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Abstract In 1978. Rudolf Ahlswede and David Daykin published a theorem which says
that a certain inequality on nonnegative real valued functions for pairs of points
in a finite distributive lattice extends additively to pairs of lattice subsets. It is
an elegant theorem with widespread applications to inequalities for systems of
subsets, linear extensions of partially ordered sets, and probabilistic correlation.
We review the theorem and its applications, and describe a recent generalization
to n-tuples of points and subsets in distributive lattices.

1. THE AHLSWEDE-DAYKIN THEOREM

A lattice is a partially ordered set (I', <) in which every pair of points
a,b € T has a unique least upper bound or join

aVb=min{z€l:a=Xzb=Xz}
and a unique greatest lower bound or meet
aAb=max{z€l:z=<a,z=2b}.
The lattice is distributive if
an(bVe)=(aAd)V(aAc) forall a,bcel

or, equivalently, if aV (b Ac) = (aVDb) A (aVe)forall a,b,c € . We

presume throughout that ' is finite and recall the useful fact [5, p. 59] that

a finite distributive lattice is order-isomorphic for some n to a restriction of

(2", C), the family of subsets of {1,2, ..., n} ordered by proper inclusion.
For nonempty A, B C T, V and A are extended to subsets of I' by

AVB = {aVb:a€ Abc B}
AANB = {aAnb:a€ Abe B},

with AVB =0 = AA Bif Aor Bisempty. In 1977, Daykin [11] proved
that a lattice (T, <) is distributive if and only if

|A||B| < |AVB||AAB| forall A,BCT.

This inequality is but one of many implications of a remarkable theorem pub-
lished the next year by Ahlswede and Daykin [3] that has come to be known
as the Ahlswede-Daykin theorem, or the four-functions theorem [6]. For any
real-valued function f on I', we define the additive extension of f, also denoted

by f, by
f(A)=)_ f(a) forall ACT.

a€A
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Theorem 1. (Ahlswede-Daykin) Suppose (T, <) is a finite distributive lattice
and o, 3,7,6: ' = [0, 00) satisfy

a(a)B(b) < y(aVb)d(aAd) forall a,bel.

Then
a(A)B(B) <y(AV B)§(AAB) forall A,BCT.

When (', <) = (2", C) withV = Uand A = N, thehypothesized inequality,
a(a)B(b) < v(aV b)é(a A b), has the flavor of log supermodularity for a
probability distribution . on the ground set 2", defined by

p(a)u(d) < plaub)p(and) forall a,be2".

The hypothesized inequality of Theorem 1 can be viewed as a far-reaching
generalization of log supermodularity, which is a key hypothesis of the widely-
cited FKG theorem of Fortuin, Kasteleyn and Ginibre [18]. The power of
the Ahlswede-Daykin theorem lies in its conclusion that the four-functions
inequality hypothesized for individual members of I' is inherited by subsets of
I" under additive extensions.

Proofs of Theorem 1 are included in [3, 6, 16]. The standard approach is to
prove the theorem for (27, C). The general result for (I', <) order-isomorphic
to a restriction of (27, C) then follows by fixing «, 3,7 and § at O on the
members of 2" excluded from the isomorphism. The (27, C) proof shows that
the result holds for n = 1 and proceeds by induction on n. The overall proof
is pleasantly compact — about one page — in view of the theorem's many
implications.

Several of those implications, including the FKG theorem, were proved prior
to the publication of [3]. We will not dwell on precedence, but instead will
indicate how a variety of results follow from Theorem 1 as the root of a tree-like
structure. We classify those results into three types.

Type 1 implications follow more or less directly from Theorem 1 by choosing
specific forms for e, 3, v and é. They include Daykin's inequality for distribu-
tivity [11], the FKG theorem [18] and Holley's theorem [22], an inequality of
Kleitman [27] and Seymour [33], and the Marica-Schonheim inequality [30].

