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Abstract: A well-studied problem in the literature on airline revenue (or yield) management is the 
optimal allocation of seat inventory among fare classes given a demand distribution for each 
class.  In practice, the seat allocation decisions of one airline affect the passenger demands for 
seats on other airlines.  In this paper we examine the seat inventory control problem under both 
horizontal competition (two airlines compete for passengers on the same flight leg) and vertical 
competition (different airlines fly different legs on a multi-leg itinerary).  Such vertical 
competition can be the outcome of a code sharing agreement between airlines, for each airline 
sells seats on the partner airlines’ flights but the airlines are unwilling, or unable, to coordinate 
yield management decisions.  We provide a quite general sufficient condition under which a 
pure-strategy Nash equilibrium exists in these 'revenue management games', and we also 
compare the total number of seats available in each fare class with, and without, competition.  
Analytical results as well as numerical examples demonstrate that under horizontal competition 
more seats are protected for higher-fare passengers than when a single airline acts as a 
monopoly, while under vertical competition the booking limit may be higher, or lower, than the 
monopoly level, depending upon the demand for connecting flights in each fare class.  Finally, 
we discuss revenue-sharing contracts that coordinate the actions of both airlines.
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1. Introduction 

Consider an airline customer looking for an early-morning flight from Rochester, NY to Chicago in May 

2003.  The traveler can choose between two airlines, American and United, who offer flights at nearly 

identical times (6:00 am and 6:10 am, respectively) at identical prices (both charge $266 for 14-day and 

$315 for 7-day advance purchase round-trip tickets).  Now suppose that our customer wishes to purchase 

American’s 14-day advance ticket.  If the seats allocated to the 14-day fare class have sold out, it is likely 

that the customer will attempt to purchase a ticket in the same fare class on the United flight that departs 

10 minutes later. In general, the allocation of seat inventory among fare classes by one airline affects the 

quantity of customer demand, and optimal seat allocation, of the other airline.  If the airlines are 

competitors and do not collaborate on seat allocation decisions, then the decisions that arise out of the 

resulting game can differ significantly from the seat allocations that would be optimal for a single 

decision-maker with control over both airlines. 

Here we use the term ‘horizontal competition’ when describing airlines that compete for 

customers on a single flight-leg.  We will use the term ‘vertical competition’ to refer to different airlines 

that fly different legs on a multi-leg itinerary.  For example, a traveler who wishes to fly from Cleveland 

to Tokyo can purchase a convenient two-leg itinerary with the first leg operated by Continental Airlines 

from Cleveland to Los Angeles, and the second leg operated by Northwest Airlines from Los Angeles to 

Tokyo. (We call this customer a ‘connecting passenger.’)  Because these two airlines have formed an 

alliance that allows each airline to sell tickets for flights operated by the alliance partner (an arrangement 

called code sharing), the Cleveland-Los Angeles-Tokyo ticket can be purchased from either airline.  In 

this case, the term ‘vertical competition’ may seem to be a misnomer, for airlines in such an alliance 

cooperate by code sharing.  However, technical and legal barriers often prevent the airlines from 

explicitly coordinating both pricing and seat inventory decisions.1  As was true for horizontal competition, 

the seat inventory decisions of one airline affect customer demand and inventory decisions of the other, 

and the absence of perfect coordination can lead to inventory allocation decisions that differ significantly 

from the system-optimal solution. 

In this paper we examine how both horizontal and vertical competition affect airline seat inventory 

decisions, and we consider how airlines in an alliance may coordinate these decisions by agreements 

                                                 

1 Boyd (1998a) describes how coordinating the revenue management systems of multiple airlines can be a “logistical 
nightmare”, and he explains that an airline may believe that its own proprietary system provides a competitive advantage and 
therefore the airline may resist merging systems with an ally.  In addition, many alliances are not immunized from anti-trust 
regulations, and airline revenue managers for these airlines are concerned that the Federal Government may see overt 
coordination of seat inventory decisions as a violation of antitrust law (Zuckerman, 2002). 
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similar to revenue-sharing contracts.  There is evidence that over the past ten years alliances have become 

more numerous and increasingly important for the airline industry.  The U.S. airlines have recently 

formed the two largest alliances in history (United Airlines and US Airways in 2002, and Delta Airlines 

joined Northwest and Continental in 2003).  The first major international alliances were formed in the 

early and mid-1990’s, and international passenger traffic between hubs of code-sharing partners increased 

by 43% between 1992 and 1997, while international traffic between other hubs increased by just 7% (U. 

S. Department of Transportation, 2000).  There are many advantages to such alliances.  They allow 

airlines to expand into new markets and to increase the frequency of flights offered within markets served 

by both airlines.  If given antitrust immunity, alliance partners can increase profits by coordinating 

activities such as marketing, purchasing, luggage handling and flight scheduling.  These partners may also 

apply revenue management techniques to optimize joint revenues (for a thorough summary of the benefits 

and costs of airline alliances, see Fernandez de la Torre, 1999).  However, as we mentioned above, there 

can be significant barriers to such coordination, and the airlines struggle to find decentralized mechanisms 

to integrate revenue management decisions. 

There is a substantial economics literature analyzing airline behavior under competition and the 

impact of airline alliances.  There is also a recent stream of operations research literature on the problem 

of optimal seat allocation.  However, to our knowledge there are no published papers that place the seat 

allocation problem in a competitive framework, examine the impact of airline alliances on these decisions, 

or specify contracts that enable airlines to coordinate decisions.  We address these issues here, for an 

understanding of how competition affects revenue management decisions would be helpful for airline 

managers who negotiate contracts with potential alliance partners or design systems to implement 

alliances, as well as for government regulators who must evaluate the impact of airline alliances. 

After a review of the literature in Section 2, in Section 3 we describe the traditional single-airline, 

single-leg, two-class yield management problem, and we introduce a condition on the demand distribution 

that will be useful in later sections.  We discuss horizontal competition in Section 4.  In this case, each 

airline is faced with an initial demand from passengers who wish to purchase tickets, but each airline may 

also sell tickets to passengers that were denied a reservation on the competing airline.  In Section 5 we 

consider vertical competition: each airline has both local and connecting demand, but the number of 

connecting passengers booked on one airline is limited by the number booked by an alliance partner.  In 

both cases the optimal capacity limits for each class (the booking limits) on each airline are 

interdependent.  We compare the revenue management policies of competing airlines with the policy of a 

monopolist who operates all flights or, equivalently, the policies of airlines that cooperate to maximize 

total profits.  Analytical results for special cases as well as numerical examples demonstrate that under 
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horizontal competition more seats are protected for higher-fare passengers than when a single airline acts 

as a monopoly, while under vertical competition the booking limit may be higher, or lower, than the 

monopoly level, depending upon the quantity of connecting demand in each fare class.  In Section 6 we 

present revenue-sharing contracts that coordinate the actions of both airlines, and in Section 7 we discuss 

managerial insights and consider directions for further work. 

2. Related Literature 

Publications that consider the interactions among economic forces, strategic airline market entry 

decisions, and airline schedules include the network design models of Lederer and Nambimamdom 

(1999), Dobson and Lederer (1994), and the empirical work by Borenstein and Rose (1994).  Another 

body of research focuses on the airlines' scheduling decisions under competition using variants of the 

spatial model developed by Hotelling (1929).  See, for example, the recent empirical papers by Borenstein 

and Netz (1999) and Richard (2003).  These papers focus on broad competitive problems and ignore the 

specifics of seat inventory allocation.  In this paper we will not be concerned with the reasons airlines 

schedule their flights at the same time or with the pricing decision for each flight.  Rather, we will 

concentrate on the implications of competitive scheduling on seat inventory control.   

There are numerous papers in the area of revenue management that focus on airline yield 

management.  For fundamental results on the general subject of seat inventory control see Belobaba 

(1989), Brumelle et al. (1990), and a useful literature review by McGill and van Ryzin (1999).  Some of 

our results for horizontal competition are related to the unpublished work by Li and Oum (1998), which 

describes a seat allocation problem for two airlines in competition but uses a relatively restrictive 

assumption about how demand is allocated among airlines and identifies one, symmetric equilibrium.  

Zhao and Atkins (2002) describe a model with two airlines competing for passengers in one demand 

class.  Belobaba and Wilson (1997) describe a simulation model that is used to evaluate the benefits of 

yield management systems for airlines under competition. 

The literature on inventory management has seen a stream of closely related papers devoted to 

competition among firms in which the firms determine inventory levels and customers may switch among 

firms until a suitable product is found.  This has been described as a 'newsvendor game' or as ‘inventory 

competition’ and is related to our concept of horizontal competition.  Parlar (1988) examines the 

competition between two retailers facing independent demands.  Lippman and McCardle (1997) examine 

both the two-firm game and a game with an arbitrary number of players.  In their models, initial industry 

demand is allocated among the players according to a pre-specified 'splitting rule.'  They establish the 

existence of a pure strategy Nash equilibrium and show that the equilibrium is unique when the initial 
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allocation is deterministic and strictly increasing in the total industry demand for each player.  Recent 

extensions of these models include Mahajan and van Ryzin (1999) who model demand as a stochastic 

sequence of utility-maximizing customers.  For an arbitrary number of firms, they demonstrate that an 

equilibrium exists and show that it is unique for a symmetric game.  Netessine and Rudi (2003) analyze a 

problem similar to Parlar (1988) but for an arbitrary number of products.  Given mild parametric 

assumptions they establish the existence of, and characterize, a unique, globally stable Nash equilibrium. 

Many of these papers compare total inventory levels under competition with inventory levels 

when firms cooperate.  Lippman and McCardle (1997) show that competition can lead to higher 

inventories, and Mahajan and van Ryzin (1999) derive similar results given their dynamic model of 

customer purchasing.  On the other hand, with the substitution structure of the model of Netessine and 

Rudi (2003), under competition some firms may stock less than under centralization.  It is not 

immediately clear how these results can be extended to our model of horizontal competition, for the 

problem described here involves the allocation of a fixed inventory between two customer classes.  

Therefore, ‘overstocking’ of inventory in one class would imply ‘understocking’ in the other class.  We 

will also see that in our problem, an airline’s demand depends upon its own booking-limit decision, a 

complication not seen in any newsvendor game. 

In addition, our demand model for each fare class is more general than those that have been used 

in the literature.  Lippman and McCardle’s stylized splitting rules generate demands that are either 

independent or perfectly correlated, while Parlar only considers independent demands.  In our model, 

customer demand may follow an arbitrary distribution.  Besides being a more natural description of real-

world demand, allowing a general demand distribution leads to additional insights.  For example, the 

traditional newsvendor game always has a pure strategy equilibrium, but ours may not.  We will see that 

the correlation structure of demand between products has an important impact on the dynamics of the 

game, and our model allows us to find general conditions under which the game has an equilibrium. 

