− �3�16�= �00078

A= 9
Cadmium worker

Yij > 311 311 ≥ Yij

Control Yij > 311 1 1
311≥ Yij 16 5

8−5√
2�5

= 1�897� 1− �1�897�= �0289

A= 10
Cadmium worker

Yij > 305 305 ≥ Yij

Control Yij > 305 2 1
305≥ Yij 15 5

7−5√
2�5

= 1�265� 1− �1�265�= �103

are above 311; in 1 pair, namely pair i = 15, the hospital
worker is above 311 but the cadmium worker is not; and in
16 pairs only the cadmium worker is above 311. One could
attribute all A = 9 displacements to the 16 discordant pairs
with high values for the cadmium worker, or attribute one dis-
placement to concordant pair i = 2 and the remaining 8 dis-
placements to the 16 discordant pairs. In either case, T −A=
17−9 = 8 with null expectation �18−8�/2 = 5 when � = 1;
however, in the first case, there would be 17−9= 8 discordant
pairs and T −A would have variance 8× 1/4+ 15× 0 = 2,
whereas in the second case, there would be 18− 8 = 10 dis-
cordant pairs, because one new discordant pair is created
and one fewer is removed, so T −A would have variance
10× 1/4+ 13× 0 = 2�5. It is harder to reject the hypothe-
sis when the variance is larger, so the separable algorithm
attributes one displacement to the concordant pair, yielding a
deviate of �8− 5�/

√
2�5 = 1�897 with approximate one-sided

significance level of 1 −"�1�897� = �0289. The sensitivity
analysis for � ≥ 1 uses the steps in Section 3.4 applied to the
same figures as in Table 7. For � = 1	2	 and 3, the small-
est plausible numbers of displacements A are 10, 7, and 7,
whereas for � = 4, no displacements, A = 0, becomes barely
plausible with an upper bound on the significance level of
.057.

Table 6 exhibits a common pattern. Some cadmium work-
ers exhibit extremely high �-2-microglobulin levels not seen
among any hospital controls, but other cadmium workers
exhibit values in the normal range. When this is true, the sen-
sitivity to hidden bias may vary with k, so that displacements
about upper quantiles are less sensitive to bias than displace-
ments about lower quantiles. For instance, for the median,
k = 23, the smallest plausible number of displacements for
� = 1	2	 and 3 is A= 3, 1, and 0, so there is less evidence of
large numbers of displacements about the median than about
the 80th percentile. A similar pattern was found, under a dif-
ferent model, using different methods in earlier work (Rosen-
baum 1999).

8. SUMMARY

The attributable effect is the number of events among
treated subjects that were actually caused by the treatment.
The attributable effect is an unobserved random variable,
not a parameter, because its value changes as the treatment
assignment changes. Exact and approximate inferences about
attributable effects have been discussed, where the approxima-
tion used the technique of asymptotic separability. Random-
ization inferences for experiments and sensitivity analyses for
observational studies have been developed in parallel.

APPENDIX: PROOF OF A DETAIL

Suppose that �0 and �̃0 are two compatible null hypotheses, where
�0 = �̃0 + �0	0	 
 
 
 	0	1	0	 
 
 
 	0�T , so �0 has one more nonzero
effect than �̃0 does. This Appendix shows that if H0� �= �0 is
rejected in favor of H1� �≥ �0, � 
= �0, then H0� �= �̃0 is also
rejected. There are two cases. In the first case, if A0 =

∑
i	j Zij�0ij =∑

i	j Zij �̃0ij , then T −A0 = ∑
i	j ZijrCij =

∑
i Bi is unchanged, and

the same inferences result. In the second case,
∑

i	j Zij�0ij = 1 +∑
i	j Zij �̃0ij ; assume this to be true for the remainder of this para-

graph. In the second case, several things change. For convenience of
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notation but without loss of generality, assume that the change affects
the first person, so �011 = 1, �̃011 = 0, and Z11 = 1. Because both
hypotheses are compatible, it must be the case that 0 =R11 −Z11�011

and 1 = R11 −Z11�̃011 = R11, so H0� �= �0 hypothesizes rC11 = 0
but H0� �= �̃0 hypothesizes rC11 = 1. This means that when testing
H0� �= �0, B1 = ∑n1

j=2 Z1j rC1j , whereas when testing H0� �= �̃0,
B1 = Z11 +

∑n1
j=2 Z1j rC1j . Also, the observed value of the test statis-

tic T −A0 is T −∑
i	j Zij�0ij = k, say, when testing H0� �= �0,

but is T −∑
i	j Zij �̃0ij = T −∑

i	j Zij�0ij + 1 = k+ 1 when testing
H0� �= �̃0. Now, trivially,

Pr
( n1∑

j=2

Z1j rC1j+
I∑

i=2

Bi≥k

)
≥Pr

(
Z11+

n1∑
j=2

Z1j rC1j+
I∑

i=2

Bi≥k+1
)
,

however, these are the two significance levels. It follows that
if H0� �= �0 is rejected because Pr�

∑n1
j=2 Z1j rC1j +

∑I
i=2 Bi ≥

k� is small, then H0� �= �̃0 is also rejected because Pr�Z11 +∑n1
j=2 Z1j rC1j +

∑I
i=2 Bi ≥ k+1� is smaller still.

More generally, if �0 and �̃0 are two compatible hypotheses with
�0 − �̃0 ≥ 0, then �0 is higher than �̃0. By induction on the argument
just given, if H0� �= �0 is rejected against the alternative H1� �≥ �0,
� 
= �0, and �0 is higher than �̃0, then �̃0 is also rejected.

[Received November 2000. Revised August 2001.]
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