Type 2 implications use direct applications of Theorem 1 or its type 1
implications, but involve other techniques to arrive at their conclusions. The
other techniques often include a reformulation of the problem's structure prior to
the direct application, and may have one or more steps that require functional
extremization or an examination of limit behavior. Examples include the
correlational inequalities for linear extensions of Graham, Yao and Yao [21]
and Shepp [34], the so-called zyz inequalities of Shepp [35] and Fishburn [13],
and universal correlation theorems of Winkler [39] and Brightwell [8].
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Type 3 implications involve structure for which the hypotheses of Theorem
1 or a type 1 or type 2 implication are false, even under reformulations, but
which admit perturbations that allow application of preceding results. The
perturbed structure is close to the original, and the disparity between the two
can be remedied by methods that lead to the desired conclusion. Qur primary
example of a type 3 implication is a correlation inequality for match sets of
random permutations that was conjectured by Joag-Dev [24] and Prem Goel
and proved in Fishburn, Doyle and Shepp [17].

The question of which type characterizes a particular implication is subject
to personal judgment and can depend on available proofs, so we acknowledge a
degree of latitude in our choices. Nevertheless, we have found the classification
useful for an appreciation of the role of the Ahlswede-Daykin theorem, and
proceed accordingly.

Section 2 of the paper discusses type 1 implications, section 3 describes
type 2 implications, and section 4 outlines our perturbation approach to the
match set problem with random permutations. We then conclude with a recent
generalization of the Ahlswede-Daykin theorem due to Rinott and Saks [31, 32]
and Aharoni and Keich [2].

Prior surveys of much of the material we cover are presented by Graham
[19, 20], Winkler [40] and Fishburn [16]. We have borrowed freely from these
sources and acknowledge our indebtedness to Ron Graham and Peter Winkler.

2. TYPE 1 IMPLICATIONS

We assume throughout this section that (T, <) is a finite distributive lattice.
Our first implication of Theorem 1 takesa = =y =4d = pwithp : ' —
[0, 00). Then log supermodularity for y, i.e.,

w(a)u(d) < plaVvbd)u(aAb) forall a,bel,

which becomes the hypothesized inequality of Theorem 1, implies the same
form for additive extensions:

w(A)u(B) < p(AV B)u(AAB) forall A,BCT.

When p = 1 is added to the hypotheses, log supermodularity is automatic
and Theorem 1 yields Daykin's inequality |A||B| < |AV B||A A Bj for all
A,BCT.

Log supermodularity also underlies the following lattice version of the FKG
theorem. We say that f : I' — R is nondecreasing if

a<b= f(a) L f(b), forall a,bel.
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Theorem 2. (FKG) Suppose i : I' — [0, 00) is log supermodular. Then for
all nondecreasing f,g: ' =+ R,

{Zn(a)f(a)l [Z#(a)y(a)] < [Z#(a)l [Zu(a)f(a)g(a)l —
I 1 r I

Proof. It is easily seen that the conclusion is invariant to the addition of
a constant ¢ to f and g, so we assume that f and g are positive. Then
define o, 3, v and & for Theorem 1 by fu, gu, fgu and u, respectively. For
example, a(a) = f(a)p(a). The hypotheses of Theorem 2 then imply those of
Theorem 1, and the conclusion of Theorem 1 implies that of Theorem 2 when
A=B=I. n

Several implications of the FKG theorem will be noted later. Other impli-
cations and related results are available in Kemperman [26], Joag-Dev, Shepp
and Vitale [25], van den Berg and Kesten [38], van den Berg and Fiebig [37],
Hwang and Shepp [23], Burton and Franzosa [10], and Bollobés and Brightwell
[,

A probabilistic version of the FKG theorem arises by taking (I', <) = (2", C
) with V = U and A = N. Let B, denote the Boolean algebra of subsets of
2", so each object in B,, is a set of subsets of {1,2,...,n}. We say that
A € B, is an up-set (order filter) if (a € A,a C b) = b € A, and a down-set
(order ideal, simplicial complex) if (¢ € A,b C a) = b € A. Clearly, A is
an up-set if and only if its complement 2" \ A is a down-set. We normalize
g > 0 sothat Y {u(a) : a € 2™} = 1, and view its additive extension u as
a probability measure on 5B,. The expected value of f with respect to u is

E(f, 1) = Loeon #(a) f(a).