Analysis of vertical competition dates back to Spengler (1950) who demonstrated in a simple 

supply chain that the effect of double-marginalization leads to suboptimal system performance.  Since 

then there have been numerous studies of vertical competition in the supply chain setting but, to the best 

of our knowledge, no analysis in the revenue management setting.  While there is both theoretical and 

empirical research investigating the impact of code sharing agreements on ticket prices (see, for example, 

Brueckner and Whalen 2000, and Brueckner 2003), to the best of our knowledge there is no published 

work investigating the inefficiencies that arise during day-to-day yield management decisions. 

The specific terms of code sharing agreements are usually not available to public.  However, 
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Wynne (1995) and Boyd (1998a) describe some of the coordination mechanisms that are used in practice.  

Besides short accounts in Talluri and van Ryzin (2004) and Boyd (1998b), there has been no published 

analytical analysis of contracts among airline alliance partners.  In general, there is much confusion, and 

very little theoretical support, for alliance partners when they attempt to design contracts.  The contracts 

we propose are related to work of Cachon and Lariviere (2000) on revenue sharing in supply chain 

management.  See also Cachon (2004) for the survey of contracting literature in operations management. 

3. The Single-Airline, Single-Leg Problem 

Before discussing the effects of competition on yield management practices, we review the traditional 

stand-alone yield management problem, introduce some notation, and derive a result that will be used 

throughout the paper.  Let pk be the net revenue from a passenger in class k=L,H (low-fare and high-fare), 

which takes into account the variable cost of flying that passenger.  Demand for tickets at these prices is 

represented by the random variables Dk, HLk ,= .  A ticket purchased for either fare provides access to 

the same product: a coach-class seat on one flight leg.  We assume that demand for low-fare tickets occurs 

before demand for high-fare tickets, which is the case when advance-purchase requirements are used to 

distinguish between customers with different valuations on price and flexibility.  Customers who prefer a 

low fare and are willing to accept the purchase restrictions will be called 'low-fare customers'.  Customers 

who prefer to purchase later, at the higher price, are called 'high-fare customers'.  We assume that there 

are no customer cancellations. 

To maximize expected profits, the airline establishes a booking limit B for low-fare seats. Note 

that the establishment of a booking limit is an optimal policy for each airline – see Brumelle et al. (1990).  

Once the booking limit is reached, the low fare is closed.  Sales of high-fare tickets are accepted until 

either the airplane is full or the flight departs.   

This model contains only two fare classes, when in reality there may be many more (see Belobaba 

1998 for an introduction to the complexities of real-world yield management systems).  We also assume 

that the airlines' booking limits are static.  That is, the booking limit is set before demand is realized and 

no adjustments are made as low-fare demand is observed.  This model simplifies other aspects of the 

actual environment.  For example, we assume that a passenger denied a low-fare booking does not attempt 

to upgrade to the high-fare class and that a passenger, when first denied a ticket, will not shift to a later or 

earlier flight operated by the same airline.  These assumptions appear often in the literature on non-

competitive revenue management, and, given the added complexity of our problem involving 

competition, we adopt them here as well.   
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Given that the aircraft has capacity C, the airline’s optimization problem is 

 ( ) ( )( )max min , min , min , .B L L H H LE p D B p D C D Bπ  = + −    (2.1) 

The first-order condition is,  

 
( ) ( )

( ) ( )( )

Pr min ,

Pr min | 0.

L L H H L

L L H H L

p D B p D C B D B
B

D B p p D C B D B

π∂
= > − > − >

∂
= > − > − > =

  (2.2) 

If ,L HD D  are independent, it is easy to see that there is a unique solution.  To address dependent 

demands, Brumelle et al. (1990) introduced the “monotonic association property.” Given that 

( )Pr |H LD C B D B> − >  is monotonically increasing in B (‘monotonic association’), there is a unique 

solution to (2.2).  Here we introduce a related property, that LD  and HD  are ‘totally positive of order 2’ 

(TP2).  TP2 implies that realizations of the random variables are more likely to be high together, or low 

together, than to be mixed ‘high’ and ‘low’ (see Joe 1997 for a thorough discussion of TP2 and its 

properties). 

Proposition 1.  Suppose ,L HD D  are TP2 (Totally Positive of Order 2).  Then there is a unique solution to 

the optimality condition (2.2) and the objective function (2.1) is quasi-concave.  

Proof: From Proposition 2.3 of Joe (1997), TP2 implies that LD  and HD  are right-tail increasing, i.e., 

Pr( | )H LD C B D B> − >  is increasing in B.  The result follows.  

In the proof, the sufficient condition on ,L HD D  is actually weaker than the TP2 condition: the two 

random variables must be ‘right-tail increasing’ (RTI), a property similar to (but stronger than) monotonic 

association.  However, working with the TP2 property is convenient, for we know that there are many 

useful bivariate distributions that are TP2.  These include any set of independent random variables, the 

multivariate logistic, Gamma and F distributions, and the bivariate normal distribution with positive 

correlation (Karlin and Rinott, 1980, and Tong, 1990).  The TP2 property can also be extended to the 

multivariate TP2 property (MTP2).  Both TP2 and MTP2 will be useful in the next two sections. 

4. Horizontal Competition 

Suppose two airlines offer direct flights between the same origin and destination, with departures and 

arrivals at similar times.  We use subscripts i,j=1,2 to distinguish two competing airlines.  Flights have the 

seat capacity Ci and there are two fare classes available for passengers: 'low-fare' and 'high-fare.'  If either 

type of customer is denied a ticket at one airline, the customer will attempt to purchase a ticket from the 
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other airline and we call these “overflow passengers” (see Figure 1).  Therefore, both airlines are faced 

with a random initial demand for each fare class as well as demand from customers who are denied tickets 

by the other airline.  Passengers denied reservations by both airlines are lost.  Figure 1 shows the overflow 

processes.  We assume that both airlines’ prices satisfy Li Hip p< .  We also assume that the random 

variables Dki have nonnegative support and that the cumulative distributions are differentiable. 

 

high-fare overflow from 2 to 1

high-fare overflow from 1 to 2

Low fare 
class 

High fare
class 

DH1 

DL1 

Low fare 
class 

High fare 
class 

DH2 

DL2 

Airline 1 Airline 2

B1 

B2 

low-fare overflow from 2 to 1

low-fare overflow from 1 to 2

C1 C2 

 
Figure 1: Horizontal Competition 

Note that all results presented in this section also apply to a model in which some fraction (less 

than one) of passengers denied a ticket on one airline attempt to purchase a ticket from the other airline, 

while some fraction (greater than zero) are lost to both airlines.  To simplify the model and minimize the 

number of parameters, we assume that all passengers denied a ticket from their first choice overflow to 

their second-choice airline. 

The model describes two airlines engaging in a non-cooperative game with complete information.  

Each airline attempts to maximize its profits by adjusting its booking levels.  In other words, the booking 

level Bi ∈ [0,Ci] is the strategy space of airline i (for simplicity, we assume that the booking level may be 

any real number in this range).  Each airline knows the strategy spaces and demand distributions of its 

own flight as well as those of the competing airline.  Throughout the paper we will use c
iB  to denote 

equilibrium booking limits set by competing airlines, and we will be comparing these with a
iB , the 

optimal booking limits established by an alliance of two airlines that coordinate yield management 

decisions (or, a profit-maximizing monopoly). 

An important assumption of the model is that the initial demands Dki are exogenous; they are not 

affected by the booking limits chosen by each airline.  This assumption is consistent with the newsvendor 

games of Parlar (1988) and Lippman and McCardle (1997).  However, one might argue that the booking 

limits determine seat availability, and that in the long run this aspect of service quality affects initial 

demand.  A more complete model would incorporate this relationship between booking limits and 



8 

demand, and the solution would supply equilibrium demands as well as equilibrium booking limits.  For 

our application, however, the relationship between booking limits and demand is weakened by marketing 

efforts such as advertising and frequent-flyer programs.  In addition, the use of travel agents and on-line 

reservation tools reduces the marginal search cost associated with making each booking.  Given low 

search costs, the decision as to which airline to query first may depend on factors that dominate the 

likelihood that the query will result in a booking. 

The order of events in the game is consistent with the traditional yield management problem: 

1. Airlines establish booking limits B1 and B2. 

2. Low-fare passengers arrive to their first-choice airlines and are accommodated up to the booking 

limits.  Low-fare passengers not accommodated on their first-choice airlines 'spill' to the alternate 

airlines and are accommodated up to the booking limits. 

3. High-fare passengers arrive to their first-choice airlines and are accommodated with any remaining 

seats, up to capacity Ci in each aircraft.  High-fare passengers not accommodated on their first-choice 

airlines 'spill' to the alternate airlines and are accommodated in any remaining seats, up to capacity Ci 

in each aircraft. 

Note that for an airline to enforce a booking-limit policy it is not necessary to distinguish between 

‘original’ and ‘overflow’ passengers.  Once demand is realized, each airline simply observes the arrival of 

low-fare passengers and then the arrival of high-fare passengers.  Each group of customers contains a 

mixture of first-choice and overflow passengers. 

To describe the problem in terms of customer demand and booking limits, define: 

+−+= )( jLjLi
T
Li BDDD , total demand for low-fare tickets on airline i, i=1, j=2 and  i=2, j=1. 

min( , )T
i i Li iR C D B= − , the number of seats available for high-fare passengers on airline i = 1,2. 

+−+= )( jHjHi
T
Hi RDDD , total demand for high-fare tickets, i=1, j=2 and i=2, j=1. 

The total revenue for airline i is 

 min( , ) min( , )T T
i Li Li i Hi Hi iE p D B p D Rπ  = +  . (3.1) 

Each airline will maximize this expression, given the booking limit of its competitor.  It will be instructive 

to examine the first derivative of this objective function.  It is tedious to find the derivative by the 

traditional methods (e.g., applying Leibnitz's rule).  Instead, by applying the techniques described in Rudi 

(2000), we find for i=1, j=2 and i=2, j=1, 



9 

 
Pr( ) Pr( , )

       Pr( , , , ).

T T Ti
Li Li i Hi Hi i i Li i

i

T T
Hi Li i Lj j Hj j Hi i i

p D B p D C B D B
B

p D B D B D R D C B

π∂
= > − > − >

∂

− > < > < −
 (3.2) 

Although this is a complex expression, there is a straightforward interpretation for each term.  An 

incremental increase in the booking limit Bi by airline i has three effects on that airline's total revenue.  