Theorem 3. (FKG) Suppose u is a probability measure on B, and p(a)u(b) <
u(aUb)u(and) forall a,b € 2". Then

(1) E(f,w)E(g, 1) < E(fg, u) for all nondecreasing f, g : 2" — R;
(2) p(A)pu(B) < u(AV B)u(A A B) forall A, B € By,
(3) (AN B) > u(A)u(B) for all up-sets A, B € B,.

Comments. (1) is tantamount to the inequality of Theorem 2 under normal-
ization. (3) is immediate from (1) by taking f = 1 on A, 0 otherwise, and
g = 1on B, 0otherwise. In(2), AVB = {aUb: a € A,b € B}, whichis not
generally equal to AU B. Infact, if A and B are up-setsthen AVB = ANB. =

An intermediate result between Theorems 1 and 2 was established by Holley

[22]. It says that if uy, uo : I' — [0, 00) satisfy > p1(a) = >or p2(a) and

p1(a)ua(d) < pi(aVvd)uz(and) forall a,bel,
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then Sor pa(a) f(a) > Yor p2(a)f(a) for every nondecreasing f : I' — R.
The proof by Theorem 1 is similar to the proof of Theorem 2. We add a
constant to f to make it positive, define o, 3, and & by py1, fpe, fur and
lg, respectively, then use Theorem 1 with A = B = T’ to obtain Holley's
conclusion. When p; and po are probability measures on B, that satisfy

pr(a)p2(d) < p(aUb)uz(and) forall a,be 2",
Holley's theorem says that
E(f,p1) > E(f,p2) forevery nondecreasing f:2" = R.

We mention several further results for B,,.

Theorem 4. ([27, 33]) Suppose A,B € B,. If A is an up-set and B is a
down-set, then 2"| AN B| < |A||B|. If both A and B are up-sets or down-sets,
then 2"|A N B| > |A||B|.

Proof. The up-sets conclusion is immediate from Theorem 3(3) on taking
p(a) = 2™ for each a € 2™. The other conclusions follow from complemen-
tation. =

The next theorem involves systems of set differences. Its proof requires a
few steps beyond what is immediate from Theorem 1 and could be considered
a boundary case between types 1 and 2. For A, B € B, let

A-B={a\b:a€ Abe B}.
Theorem 5. ([30]) Forall A, B € B,, |A— B||B — A| > |A||B|.
Proof. Letn = {1,2,...,n}. Using Daykin's inequality, we have
|A||{n\ b:b € B}
JAV{n\b:be B}|[AA{n\b:b€ B}
[{aU (n\b):a€ A,be B}|[{an(n\bd):a € A,be B}
{n\ (eUn\b):a€ A,be B}|[{a\b:a€ A be B}

|[{b\ a:a € A,b€ B}||A - B|
|B— A||A-B|. =

|Al|B]

1 | B Pt

The implication
|A— Al 2 |4

of Theorem 5 is known as the Marica-Schénheim inequality. Additional facts
about the Marica-Schénheim inequality and close relatives are included in
Daykin and Lovész [12], Ahlswede and Daykin [4], Aharoni and Holzman
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[1] and Lengvérszky [29]. Although their proofs go well beyond our type 1
designation, we mention some of their results here before we discuss other type
2 implications in the next section. For the following composite theorem, parts
(1) and (4) are proved in [1], (2) is proved in [12], and (3) is proved in [4].
In part (1), we say that A is weakly separating [1] if for all distinct ¢ and j in
{1,2,...,n},{a € A:i€a}={a € A:j € a} implies that both sets equal
A or both are empty. In addition, B, denotes the family of sets of subsets of s
fors € 2™.

Theorem 6. Suppose A, B € B,.