First, revenue from low-fare customers increases with probability )Pr( i
T
Li BD > .  Second, revenue from 

the high-fare customers decreases with probability Pr( , )T T
Hi i i Li iD C B D B> − > .  While these two effects 

are direct consequences of the change in Bi, there is a third, indirect effect.   Revenue from high-fare 

customers may decrease due to the following sequence of events: (i) an increase is Bi may reduce the 

overflow of low-fare customers from i to j, (ii) a reduction in the number of low-fare customers at j may 

increase the number of seats available for high-fare customers at j, (iii) this may reduce the overflow of 

high-fare customers from j  to i and (iv) a decline in the overflow from j may reduce the number of high-

fare customers accommodated at i.  The probability of this sequence of events is the third term on the 

right-hand side of equation (3.2), which implies that an increase in the booking limit of airline i can result 

in a decrease in high-fare demand to airline i.  Hence, even though there is no explicit dependence 

between airline’s booking limit and its demand, such dependence is introduced through the game.  

Because the strategy spaces of the airlines are compact and the payoff functions are continuous, a Nash 

equilibrium in mixed strategies must exist.  However, a pure-strategy Nash equilibrium may or may not 

exist for airlines playing this game. 

4.1 Nash Equilibrium Conditions 

In the following proposition we show that if LiD  and T
HiD  are TP2 then the game has a pure strategy Nash 

equilibrium.  In a corollary we show that these conditions also hold if ( )2121 ,,, HHLL DDDDD =  is MTP2.  

This result indicates that the existence of a pure strategy equilibrium depends upon the correlation of 

demands among fare classes within each airline, and does not directly depend upon the demand 

correlation between airlines (later we will describe a numerical example that compares these two cases).  

This result helps to distinguish our analysis from the analysis of Parlar (1988) and of Lippman and 

McCardle (1997).  In the classic ‘newsvendor game’ there is only one type of demand faced by each firm, 

a Nash equilibrium always exists and increase in inventory by one firm leads to a decrease in inventory by 

the competitors (a game of substitutes).  In our model, the addition of another demand class competing for 

the same resource not only complicates the analysis but also raises the possibility that there will not be a 

joint pure strategy at all, and/or that an increase in the booking limit of one airline may lead to an increase 
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in the booking limit of the other airline.  However, we show that under many reasonable demand 

distributions, such counterintuitive behavior does not appear. 

Proposition 2.  Suppose that LiD  and T
HiD , i=1,2, are TP2.  Then a pure strategy Nash equilibrium exists.  

In addition, the best response functions are decreasing (possibly with jumps down): if one player 

increases the booking limit, it is optimal for the other player to decrease the booking limit. 

Proof:  See the Appendix. 

It is worth noting that the proof of Proposition 2 does not rely on showing that the game is submodular 

(this has been shown for newsvendor games, see Lippman and McCardle 1997), for the game under 

horizontal competition is not submodular.  Instead, we utilize Tarsky’s fixed point theorem and explore 

the structural properties of the best response functions.  Note also that proposition 2 specifies conditions 

on LiD  and T
HiD , although realizations of T

HiD  may depend upon all four demand realizations.  The 

following Corollary describes appropriate conditions on these underlying demand distributions. 

Corollary 1.  If  ( )2121 ,,, HHLL DDDD  are multivariate TP2 (MTP2) in their density functions, then the 

results of Proposition 2 also hold. 

Proof: From Theorem 2.2 in Joe (1997), if ( )2121 ,,, HHLL DDDDD =  are MTP2, then so are 

( ) ( ) ( ) ( )( )DfDfDfDf 4321 ,,,  where fi are increasing functions.  Because T
HiD  is an increasing function of 

( )2121 ,,, HHLL DDDD , LiD  and T
HiD  are TP2 as well.  The results of Proposition 2 follow.   

As we mentioned in Section 3, there are many useful distributions that satisfy the MTP2 property.  

Multivariate normal distributions of three or more random variables are MTP2 if the inverse of the 

covariance matrix satisfies certain properties (specifically, it must be an ‘M-matrix’, see Karlin and 

Rinott, 1980).  On the other hand, if a multivariate normal distribution is MTP2, then a necessary 

condition is that its correlation coefficients are non-negative.  When the demand distributions for high and 

low-fare passengers ( LiD  and HiD ) are strongly negatively correlated, then LiD  and T
HiD  are not TP2, and 

the Proposition 2 suggests that we may not see a well-behaved game.  However, when demand 

distributions between airlines (e.g., LiD  and LjD ) are negatively associated, LiD  and T
HiD  may still satisfy 

the TP2 condition.  In that case, even though D  is not TP2, Proposition 2 may still hold. 

Figures 2 and 3, for example, show the best response functions ( )i ir B of two airlines with Ci= Cj 

=200 and demands that are characterized by large, negative correlation.  To generate Figure 2, we created 

a demand distribution with a correlation of -0.9 between high and low-fare demands within each airline, 
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but with independent demands between airlines.2  For Figure 3, high and low-fare demands are 

independent, but the between-airline correlation is -0.9.  As suggested by the Proposition 2, the results are 

very different.  Figure 2 shows a game without any pure-strategy equilibrium, and contains a ‘jump’ in 

which a rise in the booking limit of one airline leads to a sharp rise in the booking limit of the other 

airline.  The game in Figure 3, on the other hand, is well-behaved, with a single equilibrium at a booking 

limit of 50 seats.  In the general horizontal competitive game described above, it is also possible to have 

more than one equilibrium. 
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Figure 2: Best response functions with    Figure 3: Best response functions with 

( , ) ( , ) 0.9Li Hi Lj Hjcor D D cor D D= = − ,    ( , ) ( , ) 0Li Hi Lj Hjcor D D cor D D= = , 

( , ) ( , ) 0Li Lj Hi Hjcor D D cor D D= =     ( , ) ( , ) 0.9Li Lj Hi Hjcor D D cor D D= = −  

4.2 Comparing the Competitors and a Monopolist  We will now compare the behavior of two airlines in 

competition with the behavior of a monopolist.  Note that the term 'monopolist' does not necessarily imply 

that a single firm is the only airline on a particular route.  The 'monopolist' may be two airlines in an 

alliance to coordinate yield management decisions.  In addition, two airlines may compete on a particular 

route at certain times of day, while each airline may hold a virtual monopoly at other times of day because 

its competitor has not scheduled a competing flight at a point close in time. 

In general, we will find that under horizontal competition the total booking limit for the 

monopolist is never less than the sum of the booking limits of two competing airlines.  To help us 

understand the dynamics of the game, we first examine a simplified model with high-fare passenger 

overflow only, and then we discuss numerical experiments with the full model.  To enable proper 

                                                 
2 Intuitively, jumps in the best responses occur because, under negative correlation, each airline faces two entirely opposite 
states of the world: (i) heavy low-fare demand and no high-fare demand and (ii) heavy high-fare demand and no low-fare 
demand.  Therefore, each airline establishes either a large booking limit, essentially betting on the first state of the world, or it 
can establish a low booking limit while hoping for the second state.  Under certain problem parameters the two decisions 
produce the same expected profit so that the objective function is bimodal and the best response is to jump from one mode to 
the other when the competitor’s decision changes (see Appendix, Figure 5).  However, such an extreme negative correlation is 
unlikely to occur in practice.  Demand forecast errors for different fare classes are more likely to be independent or weakly 
positively correlated (see Section 4.3).  Therefore, the outcome in Figure 3 is more plausible.  
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comparison, we assume that the prices pki and the distribution of consumer demands kiD  are equal under 

the competitive and monopoly environments. 

Consider the situation when low-fare customers do not overflow to a second-choice flight while 

high-fare passengers do overflow.  This applies in the (unlikely) case that low-fare customers are willing 

to fly on only one airline.  A similar, even simpler model applies to the case where low-fare demand is 

sufficiently large so that the booking limits of both airlines are always reached (e.g., it is high enough to 

fill an entire aircraft) and therefore low-fare overflow is irrelevant.  With no low-fare overflow, objective 

function (3.1) is replaced by 

 min( , ) min( , )T
i Li Li i Hi Hi iE p D B p D Rπ  = +  , (3.3) 

and the optimality condition / 0i iBπ∂ ∂ =  at c
iB  can be written as, 

 Pr( | ) .T c c Li
Hi i i Li i

Hi

pD C B D B
p

> − > =  (3.4) 

It can be shown that there is a unique equilibrium in this game (see Netessine and Shumsky, 2004, 

Proposition S1 for details).  In the following proposition we will compare booking limits under 

competition with system-optimal booking limits.  Note that in this proposition and in all subsequent 

propositions we assume that the optimal solutions for the monopolist and the equilibrium under 

competition are in the interior, i.e., , (0, ).a c
i i iB B C∈  

Proposition 3.  Assume that each airline maximizes objective function (3.3), so that there is no low-fare 

overflow, and that T
HiD  and LiD  are TP2.  Then the booking limits are lower under competition than the 

centralized solution: c a
i iB B≤  and c a

j jB B≤ . 

Proof: The objective function of the alliance is the sum of the two airlines’ objective functions, 

i jπ π π= + , and the centralized optimality condition ( ) / 0i j iBπ π∂ + ∂ =  can be written as, 

 
( ),

1Pr( | ) .
Pr( )a a

i j

jT a a Li
Hi i i Li i a

Hi i Hi Li iB B

pD C B D B
p B p D B

π∂
> − > = +

∂ >
 (3.5) 

Clearly, / 0j iBπ∂ ∂ >  because an increase in the booking limit by one airline results in more high-fare 

passengers for the other airline without any effect on demand by low-fare passengers.  By comparing (3.4) 

and (3.5) we find, 
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 Pr( | ) Pr( | )T c c T a a
Hi i i Li i Hi i i Li iD C B D B D C B D B> − > < > − > . (3.6) 

Now consider the following four cases: 

1.  , .c a c a
i i j jB B B B> >   Given the TP2 assumption, the probability term in (3.6) is increasing in both iB  and 

jB , so this case is impossible. 

2.  ,c a c a
i i j jB B B B> < .  Consider the change from c

iB  to a
iB .  A decrease in iB  leads to a decrease in the 

probability term while an increase in jB  leads to an increase in the probability term.  For inequality (3.6) 

to hold, the second effect must dominate.  But for this to happen we need i jB B∆ < ∆  where ∆  refers to 

an absolute change in the booking limit.  However, analysis of the second optimality condition /j jBπ∂ ∂  

leads to the opposite requirement i jB B∆ > ∆  which is a contradiction. 