(1) If A is weakly separating, then |A — A| = A if only if there is a partition
of {1,2,...,n} into s and t, an up-set S in B,, and a down-set T in B; such
that A = {aUb:a € S,be T}

(2)If|A| > 2 then there is a bijection ¢ : A — A such that ¢(a) # a for all
ac A anda\ o(a) #b\ ¢(b) foralla # bin A.

(3) If for every a € A, b C a for some b € B, then |A — B| > |A|.

(4) Ifforalla, o' € A, (a\a')Nb= 0 forsomeb € B, then |A — B| > |A].

Part (1) essentially covers all cases of equality for the Marica-Schonheim
inequality, and (2) is a strengthened version of the inequality for |A| > 1. Part
(3) provides a first-order generalization of the Marica-Schdnheim inequality,
and (4) strengthens (3) by weakening its hypothesis.

Lengvarszky [29] proves that an analogue of the Marica-Schénheim inequal-
ity holds for (T', <) whena — b fora,b € T is defined ina particular way with
A-B={a-b:a€ Abe B}for A,B CTI. The paper also considers
|A — A| > |A| when the lattice is not necessarily distributive.

3 TYPE 2 IMPLICATIONS FOR LINEAR
EXTENSIONS

We assume throughout this section that (X, <) is a finite partially ordered
set. We do not assume that (X, <) is a lattice, let alone a distributive lat-
tice, so implications of the Ahlswede-Daykin and FKG theorems will involve
construction of distributive lattices for application of those theorems.

The section focuses on linear extensions of (X, <), where (X, <o) isalinear
extension of (X, <) if < linearly orders X and z < y = ¢ <o y forallz,y €
X. We say that z,y € X are incomparable in (X, <) if ¢ # y and neither
z < ynory < z. We let £ denote the set of all linear extensions of (X,=)
and set N = |£|. We recall [36] that if z and y are incomparable in (X, <)
then ¢ < y for some linear extension in £, s0 <= N{<o: (X, <o) € L}.

A few other notations are used in the section. We let 2 denote the uniform
probability measure on 2%, so u(L) = 1/N for every L € L. We take (z <o
y) = {L € L : z <o yin L}, the set of linear extensions in which & <o y. The
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probability of (z < y) under pis p(z <o y), withpu(z <o y)+u(y <o z) =1
when z # y. Clearly, pu(z <o y) = |(z <o y)|/N. Finally, we denote by
Nz(a; <o b;) the set of linear extensions of (X, <) in which a; <o b; is true
forevery i € {1,2,...,1}.

Our first two results for the equally-likely linear extensions model consider
two-part partitions of X from different perspectives. Their conclusion, (A N
B) > u(A)u(B), expresses nonnegative correlation between the defined events
A and B: the joint occurrence of A and B is at least as probable as the product
of their separate probabilities. When p(B) > 0, (A N B) > u(A)u(B) says
that u(A|B) > p(A), or that A is at least as likely to occur when B occurs as
it is unconditionally.

Theorem 7. ([21]) Suppose {X1, X2} is a nontrivial partition of X and <
linearly orders X; fori = 1,2. Let A = Ny(a; <o b;) and B = N;(c; <o d;)
for some I and J with all a;,c; € X and all b;, d; € X2. Then w(ANB) >
1(A)p(B).

Theorem 8. ([34]) Suppose (X, <) is the union of disjoint nonempty partially
ordered sets (X1, <1) and (X3, <2), with <==<; U <. With A and B as in
Theorem 7, (A N B) > u(A)u(B).

The intuition behind the theorems is that all elementary events for A and B
have the form (z; <g ) forz; € X; and z; € X3, s0 realization of one of A
and B should enhance the likelihood of the other. We note, however, that this
intuition is tenuous because u(A N B) > u(A)p(B) can be false except when
(X, <) has specialized structure as in the theorems' hypotheses. Examples in
Shepp [34] and Graham [20, p. 122] show how the conclusion fails for other
structures.

Proofs based on the FKG theorem appear in [28, 34] for Theorem 7 and in
[34] for Theorem 8. We sketch the proof of Theorem 7 to illustrate constructions
that lead to FKG.