3.  ,c a c a
i i j jB B B B< > .  This leads to another contradiction, by the same reasoning as the previous case. 

The only remaining option is that c a
i iB B≥  and c a

j jB B≥ .   

Proposition 3 implies that, under competition, at least as many seats are held for high-fare customers as is 

optimal under joint profit maximization. For the monopolist, every high-fare passenger who does not find 

a seat at airline i and turns to airline j is not 'lost' to the firm.  Under competition, however, when airline i 

establishes a lower booking limit, airline j lowers its booking limit as well as the two airlines compete for 

high-fare passengers. 

A similar proof demonstrates that when there is only low-fare overflow, and no high-fare 

overflow, then c a
i iB B≥  and c a

j jB B≥ .  We do not believe that this result has practical significance, for it is 

difficult to imagine a situation in which high-fare customers do not overflow (e.g., if there are few high-

fare customers, then the booking limit is adjusted accordingly so the overflow is likely to occur).  

However, this result, when combined with Proposition 3, shows that the outcome of the full game 

described in Section 4.1 is not clear, for the full game has both types of overflow.   

4.3 Numerical analysis  To determine whether the previous section's results apply to the full-fledged 

game, we calculate numerically both the competitive equilibrium and the optimal monopoly solution in a 

game with both low-fare and high-fare overflow.  We perform these numerical experiments over a range 

of parameter values that is sufficiently wide so that we replicate most possible real-world scenarios.  Our 

goal is to see whether the booking limit set by the monopoly, aa BB 21 + , is consistently greater than or 
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equal to the total booking limit under competition, cc BB 21 + . 

To find the appropriate range of parameters we examined a variety of sources, including published 

papers, unpublished PhD theses, and databases collected by the airline industry and the U.S. Department 

of Transportation (DOT).  Our most significant primary source is the DOT’s quarterly ‘Passenger Origin 

and Destination Survey’ (DOT, 2004).  This database, known as either ‘Data Base 1a’ or ‘the O&D 

Survey,’ contains a 10% sample of all airline tickets sold for flights originating during a 3-month period.  

Each record of each ticket includes the cities visited by the passenger (the itinerary), the price of the 

ticket, and a fare code indicating whether the ticket was restricted or unrestricted.  In general, unrestricted, 

or full-fare, tickets are not subject to limitations such as advance purchase requirements, 

minimum/maximum stays, or refund penalties.  To estimate parameters of our model that are related to 

fare classes, such as the ratio LH pp / , we used the database’s fare code as a proxy for our high and low-

fare categories.  Given that our model allows for only two types of fare classes, we believe that dividing 

fares into restricted and unrestricted categories is a reasonable approximation. 

In total, the O&D Survey provided us with information on 471,000 tickets sold in 1500 different 

markets (origin/destination pairs).  The following list summarizes the data analysis and the parameter 

values.  For more details on the O&D Survey, our analysis of these data, and the following numerical 

experiments, see Netessine and Shumsky (2004). 

- Capacity (C1 and C2):  Fleet data from the Federal Aviation Administration (FAA, 2004) indicates that 

the average airplane of a major airline has 180 coach seats, varying from approximately 50 for a 

regional jet to over 400 for a Boeing 747.   Given these data, we design two sets of experiments: a 

symmetric case with C1 = C2 = 200, and an asymmetric case with C1 = 200 and C2 = 100. 

- Ratio of high fare to low fare ( LH pp / ):  In our data set derived from the O&D Survey, the median  

fare ratio among all 1500 markets is LH pp /  = 2.6.  For over 90% of all markets, the ratio fell within 

a range from 1.3 to 4.   Therefore, we define three scenarios, LH pp / = [1.3, 2.6, 4], for both the 

symmetric and asymmetric cases. 

- Proportion of demand due to low-fare passengers:  Let Liµ ( Hiµ ) be the average low-fare (high-fare) 

demand for airline i, i=1,2.  The proportion of low-fare demand is )/( HiLiLi µµµ + .  In the data from 

the O&D Survey, the median value among all markets is 0.74, with 90% of all markets falling 

between 0.5 and 0.9.  Therefore, we set )/( HiLiLi µµµ + = [0.5, 0.74, 0.9] for both the symmetric and 

asymmetric cases. 
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- Total demand and demand faced by each airline:  According to the airline industry trade group the Air 

Transport Association (ATA), the industry load factor (the utilization of airplane seats) has hovered 

near 70% for the last decade (ATA, 2004).  However, there is substantial flight-to-flight variation 

around this range, and the application of revenue management techniques generates load factors that 

are lower than exogenous demand.  Here we assume that total demand is equal to total airline 

capacity.  In our experiments, this led to realized load factors between 70% and 98%, depending upon 

the values of the other parameters. 

We must also allocate demand between the airlines.  It is most convenient to describe this allocation in 

terms of the ‘load’ placed on each airline, where the load for airline i = iHiLi C/)( µµ + .  For the 

symmetric case, we vary airline 1’s load through three parameters, [0.5, 0.75, 1], which implies that 

airline 2’s complementary load is [1.5, 1.25, 1].  For the asymmetric case, airline 1’s load = [0.5, 1, 

1.25] and airline 2’s load=[2, 1, 0.5] (recall that in the asymmetric case, airline 1 has 200 seats and 

airline 2 has 100). 

- Variability: To limit the number of parameters, we assume that all four customer demand distributions 

have the same coefficient of variation, CV.   Based on data analyses in Belobaba (1987) and in Jacobs, 

Ratliff and Smith (2000), reasonable values for the CV = [0.2, 0.33, 0.6].  

- Correlation:  Given the data analysis described in Belobaba (1987) and our own discussions with 

managers who work with yield management systems in the airline industry, correlation in the forecast 

error among customer classes is usually small.  When correlation is significant, positive correlation is 

probably more prevalent than negative correlation.  Therefore, we assume that correlation =ρ [-0.3, 

0.0, 0.3, 0.6].  To limit the number of parameters, we assume that the correlations among all demands 

are equal. 

- Probability density: Belobaba (1987) uses industry studies and his own data analysis to show that the 

Normal distribution is a reasonable model of demand within each fare class.  For each of our 

scenarios, we assume that demand is distributed according to a multivariate Normal distribution and is 

truncated at zero; any negative demand is added to a mass point at zero. 

When combined, these parameters define 6484*3*3*3*3*2 = scenarios.  Solutions were found by a 

simple gradient algorithm and the gradients themselves were evaluated by Monte Carlo integration. 

For every scenario, we found that the booking limit set by the monopoly, 1 2
a aB B+ , was greater 

than or equal to the total booking limit under competition, 1 2
c cB B+ .  The mean difference 

)()( 2121
ccaa BBBB +−+ across all scenarios is 9.3 seats, and the difference varies from 0 seats to 111 seats.  
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In general, the largest differences occur when correlation is low and when both capacity and demand are 

balanced among airlines and classes.  For a more detailed description of these results, see Netessine and 

Shumsky (2004). 

If we define the ‘service level’ of a customer class as the probability that all customers of a 

particular class are able to purchase a seat on either aircraft (similar to the ‘no-stockout probability’ of 

inventory theory), these differences in booking limits can produce significantly different service levels.  

Over all 648 scenarios, the service level for low-fare customers rose an average of 5.4 percentage points 

under the monopoly (43% to 48%), while the service level for high-fare customers declined an average of 

5.3 percentage points under the monopoly (76% to 71%).  The range of results was extremely large.  The 

difference in low-fare service levels was as high as 62%, while the difference in high-fare service levels 

reached 30%. 

To summarize, in this section we demonstrated that the horizontal game may not be well- 

behaved: best responses may exhibit jumps and, quite counter-intuitively, it may be optimal for an airline 

to increase its booking limit in response to the increase of booking limit by the competitor.  We provided 

regularity conditions that ensure existence of a competitive equilibrium and guarantee that the best 

response functions are decreasing.  Through a combination of analytical results and numerical 

experiments, we found that competing airlines tend to reserve too many seats for high-fare passengers.  In 

the conclusion, Section 8, we will discuss additional managerial insights from this section’s analysis, as 

well as from the following analysis of vertical competition. 

5. Vertical Competition 

Now consider two or more airlines that do not compete horizontally because all of the airlines operate 

flights in non-overlapping markets: if airline 1 operates a flight from A to B, then no other airline operates 

flights between those cities.  However, the airlines do interact because they may exchange connecting 

passengers.  For example, if airline 2 flies from B to C, then passengers may travel from A to C by flying 

on both airline 1 and airline 2.  The presence of both local passengers flying one leg (from A to B or from 

B to C), and connecting passengers flying both legs leads to important questions of coordination between 

the airlines.  How many high-fare seats should each airline set aside for connecting passengers?  For local 

passengers?  What happens if the airlines do not collaborate in these decisions? 

 Our analysis of the DOT’s O&D Survey found many examples of flights by the major airlines 

with a high proportion of inter-airline transfer passengers.  For example, on flights operated by 

Continental between Detroit and Cleveland, we estimate that 65% of passengers transferred to or from 

other airlines.  Most of these passengers flew on Northwest on the previous leg and transferred from 
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Northwest to Continental at Northwest’s hub in Detroit.  In addition, the data show that regional airlines 

often carry an even higher proportion of passengers who transfer to or from other airlines.   

 low-fare 
passengers

high-fare 
passengers 

all passengers 

Major U.S. Airlines    
American 0.18 0.18 0.18 
Continental 0.21 0.21 0.21 
Delta 0.13 0.17 0.13 
Northwest 0.17 0.21 0.18 
United 0.17 0.16 0.17 
USAirways 0.16 0.19 0.17 
Independent regional airlines  
Alaska 0.35 0.23 0.34 
Hawaiian 0.29 0.05 0.25 
Horizon 0.45 0.30 0.44 
Mesa 0.84 0.64 0.80 
Skyking 0.61 0.40 0.59 
Skywest 0.93 0.90 0.92 
Regional airlines controlled by major airlines 
American Eagle 0.75 0.53 0.69 
Comair (Delta) 0.73 0.65 0.71 
Delta Connection – Atlanta Southeast 0.84 0.73 0.82 
Mesaba/Northwest Airlink 0.84 0.59 0.80 
United Express – Atlantic 0.93 0.89 0.92 

Table 1: Fraction of U.S. passengers who are connecting to or from another airline  
(source: DOT’s O&D Survey)  

 

Table 1 shows the estimated fraction of inter-airline connecting passengers on flights in the U.S. 

for many of the largest airlines listed in the DOT’s O&D Survey data from the 4th quarter of 1999 (DOT 

2004).  To calculate these numbers we first examined each flight leg operated by each airline and found 

the number of passengers whose ticket showed either a transfer from a different airline on the previous leg 

or a transfer to a different airline on the next leg.  The actual numbers in Table 1 were produced by 

dividing the number of these inter-airline connecting passengers by the total number of passengers.  In 

addition, the O&D Survey classifies each ticket as ‘restricted’ or ‘unrestricted’, and we used this 

classification as a proxy for our ‘low-fare’ and ‘high-fare’ categories (for more on this classification 

scheme, see Section 4.3).   