Let (X;,<%) = {11‘1 <xg <= xm}and(Xg,-<)= {yl =4 Yo Krrr =
y,} withm, n > 1. LetI be the set of all strictly increasing m-tuples of integers
from {1,2,...,m + n}, and for @ = (4, ...,an) and 8 = (B1,...,Pm) in
I" define a reflexive relation <* on I' by

a<*f if a<B; for i=1,...,m.
Also define @ A § and a V 3 componentwise by
(@A B); = min{ey, Bi}, (aV B); = max{e,Bi} .

It follows that (I", <*) is a distributive lattice (reflexive variety).
We next define a log supermodular function v and nondecreasing functions
—fand —gon (T, <*) as follows. Given a € T, let o° be the strictly increasing
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n-tuple of integers in {1,2,...,m+n}\ {a1,...,an}, and let o, denote the
bijection from X onto {1, 2,...,m + n} defined by

Gt =g = Ly st oa(y;) = (1=1,...,n).

Also let (X,<4) and (X,<p) denote the ordered sets in which
<A= {(ﬂ-l-bl)"-'v(ahbf}} and <p= {(Cladl):"'a(c.]:d.f)}' We then
define v, f,g: ' — {0,1} by

v(a) =1 < the arrangement of X by increasing values of
0, is a linear extension of (X, <);

fla) =1 < the arrangement of X by increasing values of
o, is a linear extension of (X, <4);

g(a) =1 <& the arrangement of X by increasing values of
o, is a linear extension of (X, <p).

Once log supermodularity and monotonicity have been verified, we use Theo-
rem 2 to conclude that

Y v(@) Y fla)g(@)v(a) = Y f(@)v(a) Y g(a)v(a),
T T T T

where the left-to-right sums are the numbers of linear extensions of (X, <), of
(X, <) compatible with <4 and <p, of (X, <) compatible with <4, and of
(X, <) compatible with <p. Divisionby N2 gives u(ANB) > u(A)u(B). =

Our next two theorems show that some instances of nonnegative (Theorem
9) and positive (Theorem 10) correlation do not require strong hypotheses like
those in Theorems 7 and 8.

Theorem 9. (zyz [35]) Forallz,y,z € X,

p((z <o y) N (z <0 2)) 2 p(z <o Y)u(z <o 2) -

Theorem 10. (zyz [13]) For all mutually incomparablez,y,z € X,

u((z <o y)N(z <o 2)) > plz <o y)u(r <o 2) -

Because the nonstrict inequality of Theorem 9 is easily seen to hold when
z, y and z are not mutually incomparable, Theorem 10 can be viewed as a
strengthening of Theorem 9. We outline a proof of Theorem 9 that uses a
limiting argument similar to that used in [34] to prove Theorem 8, and then
comment on a substantially different proof for Theorem 10.

Suppose for Theorem 9 that z, y and z are mutually incomparable. Fix an
integer K > |X| and let 'y be the set of all nondecreasing a from (X, <)
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into {1,2,...,K}. Also define <*, A and V for o, € ' by a <* B if
a(z) > B(z), and a(t) — a(z) < B(t) — B(z) forallt € X,

(@AB)(@t) = min{a(t) - a(z),B(t) — B(z)} + max{a(z), B(z)}
(@VvpB)(t) = max{a(t)— a(z),B(t) - B(z)} + min{e(z),8(2)} .

Then (', <*) is a (reflexive) distributive lattice.

Now fora,b € X let (a < b)x = {@ € 'k : @(a) < a(b)}. Then both
(z < y)x and (z < z)g are up-sets in (I'x, <*). Indeed, for any t # z,
(a(z) < a(t),a <* B) = 0 < aft) — alz) < B(t) - B(z) = Bl) <
B(t). This shows that the unusual definition of <* is just right for the up-set
calculation. It then follows from Theorem 2 with the uniform measure on I'c
that

Iz <y)x N (e <2k | <y)x| (= < 2)x]
Tkl - Tkl Tk |
As K — oo, the proportion of @ € 'k that have a(a) = a(b) for @ # b
goes to 0, and it follows by taking limits in the preceding inequality that
p((z <o y) N (z <o 2)) > p(z <o Y)u(z <o 2). =

Because the limit argument of the preceding proof works only for nonstrict
inequality, a different approach is needed for Theorem 10. The following
lemma suffices.