From the Table we see that approximately 15-20% of the passengers on the major airlines are 

connecting passengers.  Regional airlines controlled by the major airlines such as American Eagle and 

Comair (which is a wholly owned subsidiary of Delta) tend to have a high proportion of connections to 

and from the controlling partner, around 70% - 90%.  For these partners, revenue management decisions 

are coordinated so that there is no ‘vertical competition’ between the major airline and the subsidiary.  On 
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the other hand, consider the independent regional airlines, which also have extremely high proportions of 

connecting passengers but do not coordinate pricing and seat allocation decisions with their partners.  

These airlines provide us with examples of vertical competition.  For example, Skywest feeds passengers 

to flights operated by Continental, Delta and United, and over 90% of its passengers are connecting 

passengers.  Geographically concentrated airlines, such as Alaska Airlines and Horizon Air also saw a 

large number of transfers from other airlines, 34% and 44%, respectively.  The analysis that led to Table 1 

included only flights operated within the U.S.  Most international flights operated by the major airlines 

also have a high fraction of passengers connecting with other airlines (Fernandez de la Torre, 1999). 

In this section we consider the impact of these connecting passengers on yield management 

policies.  Throughout this Section we assume that none of the airlines compete horizontally, so that each 

operates legs in separate markets.  Second, we assume that the total revenue generated by any itinerary is 

the sum of the revenues that would have been generated by a local passenger on each leg of the route.  For 

example, suppose airline 1 flies on a route from city A to city B, while airline 2 flies from B to C.  Local 

passengers traveling from A to B generate revenue 1kp , ,k L H=  to airline 1 and are worth 2kp  to airline 

2.  Connecting passengers traveling from A to C are worth 1 2k kp p+ , ,k L H= . 

We must also make assumptions about how the revenue is split between the airlines.  In our 

model, the airlines’ code sharing agreements allow each airline to book a connecting passenger on any 

other airline, and if an airline makes a connecting booking it keeps the local fare and distributes the 

remainder to the appropriate partners.  Note that the actual ‘local fares’ may be negotiated among the 

airlines in advance.  For example, they may be based on the length of the two legs, a system called 

'mileage proration' (Boyd, 1998a).  However, we assume that the revenue contributed by a connecting 

passenger to each airline is equal to the revenue that each airline would obtain from a local customer 

flying a single leg in the same fare class.  This simplifies the problem because connecting and local 

demands then fall naturally into the same booking-limit classes (or buckets) on each airline. 

Given this partition of capacity, each airline uses a ‘free sale’ mechanism to allocate capacity to 

the other airline.  Specifically, each airline provides real-time seat availability information to its partner.  

If an airline wants to book a low-fare seat on the other airline, it can, as long as the appropriate booking 

class is open.  This mechanism is sometimes called ‘automated codesharing,’ and it is an increasingly 

popular mechanism for allocating capacity among airline alliance partners (Fernandez de la Torre, 1999 

and Talluri and van Ryzin, 2004). 

First, we wish to determine whether the airlines, each optimizing this objective function over its 

own booking limits, reach a competitive equilibrium.  In addition, we want to compare the behavior of 

these uncoordinated airlines with the behavior of a single, centralized airline that optimizes over the entire 
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network.  In fact, there are a variety of methods that a central authority may use to allocate seats among 

the various types of demand on each flight leg (recall that each leg has low and high-fare local demands 

as well as low and high-fare connecting demands along any number of routes).  Talluri and van Ryzin 

(2004) provide a lucid introduction to this topic.  They describe (i) 'partitioned booking limits' so that each 

type of demand has its own booking class, (ii) 'virtual nesting controls' in which flights with similar profit 

implication are placed in the same virtual class, and (iii) bid-price controls in which each booking request 

is evaluated in real-time against the total expected marginal cost of satisfying that request. 

We will assume that our centralized airline uses a virtual nesting control system and that local and 

all connecting passengers of each fare class continue to co-exist in the same virtual class.  In other words, 

the centralized airline maintains the same two-class booking limit structure described above; the only 

difference is that the airline determines a different, 'optimal' booking limit for each flight leg that may 

take into account the larger revenue that connecting customers can provide.  For many parameters this is a 

reasonable method for allocating capacity.  For example, the expected net marginal network profit 

generated by a low-fare connecting customer is often closer to the local low-fare revenue than the local 

high-fare revenue (although the connecting passenger who travels on more than one leg generates more 

revenue, that passenger may displace a local customer on each leg).  Such virtual nesting systems are 

quite popular in practice because of their simplicity and their conformance with existing airline 

reservation systems.  Maintaining the same booking-limit structure also allows us to compare directly the 

competitive equilibrium and centralized cases. 

To gain some intuition about what happens under competition, we will now consider a few 

extreme cases.  In Section 5.1 we examine a general network topology with any number of airlines 

making any number of connections, but we limit the allocation of connecting customers to either the high-

fare or low-fare categories, but not both.3  We will see that in the first scenario competing airlines set 

booking limits that are lower than is centrally optimal and in the second scenario competing airlines set 

booking limits that are higher than centrally optimal.  In Section 5.2 we construct a model of two airlines 

exchanging passengers across two legs, and we examine numerically the impact of having passenger 

connections in both fare categories. 

5.1. General networks with connecting customers in either the low-fare or the high-fare bucket 

                                                 

3 One might also consider another special case with both types of connecting demand but no local demand.  While this may 
appear interesting, it turns out that local demand plays an important stabilizing role in the game and that an analysis of this 
special case is uninformative.  For example, consider any number of airlines that operate a sequence of legs connecting cities A 
to B to C….  It can be shown that when there is no local demand, any solution , ,i jB B i j= ∀  such that ( )0 mini j jB C∀≤ ≤ , is 
a Nash equilibrium.  
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Consider an M-leg network between an arbitrary number of cities.  The network may be a series of cities, 

A to B to C…, or it may be a more complex network involving multiple airlines feeding passengers to 

multiple hubs.  Each leg on this network is controlled by one of N airlines, N≤M.  Legs are indexed by 

i=1,…,M and airlines are indexed by k=1,…,N.  Capacity offered on each leg is Ci.  Passengers travel on 

individual legs as well as on any combinations of successive legs.  Passengers traveling on a single leg i 

pay kip , ,k L H=  and passengers traveling on a route that includes a set Ω of several legs pay kj
j

p
∈Ω
∑ , 

,k L H= .  The airlines’ code-sharing agreement allows each airline to book a connecting passenger on the 

other airline, and if an airline controlling legs in Ω  makes a connecting booking in class k, it keeps 

kj
j

p
∈Ω
∑  and pays 

/
kj

j

p
∈Ω Ω
∑  to the airlines controlling other legs.  To describe the total demand faced by 

each airline, we define B  as a vector of booking limits on all M legs and iB−  as a vector of booking limits 

on M-1 legs excluding leg i.  Furthermore, 

( ) ( )  andT
i iLi Li LiD B D D B− −= +  

( ) ( )T
Hi Hi HiD B D D B= + , where 

,Li HiD D = local low-fare and high-fare demand specific to the leg i, 

( ) ( ),iLi HiD B D B− = connecting low-fare and high-fare demand on the leg i, given the decisions 

made on the other legs. 

We assume that the connecting demands have the following properties: ( )iLiD B−  is increasing in 

iB− , and ( )HiD B  is decreasing in B .  For the analytical results in this section we will not specify a 

functional form for ( )Li jD B  or ( , )Hi i jD B B , for these first-order assumptions are sufficient.  These 

assumptions are also quite intuitive: a higher booking limit on any one leg opens more seats for 

connecting low-fare passengers for other airlines on the network, while a lower booking limit opens more 

seats for connecting high-fare passengers.  In Section 5.2 we will describe one specific functional form for 

the connecting demands that satisfies these assumptions. 

The profit generated for an airline from a particular leg i is, 

( )( ) ( ) ( )( )( )min , min , min ,i ii Li Li Li i Hi Hi Hi i Li Li iE p D D B B p D D B C D D B Bπ − −
 = + + + − +  
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The total profit of airline k controlling a set of legs Ωk is 
k

k j
j

π
∈Ω

Π = ∑ .  We will compare the booking 

limits resulting from such vertical competition with the booking limits that a monopolistic airline would 

set.  For a single monopolistic airline set Ω simply includes all M legs. 

We will consider two extreme situations: in the first, all connecting passengers will fly in the low 

fare only and in the second all connecting passengers will fly in the high fare only.  Before we do so, we 

will prove one theorem that will be instrumental later on. 

Proposition 4. Consider an N-players non-cooperative game with each player k=1,…,N endowed with a 

vector of strategies ( )1 2, ,..., ,...k k k kiB B B B=  and a payoff ( )k BΠ .  Let 
c

B  denote equilibria of this game 

and let 
a

B  denote the “alliance” solutions.  Then, if each ( )k BΠ  is supermodular in B  and moreover, if 

/ 0, ,k jiB j k i∂Π ∂ ≥ ≠ ∀  (correspondingly, / 0, ,k jiB j k i∂Π ∂ < ≠ ∀ ) then 
c a

B B≤  (
c a

B B≥ ). 

Proof: Consider a fictitious game in which every player is still endowed with a vector of strategies 

( )1 2, ,..., ,...k k k kiB B B B=  but the payoff now is  

 
( ) ( ) ( ), , .k k m

m k
B B B kα α

≠

Π = Π + Π ∀∑
 (5.1) 

Note that for 0α =  the equilibrium of this game is 
c

B  and for 1α =  the equilibrium of this game is 
a

B  

because each player optimizes the sum of all players’ payoffs.  Hence, in order to compare the 

competitive solution with the alliance solution it suffices to show that the equilibrium of the game defined 

by (5.1) is monotone in α .  To show that this is the case, observe that ( ),k B αΠ  is supermodular in B  as 

a sum of supermodular functions.  Further,  

 

( ) ( )
( ) ( )2

,
, ,

,
, , , .

k

m
m k

k m

m kji ji

B
B k

B B
k j i

B B

α

α

α

α

≠

≠

∂Π
= Π ∀

∂

∂ Π ∂Π
= ∀

∂ ∂ ∂

∑

∑
 

Hence, if / 0, ,k jiB j k i∂Π ∂ ≥ ≠ ∀ , we have that ( )2 , / 0k jiB Bα α∂ Π ∂ ∂ ≥  so that the game is 

supermodular in all players’ strategies as well as in the parameter α .  From Topkis (1998), it follows that 

the set of equilibria of this game is monotonically increasing in α  and hence 
c a

B B≤ .  The second part is 

shown analogously.   

At this point, it is worthwhile pointing out that 
c a

B B≤  in a set-ordering sense.  That is, the largest and 
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the smallest equilibria satisfy this inequality but not necessarily every solution does.  Topkis (1998, pg. 

32) calls this the ‘induced set ordering.’  Of course, if the equilibria are unique then 
c a

B B≤ in the 

conventional way. 

We now return to the airline problem.  First, consider the problem with connecting passengers in 

the low fare only.  In this case revenues on a given leg are 

( ) ( )( ) ( )( )( )min , min , min ,i ii Li Li Li i Hi Hi i Li Li iB E p D D B B p D C D D B Bπ − −
 = + + − +  

. 

Proposition 5.  Suppose the distribution of ( ),Li HiD D  is TP2 and all connecting passengers are in the low 

fare.  Then 
c a

B B≤ . 

Proof: Note first that all ( )i Bπ  are clearly increasing in iB−  because an increase in iB−  makes more 

connecting low-fare demand available for the leg i without affecting high-fare demand.  Further, the first 

derivative is 

 
( )( ) ( )( )

( )( ) ( )( )( )
Pr Pr ,

Pr min |

i
i iLi Li Li i Hi Hi i i Li Li i

i

i iLi Li i Li Hi Hi i i Li Li i

p D D B B p D C B D D B B
B

D D B B p p D C B D D B B

π
− −

− −

∂
= + > − > − + >

∂

= + > − > − + >
. 

Under the TP2 assumption, /i iBπ∂ ∂  is increasing in iB−  so that every ( )i Bπ  is supermodular, and so is 

( )k BΠ .  Hence, conditions of Proposition 4 are satisfied and 
c a

B B≤ .  

We now turn to the case with all connecting passengers in the high fare.  Recall that, generally 

speaking, ( )HiD B  is a function of iB  as well as iB− .  The dependence on iB  is due to the fact that iB  

affects demand for low-fare connecting passengers on legs other than i which, in its turn, affects the 

number of connecting high fare passengers that can be accommodated which affects ( )HiD B .  However, 

if connecting passengers are only in the high fare, the dependence of ( )HiD B  on iB  disappears and we 

can write ( )iHiD B− .  Revenues on a given leg are 

 ( ) ( ) ( )( )min , min , min ,ii Li Li i Hi Hi Hi i Li iE p D B p D D B C D Bπ − = + + −  
 

Proposition 6.  Suppose that all connecting passengers are in the high fare.  Then 
c a

B B≥ . 

Proof:  Note first that all ( )i Bπ  are decreasing in iB−  because an increase in iB−  makes less connecting 
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high-fare demand available for the leg i without affecting low-fare demand.  Further, the first derivative is 

 ( ) ( )( )Pr Pr , .i
iLi Li i Hi Hi Hi i i Li i

i

p D B p D D B C B D B
B
π

−
∂

= > − + > − >
∂

 

Therefore, /i iBπ∂ ∂  is increasing in iB−  so that every ( )i Bπ  is supermodular, and so is ( )k BΠ .  Hence, 

conditions of Proposition 4 are satisfied and 
c a

B B≥ .  

The results of Propositions 5 and 6 are intuitive: competing airlines undervalue connecting 

customers because each airline only receives a fraction of the total revenue from those customers.  When 

connecting traffic travels only in the low-fare bucket, competing airlines establish lower booking limits 

and sell fewer connecting tickets than is optimal for the network.  The opposite happens when connecting 

passengers travel only in the high-fare bucket.  These results also suggest that when connecting 

passengers are allocated to both buckets, the comparison of booking limits under competition and 

centralization may depend upon the proportion of connecting passengers in the two buckets, the 

conjecture that we verify in the next section. 

5.2. Connecting passengers in both buckets. 

In order to verify our conjecture in the previous section,  we focus on a simpler network, with just two 

airlines (airline 1 and airline 2) operating two legs (legs 1 and 2, respectively).  We also assign a 

particular functional form to ( )Li jD B  and ( , )Hi i jD B B .  When considering how these demands are 

generated, the following issue arises: if both local and connecting passengers are accommodated in a 

bucket, how many seats are sold to local passengers and how many to connecting passengers?  For this 

example, assume that both local and connecting passengers arrive uniformly over the reservation period.  

First consider low-fare connecting passengers.  If the booking limit of airline j is not a constraint, then 

airline j can book all available connecting passengers, and these passengers are available for airline i: 

( )Li j LD B D= .  However, if the booking limit of airline j is a constraint, the number of local and 

connecting tickets sold is proportional to their realized demands: ( ) 2( ) /( )Li j L L LjD B D D D B= + .  Similar 

reasoning applies for high-fare demand.  Therefore, 

        ( ) min ,1 ,j
Li j L

L Lj

B
D B D

D D
 

=   + 
 (5.2) 
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( )min , ( )

( , ) min ,1
i j Lj Lj i

Hi i j H
Hj H

C B D D B
D B B D

D D

 − +
 =  + 
 

. (5.3) 

As required, ( )Li jD B  is increasing in jB  and ( , )Hi i jD B B  is decreasing in Bi and Bj.  Again, definitions 

(5.2) and (5.3) are useful examples and will be used in numerical experiments later in this section, but 

they are not necessary for the analytical results in Section 5.1. 

Airline i’s objective function is, 

( )( ) ( ) ( )( )( )min , min , , min ,i Li Li Li j i Hi Hi Hi i j i Li Li j iE p D D B B p D D B B C D D B Bπ  = + + + − +  
 

In Table 1, we saw that airlines must often make yield management decisions with a significant 

number of inter-airline connections in all fare classes.  To examine this general case, we conducted 

numerical experiments to find the difference between the competitive equilibrium booking limits, c
iB , and 

the system-optimal booking limits, a
iB  for a variety of problem parameters.  Here we will present the 

results of one set of experiments with two identical airlines, each with 200 seats and each facing a total 

expected demand of 200 passengers, including both local and connecting passengers in both fare classes. 

(After the application of yield management controls, this produces load factors between 85% and 95% in 

the following set of experiment.)  We also performed an additional set of experiments with asymmetric 

airlines: one regional airline with a 100-seat plane ‘feeding’ a major airline with a 200-seat plane.  The 

results of those experiments were similar to the results shown here and hence are not reported. 

We again used the O&D Survey and other sources of data to determine the parameters for the 

experiments.  Based on the analysis described in Section 4.3, we set /H Lp p  to the baseline value of 2.6.  

All demands were distributed as independent normal random variables, truncated at 0, with coefficients of 

variation equal to 0.33 (Belobaba, 1987).  Given the results from the O&D Survey, we allocated 74% of 

local demand to low-fare passengers.  To determine the proportion of high-fare and low-fare connecting 

traffic, we again examined each of the markets in the O&D survey.  We found that among inter-airline 

connecting passengers, the fraction of high-fare tickets varied from 0 to 0.9.  Therefore, we varied the 

fraction ( ) / ( )H L HE D E D D+  across this range.  Finally, let cf  represent the fraction of demand due to 

passengers connecting from other airlines, a number that is roughly equivalent to the statistic shown in the 

third column of Table 1.  We set cf =[0.25, 0.75], a range that includes most of the markets in the O&D 

Survey with a significant number of connecting travelers. 

In all experiments, we assumed that connecting demands were generated according to the 
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uniformity assumption that led to equations (5.2) and (5.3).  We used Monte Carlo simulation to evaluate 

the objective function when finding the optimal booking limits for each airline, and variability in the 

generated demand accounts for the random variation in the trend line.  Figure 4 shows the results of the 

experiments.   
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Figure 4: Comparing competitive and centralized booking limits 

The left-hand side of the figure, with ( ) / ( ) 0H L HE D E D D+ = , is equivalent to the scenario with 

all connecting passengers in the low-fare bucket (Section 5.1), and we see that equilibrium booking limits 

are slightly lower under competition which is consistent with our results.  When 

( ) / ( ) 0.9H L HE D E D D+ = , most connecting passengers are in the high-fare bucket and, as we found in 

Section 5.1, the booking limits are higher under competition.  The intermediate cases show a gradual 

transition between the two extremes, and at one point the competing airlines establish the centrally 

optimal booking limits.  However, in the majority of examples we examined, the impact of connecting 

passengers in the high-fare bucket dominated, so that booking limits tend to be higher under competition.  

From Figure 4 we see that having proportionally more connecting demand (higher cf ) tends to increase 

the difference between the competitive and centralized booking limits. 

In this set of experiments, the difference in network profits between the ‘optimal’ solution and the 

competitive equilibrium varied from 0, where the solutions are equal, to 0.6% when 75% of all demand is 

connecting demand, and most of that connecting demand is in the high-fare bin.  Higher profit differences 

were seen with even higher levels of connecting demand and stronger negative correlations among 

demands.  For comparison, Talluri and Van Ryzin (2002) mention that optimal network controls can lead 

to "improvements on the order of 0.5% …with gains can be as high as 2% or more under high load 
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factors."  Note, however, that we are not comparing the competitive equilibrium with the truly optimal 

control scheme; our ‘centralized’ solution is the optimal booking limit, given the sub-optimal virtual 

nesting scheme that places local and connecting demands in the same fare class. 

6. Revenue-sharing Agreements 

We have shown that both vertical and horizontal competition on airline routes can lead to a sub-optimal 

allocation of seats among fare classes.  Here we examine how contractual arrangements can coordinate 

the actions of the two airlines.  This is a timely subject, given the proliferation of airline alliances that are 

presumably trying to do just that.  Other work on this subject includes Wynne (1995), who bases transfer 

prices between airlines on the value of local fares charged in each market traveled by the connecting 

passengers, Boyd (1998b) who finds prices from the marginal value of each seat on each airline, and Feng 

and Gallego (2003), who examine contracts in which a firm pays a fixed fare to an airline, while the 

airline agrees to accept bookings as long as seats are available.   In practice, the airline industry has been 

struggling to develop effective coordination schemes for its various alliances (Fernandez de la Torre, 

1999). 