Lemma 1. [13] Suppose , y and z are mutually incomparable in (X, <), and
| X| = n. Let N(abc) be the number of linear extensions of L witha <o b <¢ ¢

and let
N (y22)N (s2y)

A= :
[N (zyz) + N(zzy)][N (yzz) + N (zy2)]
Then A < (n—1)2/(n+1)%ifnisodd, A < (n—2)/(n+2) ifn is even, and
for each n > 3 some (X, <) attains the indicated upper bound on A.

The bulk of [13] is devoted to the proof of Lemma 1, which features two
applications of the Ahlswede-Daykin theorem. The first application uses the
preceding embedding technique with K — oo, and the second involves an
optimization step that yields the preceding bounds on A.

To complete the proof of Theorem 10 let

T N — N(yzz) — N(zyz)
~  N(yzz)+ N(zyz)
Also let N(ab) = |{L € L : @ <o bin L}|. Because N(zy) = N(zzy) +

N(zzy)+N(zyz)and N (zz) = N(yzz)+ N (zyz)+N(zzy), rearrangement
gives

N(zy)N(zz) P
N[N(zyz)+ N(zzy)]  T+1°
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Then A < 1 by Lemma 1, so u(z <o y)p(z <o 2) < p((z <o y) N (z <o
z)). =

Fishburn [14, 15] comments further on the strict xyz inequality of Theorem
10. Given | X| = n, [14] investigates the maximum value of (T + A) /(T + 1),
i.e., of the zyz ratio u(z <o y)p(z <o 2)/p((z <o y) N (z <o 2)), but does
not completely solve the problem. In [15], an application of Theorem 10 is used
in a proof that determines all ordered sets (X, <) on n points that maximize
u(z <o y) = N(zy)/N when z and y lie in an m-point antichain for fixed m
withn > m > 2.

The conclusion of the zyz inequality, which can be rewrittenas N (zyz) N <
N(zy)N(yz),or

p(z <oy <o 2) < plx <o y)u(y <o 2) ,

is universal in the sense that it holds for all ordered sets. It is therefore natural
to ask about other universal correlational inequalities. For example, is it always
true that

e <oy <o z <o w) < p(z <o y <o 2)u(z <o w)?

The answer here is “no”, as seen by the partially ordered set ({z, y, z, w,t}, <)
in which < consists of the chainy < ¢t < wplusy < 2,z < wand z < z.
Then p(z <o y <o z <o w) = 1/4, whereas u(z <o y <o 2)K(z <o w) =
15/64 < 1/4.

The theme of universal inequalities has been pushed to the limit in Winkler
[39] and Brightwell [8]. To state their theorems, let <. be an asymmetric
binary relation on a set Y. Given an ordered set (X, <) withY C X, let

X, <o) € L:<.C<
< = M €L teCeol
The set of covering pairsin (Y, <) is
A(Y, <) ={(z,y) €<z <t <.y formo tE€ ¥}

We say that ordered sets (Y, <1) and (Y, <2) are compatible if the transitive
closure of <; U < is irreflexive, i.e., if <; and < are subsets of a common
partial order. In terms of y as defined here, the zy2 inequality of Theorem 9 is

#({xa y, 2z}, {(z,9), (333)}) 2 #({$=y! z}, {(:c,y)})y({a:,y,z],{(a:,z)}) .

Theorem 11. ([39]) Suppose (Y, <1) and (Y, <) are compatible finite ordered
sets. Then Mo
p(Y, <1 U <2) 2 p(Y, <1)u(Y, <2)
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for every finite ordered set (X, <) withY C X ifand onlyif, forall z,y, a,b €
Yl

{(:tay) € A(Y' <1 U '<2) \ A(Y= "(2]? (a,b) & A(Y: =<1 U 42) \ A(Yv "41)} =
(z=aory="b).