There has been a wealth of research on contracting in the area of supply chain management (see 

Cachon, 2004, for an overview).  Most of these contracts combine a wholesale price with another lever, 

such as buyback agreements, revenue-sharing agreements, or options.  In our setting there is no equivalent 

of the ‘wholesale price’ between a supplier and a retailer, and therefore we will specify a different type of 

contract based on transfer prices.  However, the method used to derive our contract is similar to methods 

used to determine many supply chain contracts: we reformulate each player’s objective function so that it 

becomes a linear transformation of the centralized objective function.  This is similar in spirit to the “cost-

based revenue sharing” described by Fernandez de la Torre (1999), who notes that such schemes “[raise] 

the difficult question of how to allocate revenue generated by connecting traffic to the leg that is 

codeshared .” (pg. 155)  That is the problem we address here.  Note that this technique is appropriate not 

only when airlines compete on booking limits, but also when they compete on prices.  Here we will derive 

a suitable contract for airlines under vertical competition (i.e., airlines in a code-sharing alliance).  Similar 

techniques identify contracts that coordinate two airlines under horizontal competition. 

Each airline’s objective function is 

 ( ) ( )( )min , min , min , .T T T
i Li Li i Hi Hi i Li iE p D B p D C D Bπ  = + −   

where each demand is a function of prices as well as booking limits.  During a negotiation phase, the 

airlines agree to split profits in proportions a and 1-a.  One type of contract found in the supply-chain 
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literature would simply allocate total revenues to the two airlines according to proportions a and 1-a.  

However, such contracts ask the airlines to share revenues from both connecting and local traffic, and this 

may be impossible for technological, competitive, and/or regulatory reasons. 

Instead we will assume that the terms of the contract are similar to the scheme proposed by Boyd 

(1998b) and described in Talluri and van Ryzin (2004, Section 6.2): when an airline sells a connecting 

ticket, it pays a transfer price to the other airline for the seat.  However, our method for finding the 

transfer payment is different from the duality-based method proposed by Boyd.  Here we will demonstrate 

this technique for sales in the low-fare class; the derivation for the high-fare commission is similar.  When 

airline i sells a connecting ticket, it collects revenue 1 2L Lp p+  and pays airline j a transfer price jδ .  The 

method for calculating the transfer price jδ is negotiated in advance, and cannot be changed once 

payments begin.  As in the previous section, a local low-fare passenger on airline i is worth Lip  in 

revenue. 

In our formulation the transfer price will depend upon the expected flow of traffic, specifically, the 

expected number of connecting passengers and total passengers, given each airline’s booking limit.  Let T  

be the number of connecting tickets sold in the low-fare class and let iT  be the number of connecting 

tickets sold by airline i (so that 1 2T T T+ = ).  Given this notation, airline 1 earns ( )( )1 1 1min ,T
L Lp D B T−  

from local passengers, ( )1 2 2 1L Lp p Tδ+ −  from connecting tickets sold by airline 1 and 1 1( )T Tδ −  from 

connecting tickets sold by the partner.  To find the coordinating contract, we choose 1δ  and 2δ  so that the 

expected total revenue from low-fare customers for airline 1 is equal to proportion a of the centralized 

revenue from low-fare customers: 

 
( )( ) ( ) ( )

( ) ( )( )
1 1 1 1 2 2 1 1 1

1 1 1 2 2 2

min ,

min , min ,

T
L L L L

T T
L L L L

E p D B T p p T T T

E a p D B p D B

δ δ − + + − + − 
 = + 

. (5.4) 

Now let iβ be the ratio of the expected number of connecting passengers and the expected number 

of passengers accommodated by airline i: ( )[ ] / min ,T
i Li iE T E D Bβ  =   .  Also let λ  be the ratio of the 

expected number of connecting tickets sold by airline 1 and the total number of connecting tickets sold: 

[ ]1[ ] /E T E Tλ = .  Dividing (5.4) throughout by ( )1 1min ,T
LE D B 

  , 

 ( ) ( ) ( ) 1
1 1 1 2 2 1 1 1 1 1 2

2

1L L L L Lp p p a p p ββ δ λβ δ β λβ
β

 
− + + − + − = + 

 
. 
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Rearranging terms and dividing through by 1β , 

 ( )( ) ( ) ( )2 1
1 1 2 2

2 1

1 1 .L L
L L

p pp p a aλ δ λ δ
β β

− − − − = − −  (5.5) 

Equation (5.5) shows how the transfer prices depend upon the traffic flows.  Given a value of 2 2Lpδ > , 

(5.5) indicates that the transfer price 1δ  (i) increases as λ  increases (ii) increases as 1β  increases and (iii) 

decreases as 2β  increases.  Point (i) is intuitive: as airline 1 sells a larger proportion of connecting traffic, 

it receives fewer transfer payments from airline 2, and a larger transfer price is needed to align its 

behavior.  Points (ii) and (iii) are more subtle.  For point (ii), a rise in 1β  indicates that connecting tickets 

represent a higher proportion of airline 1’s sales.  This implies that airline 1 is paying airline 2 a transfer 

price on a higher proportion of its own ticket sales because of a decrease in airline 1’s local demand.  

Because airline 1 acts in its own self-interest, a fall in local demand would push airline 1 to lower its 

booking limit at the expense of connecting traffic on airline 2.   Therefore, the incentive for airline 1 to 

preserve room for connecting traffic must rise, and 1δ  rises as 1β  rises.   The reason for point (iii) is 

similar. 

7. Observations and Future Research 

In this paper we have examined how booking-limit decisions are affected by both horizontal competition 

(with passenger overflow) and vertical competition (with connecting passengers).  We have shown that a 

simple condition on the demand distribution, total positivity of order 2, is sufficient to ensure a pure 

strategy Nash equilibrium under horizontal competition and under vertical competition when connecting 

demand is restricted to the high or low-fare classes.  In general, we find that the equilibrium behavior of 

competing airlines can be very different from the behavior of competitors in a ‘newsvendor game.’  In this 

simpler game, each competitor’s objective function is concave and the game is submodular.  However, in 

our setting neither property holds, and this leads to best-response functions that can be discontinuous, and 

can be either decreasing or increasing.  The reason for this disparity is that in the newsvendor game the 

decision is how much inventory/capacity to procure while in our model the decision is to allocate fixed 

capacity among two customer classes.  The problem of allocating fixed capacity is not always well-

behaved even in the absence of competition, i.e. the objective function may not be unimodal, resulting in 

the possible lack of competitive equilibrium when competition is introduced.  Our model demonstrates 

that computerized revenue management systems may generate capacity controls that exhibit non-intuitive 

behavior, e.g., may suggest a significant increase in a booking limit without any significant change in 

demand, although such behavior is unlikely.  An understanding of the underlying causes of these effects 
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can be useful for managers. 

We have also found that booking limits are lower under horizontal competition than the booking 

limits found by a central profit-maximizer.  Competitive equilibrium booking limits may be higher, or 

lower, under vertical competition, although in a 2-airline, 2-leg case we found that they tend to be higher.  

The differences in booking limits can lead to significant differences in the level of service among 

customer classes.  These results can be useful for managers who are planning expansion into new markets 

or facing an entry by a rival.  Although airlines lose revenue because of competition, our results indicate 

that some groups of customers (high-fare customers under horizontal competition and low-fare customers 

under vertical competition) gain because their service is higher under competition than under a monopoly.  

The net value to consumer welfare of these losses and gains are, however, not clear, for it depends upon 

the comparative value those customers place on the ability to obtain tickets in their chosen fare classes. 

We have demonstrated analytically and evaluated numerically both the direction and magnitude of 

revenue losses for the two airlines due to competition.  Effective coordinating contracts can reduce these 

losses, and while there has been much research activity in the area of supply chain contracting, the same 

has not occurred in the yield management area.  Here we have described a set of revenue-sharing 

contracts to coordinate the booking-limit decisions of two airlines with connecting passengers.  Our work 

is an initial attempt in this direction.  Given the proliferation of airline alliances and prevalence of 

competition on airline routes, additional efforts are needed. 

Our models of full competition included only two airlines with two passenger classes each.  In 

practice, multiple airlines can be in competition and typically more than two fair classes are offered by 

each.  Relaxing each of these assumptions presents certain challenges.  For example, a model with more 

than two airlines competing horizontally is hard to analyze because one has to specify the order in which 

passengers overflow when one airline runs out of seats (e.g., from airline 1 to airline 2 and then to airline 

3 or first to airline 3 and then airline 2).  Consideration of more than two passenger classes complicates 

the analysis as well because the number of decision variables (booking limits) and hence the number of 

optimality conditions would grow accordingly.  Because direct analysis is difficult, simulation has been 

used to examine the impact of competition (Belobaba and Wilson, 1997).  On the other hand, in Section 

5.1 we saw that the analysis of vertical competition on multiple legs among multiple airlines does not 

pose significant difficulties, as long as connecting passengers belong to only one fare class.  However, 

when there are multiple fare classes for connecting passengers, the simple supermodular structure of the 

game is not preserved.  In this case, the impact of competition depends upon the proportion of customers 

in each class.  Williamson (1992) and Fernandez de la Torre (1999, pg. 185) use simulation to examine 

the impact of various optimization techniques and coordination mechanisms in airline networks with a 
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larger number of fare classes. 

Another significant concern with the analysis is that when comparing competitive and cooperative 

booking limits we assume that both prices and exogenous demand are constant.  For some comparisons 

this assumption is reasonable.  Under horizontal competition, two competing airlines often charge the 

same prices throughout the day for travel on a particular route, and some hours in the day are 'competitive' 

while others are monopolized by a single airline.  Prices are uniform over all flights, but the timing of 

flights throughout the day affects the yield management decisions of both airlines.  Likewise, in a vertical 

alliance, prices may be negotiated far in advance, while the yield management decisions happen in real-

time, according to rules that may be quite similar to those described here. 

Finally, in practice airlines may be competing on the same leg (horizontally) in addition to competing 

on different legs (vertically), and many alliances involve both horizontal and vertical coordination.  In our 

data analysis we did identify examples of horizontal competition with relatively little vertical competition 

(e.g., shuttle flights between Boston and New York) and vertical competition without significant 

horizontal competition (e.g., a regional airlines with a monopoly in a small market that is feeding the hub 

of a major airline).  However, the analysis of simultaneous horizontal and vertical competition is an 

interesting area for additional research. 