Theorem 12. ([8]) Suppose (Y, <1) and (Y, <2) are compatible finite ordered
sets. Then
,[.L(Y, <1 U '<'3) = ,&(Y, <1)#(}/'1 "(2)

for every finite ordered set (X, <) withY C X ifand only if <1 N <2= ( and,
forallz,y,a,be Y,

{(z,y) € A(Y,<1),(a,b) € A(Y, <)} = (e =bory = a.

The cases of universal nonnegative correlation in Theorem 11 and universal
nonpositive correlation in Theorem 12 are extremely limited. The condition
of Theorem 11 says that the covering pairs (z, y) and (a, b) must be related as
in the zyz hypothesis, i.e., of the form {(z,y), (z, z)} or {(z,¥), (2,9)}. The
conditions of Theorem 12 seem even more restrictive.

Additional discussion of the universal correlation theme is provided by
Brightwell [9].

4. A TYPE 3 IMPLICATION FOR RANDOM
PERMUTATIONS

It is well known that certain instances of the conclusions of Theorems 1 and
2 do not require complete satisfaction of their hypotheses. We illustrate the
point with the case of match sets of random permutations from [17].
Let o be a permutation of {1, 2, ..., n}. The match set of o is its set of fixed
points
M(o) = {i € {1,2,...,n}: 0(i) = ¢} .

We assume that all ! permutations of {1,2,...,n} are equally likely and let
1(a) for @ € 2™ denote the probability that M (o) = a, with u(A) = S {u(a) :
a € A} for A € B,,. Thus, when exactly T'(a) permutations ¢ have match set
a, p(a) = T(a)/nl.

Theorem 13. ([17]) For all up-sets A, B € B,
#(AN B) > p(A)p(B) .

An easy corollary, similar to the equivalence of (1) and (3) in Theorem 3,
says that if f and g are nondecreasing functions from (2", C) into R, then
E(fg,p) > E(f,p)E(g,1). However, Theorem 13 is not a direct implication
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of Theorem 3 because p is not log supermodular. Although p(a)u(d) <
(a U b)u(anb) for most a, b € 27, log supermodularity fails when laU bl =
n — 1 > max{|al,|b|}. The reason is that no permutation has exactly n — 1
fixed points: if ¢ (i) = i for all but one i then ¢ (%) = i for all i. In other words,
p(aUb)=0when|aUbl =n—1.

Despite the breach of log supermodularity, [17] shows how the Ahlswede-
Daykin and FKG theorems can be used to prove Theorem 13. we do this
by perturbing u in ways that assign positive probability to la| = n — 1 such
that a perturbed y satisfies the hypotheses of Theorem 1, or satisfies log su-
permodularity. Given up-sets A and B, the perturbations leave u(A), u(B)
and (A N B) unchanged, so the conclusions of Theorems 1 and 3 can be
used for these y values. Unfortunately, our use of perturbations necessitates
examination of many special cases, but this may be an unavoidable cost of the
perturbation method.

Although our proof of Theorem 13 is very long, a few comments will indicate
one way that the Ahlswede-Daykin theorem is involved. With T'(a) = [{o :
M (o) = a}|, itis convenient to work with

T;=T(a) when l|a|=n—1,

so Tp = 1 (only one permutation has a complete match), 77 = 0 (the breach of
log supennodularit%, > (})T; = n!, and, by inclusion-exclusion,

T = i!i(-l)f/j: :

The full proof of the theorem assumes that it holds for small n ([24] verifies
the result for n < 6) and considers up-sets A and B that contain every a with
la| = n — 1 and do not equal 2". The proof divides into two main cases that
receive different treatments:

Case 1: u(A N B) > u(A)u(B) if AU B contains a singleton;

Case 2: u(AN B) > p(A)p(B) if min{la]:a € AUB} > 2.
The Case 1 proof assumes that {1} € A and uses the FKG theorem and a
matching argument in which b € B\ A with [b] < n — 3 is paired with
bU {1} € AN B. The proof for Case 2 uses the Ahlswede-Daykin theorem.
Both cases involve perturbations of .

In dealing with Case 2, we assume without loss of generality that AN B
contains all (n — 1)-sets and work directly with T'(a) rather than pu(a) =
T(a)/n!. We perturb T" to T" on 2™ as follows:

0 d = {10000
)= { 1/n |a|=n-1

T(a) la|<n-2.
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This removes weight 1 from {1,...,n} and redistributes it evenly over the
(n — 1)-sets. To satisfy the hypothesized inequality of Theorem 1, we first
define o and 3 there by

[0 agA (0 b¢B
"‘(“)'{T’(a) acA, 'g(b]_{T’(b) beB.

Because all (n — 1)-sets are in A N B, we have a(A) = p(A)n! and 8(B) =
i(B)n!. Next, define v by

1/(2n) o= {l;:cim}
v(a) = { 0 a¢ ANB
T'(a) otherwise.

This gives
1
vy(AVB)=9(ANB) = 2—n—+p(An B)n!,
which is slightly greater than (A N B)n!, so we define §( A A B) to be slightly
less than n! to make the conclusion of Theorem 1 at A and B agree with
w(AN B) > u(A)u(B). We choose § constant on sets of fixed cardinality:

0 la] =n
1/n la| =n—-1
Sa)=¢ 1 la] = n—2
nT; la|=n—-i-1;1=2,...,n—2
2ﬂTn_2 |GI=O

It follows that, with §; = 6(a) when |a| = 1,

n n—3
§(ANB) =3 ("':) Si=2mTustny. (’:) Tnic1 + (;‘) +1.

1=0 =1

Given «, 3, v and ¢, the Case 2 proof now breaks into a number of subcases
for the up-sets A and B that depend onn and k = n — min{|a| : a € AN B}.
All but a finite number of instances of (&, n) satisfy the hypothesized inequality
of Theorem 1, and p(A N B) > u(A)u(B) is obtained from its conclusion.
A few instances here use a further perturbation which increases dg = 2nT,_»
but leaves all other parts of « through § unchanged. The instances of (k, n)
that do not satisfy the hypotheses of Theorem 1 use other methods to verify
u(AN B) > p(A)u(B).

5 A GENERALIZATION

We conclude by describing a generalization of the Ahlswede-Daykin theo-
rem due to Rinott and Saks [31, 32] and, independently, Aharoni and Keich [2].
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The generalization applies to n-tuples a = (a1, asz,...,a,) in ' forn > 2,
and is identical to the Ahlswede-Daykin theorem when n = 2. Itis too early
to say whether a number of interesting applications will arise for n > 3, but
this seems plausible in view of the usefulness of Theorems 1 and 2.

We assume that (I', <) is a finite distributive lattice and take n > 2. For
each k € {1,...,n}, let ¢; denote the map from I'* into I defined by

or(a) = V{Aiesa; : Sisak-setin{1,2,...,n}}

foralla = (a,,...,a,) € I'". For example, when n = 3,
¢1(a) = a1VayVag
(Pg(a) = [ﬂ.l A &.2) vV (&1 A &3) \% (az A G3)
¢3(a) = arAhazAMaz.

With 2 the set of subsets of I', we extend ¢ to (21')" by letting
or(A) = {gx(a) :a€ A1 X A2 X --- X Ap,a €T}
forall A = (A;,...,4,) € (20)™.

Theorem 14. Suppose (I',<) is a finite distributive lattice, n > 2, and
fioeees fasGis---ygn : T'— [0, 00) satisfy

1 fe(ar) < I1 9x(ox(a)) forall aeTl™.
k=1 k=1

Then N .
[T /x(Ax) < TT 9x(9k(A)) forall A€ (25)".
k=1 Rl
The proof in [2] is similar in outline to the proof of Theorem 1 indicated
in section 1. It uses (2™, C) in place of (I', <) and proceeds by induction on

m after checking the desired result for m = 0 and proving it for m = 1 with
assistance from a result about n-tuples of functions from {0, 1} into [0, o0).
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