Appendix: Proof of Proposition 2 

To prove existence, we will employ Tarsky’s fixed point theorem which states that sufficient conditions 

for the existence of a pure strategy equilibrium are that the strategy space is closed and bounded and that 

the best-response functions are non-decreasing (Vives, 2000).  Note that Tarsky’s theorem does not 

require that the best responses are continuous: discontinuities (or ‘jumps’) are allowed, but only jumps up. 

Evidently, the strategy space [ ] [ ]0, 0,i iC C×  is closed and bounded.  Instead of showing that best 

responses are non-decreasing, we will show that the best-response functions are non-increasing because 

after a simple re-definition, jB B= − , Tarsky’s result applies to this new game (Vives, 2000, page 33, 

Remark 13).  Consequently, jumps down in the best-response functions are allowed, but not jumps up. 

We will first use the Implicit Function Theorem (IFT) to show that best responses are decreasing 

whenever they are differentiable (Part I).  This, however, does not eliminate the existence of jumps up 

because the IFT can only characterize the best response at points where it is differentiable.  In Part II we 

will demonstrate that the best-response functions can only have jumps down.  

Part I.  By the IFT,  
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2 2

2
i

i j ij

B
B B BB
π π∂ ∂ ∂

= −
∂ ∂ ∂∂

 (5.6) 

At player i’s best response, 2 2 0i iBπ∂ ∂ <  and we will show that 2 0i i jB Bπ∂ ∂ ∂ <  whenever the first-

order conditions hold.  Equivalently, we want to show that the first derivative (3.2) is decreasing in Bj.  

First note that, given a particular realization ( ), , ,Li Lj Hi HjD D D D D= , T
LiD  is decreasing in Bj and T

HiD  is 

increasing in Bj.   The first two probability terms can be rewritten as, 

 
Pr( ) Pr( , )

Pr( ) Pr( | ( ) ) .

T T T
Li Li i Hi Hi i i Li i

T T
Li i Li Hi Hi i i Li i Lj j

p D B p D C B D B

D B p p D C B D B D B +

> − > − >

 = > − > − > − − 
 (5.7) 

Because T
LiD  is decreasing in Bj, the first probability term ( )Pr T

Li iD B>  is decreasing in Bj.  From 

Theorem 2.3 of Joe (1997), TP2 implies that LiD  and T
HiD  are right-tail increasing, i.e., 

Pr( | ( ) )T
Hi i i Li i Lj jD C B D B D B +> − > − −  is increasing in Bj.  Finally, since the first-order conditions hold 

at the equilibrium, we are assured that the expression in square brackets is positive and therefore (5.7) is 

decreasing in Bj. 

Now we show that the last probability term in (3.2) is increasing in Bj and, because this term is 

multiplied by ‘ Hp− ’, the derivative must be decreasing in Bj.  The final term can be rewritten, 

Pr( , , , )

Pr( , , , )

T T
Li i Lj j Hj j Hi i i

Li i Li Lj i j Li Lj Hj j i Li Lj Hi Hj i j

D B D B D R D C B

D B D D B B D D D C B D D D D C C

> < > < −

= > + < + + + > + + + + < +
 

The booking limit Bj only appears once in this expression, in the event ‘ Li Li i jD D B B+ < + ’, and 

the probability of this event increases as Bj increases.  Therefore, the last probability term 

increases, 2
1 1 2 0B Bπ∂ ∂ ∂ < , and best responses are decreasing whenever they are differentiable. 

Corollary to Part I (will be used in Part II): Suppose * *( )i jB B  is some point on player’s i best response 

function.  Then 2 0i i jB Bπ∂ ∂ ∂ <  holds for any ( ) * *, 0, 0,i j i jB B B B   ∈ ×    .   

Proof:  We only need to show that  

 Pr( | ( ) )T
Li Hi Hi i i Li i Lj jp p D C B D B D B +> > − > − −  (5.8) 

everywhere on ( ) * *, 0, 0,i j i jB B B B   ∈ ×    , and then the reasoning of Part I applies to show that   

i iBπ∂ ∂  is decreasing in jB  over the appropriate range.  We demonstrated that (5.8) is true at * *( )i jB B .  
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We know that the probability term on the right is increasing in Bj if TP2 holds so the result holds for any 
*

j jB B≤ .  Similarly, we can show that this term is increasing in Bi if TP2 holds.  Expand this term as, 

( )( )( ) ( )Pr min ,i Hi Hj j Lj Li i j i Li i Lj jB D D C D D B B C D B D B
+ ++ 

+ + − + + − > > − − 
 

 

There are three Bi in this expression.  An increase in the first or third values of Bi clearly leads to an 

increase in the probability expression, but the impact of the second Bi is the opposite.  However, the first 

Bi dominates the second; the expression 

 ( )( )( )min ,i Hi Hj j Lj Li i jB D D C D D B B
+

++ + − + + −  

is increasing in Bi.  Therefore, if the inequality (5.8) holds at * *( )i jB B , it will also hold at any *
i iB B<  and 

*
j jB B< .   

Part II: We now eliminate the possibility of jumps up in the best responses.  Jumps occur when the 

objective function is bi-modal (or multi-modal).  We will only consider the bi-modal case (the multi-

modal case is analogous).  The proof is by contradiction.  Suppose that there is a jump up in the best 

response ( )i jB B  that occurs at *
jB  (see Figure 5).  There are two global maxima ( ) ( )1 * 2 *

i j i jB B B B< ,  

( ) ( )1 * 2 *, ,i i j i i jB B B Bπ π= , and the first-order necessary condition holds at each of them.  Because there is a 

jump up, ( ) ( )1 * 2 *, ,i i j i i jB B B Bπ ε π ε+ < + .  That is, as we increase *
jB  infinitesimally, the second 

maximum becomes the unique global maximum.  This implies, 

 ( ) ( )1 * 2 *, ,i j i j
i j i jB B B B

d dB d dBπ π< , 

because the objective function of player i rises faster (or declines more slowly) at the second local 

maximum 2
iB  than at the first local maximum 1

iB .  Using the envelope theorem, 

 ( ) ( )1 * 2 *, ,i j i j
i j i jB B B B

B Bπ π∂ ∂ < ∂ ∂ .  (5.9) 

A necessary condition for (5.9) is that 2 / 0i i jB Bπ∂ ∂ ∂ >  somewhere between the two best response points 
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Figure 5: A Jump Up 

( ) ( )1 * 2 *and .i j i jB B B B   However, from the Corollary to Part I we know that 2 / 0i i jx xπ∂ ∂ ∂ ≤  for every 

( ) ( )2 * *, 0, 0,i j i j jB B B B B   ∈ ×    , and this is sufficient to show a contradiction.  Therefore, a jump up is 

impossible, and the best-response function is decreasing.  

Acknowledgements 

We would like to thank Andy Boyd, Zhihang Chi, Gerard Cachon, Marshall Freimer, Martin Lariviere, 

Phillip Lederer, Bill Lovejoy, Michael Raith, two anonymous referees and an associate editor for helpful 

comments.  We also thank Laura X.L. Liu for her help with the data analysis. 

References 

Air Transport Association (ATA).  2004.  Annual Traffic and Capacity – U.S. Airlines Scheduled Service.  
Available at http://www.airlines.org/econ/d.aspx?nid=1032. 

Belobaba, P.P.  1987.  Air travel demand and airline seat inventory management, Ph.D. Thesis, 
Massachusetts Institute of Technology. 

Belobaba, P.  1989.  Application of a probabilistic decision model to airline seat inventory control. 
Operations Research, vol. 37, no. 2, 183-197. 

Belobaba, P.  1998.  The Evolution of Airline Yield Management: Fare Class to Origin Destination Seat 
Inventory Control.  In Handbook of Airline Marketing, Butler, G. F. and M. R. Keller, eds.,  
McGraw-Hill. pp. 285-302. 

Belobaba, P. and J. L. Wilson.  1997.  Impacts of yield management in competitive airline markets.  
Journal of Air Transportation Management, vol. 3, no. 1, 3-9. 

Borenstein, S. and J. Netz. 1999. Why do all the flights leave at 8 am?: Competition and departure-time 
differentiation in airline markets. International Journal of Industrial Organization, vol. 17, 611-
640. 

Borenstein, S. and N. L. Rose. 1994. Competition and price dispersion in the US airline industry. Journal 
of Political Economy, vol. 102, no. 4, 653- 683. 



34 

Boyd, A. E. 1998a.  Airline Alliances.  OR/MS Today, October 1998. 

Boyd, A. E. 1998b.   Airline Alliance Revenue Management.  PROS Strategic Solutions Technical 
Report, PROS Revenue Management, 3100 Main Street, Suite #900, Houston, TX 77002. 

Brueckner J. K. and W. T. Whalen. 2000. The price effects of international airline alliances. Journal of 
Law & Economics, Vol. XLIII, 503-545. 

Brueckner, J. K. 2003. International airfares in the age of alliances: the effects of codesharing and 
antitrust immunity.  Review of Economics and Statistics, vol.  85, 105-118. 

Brumelle, S. L., J. I. McGill, T. H. Oum, K. Sawaki and M. W. Tretheway. 1990. Allocation of airline 
seats between stochastically dependent demands. Transportation Science, vol. 24, no. 3, 183-192. 

Cachon, G. 2004.  Supply Chain Coordination with Contract.  In the Handbook of Operations 
Management, edited by Steve Graves and Ton de Kok. 

Cachon, G. and M. Lariviere. 2000. Supply chain coordination with revenue-sharing contracts: strengths 
and limitations. Forthcoming in Management Science. 

Department of Transportation (DOT). 2004.  Sources of Aviation Data.  U. S. Department of 
Transportation, The Office of Airline Information.  Available at 
http://www.bts.gov/programs/airline_information/sources/. 

Dobson G. and P. J. Lederer. 1993. Airline scheduling and routing in a hub-and-spoke system. 
Transportation Science, vol. 27, no. 3, 281-97. 

Federal Aviation Administration (FAA). 2004. FAA Flight Standards Service, Aviation Information 
Website.  Available at http://av-info.faa.gov/OpCert.asp. 

Feng, Y. and G. Gallego.  2003.  Evaluating Long-Term Contracts for Airlines.  Working paper, 
Columbia University. 

Fernandez de la Torre, P. E. 1999.  Airline Alliances: The Airline Perspective. Masters Thesis, 
Massachusetts Institute of Technology.  Available at  
theses.mit.edu/Dienst/UI/2.0/Composite/0018.mit.theses%2f1999-291/1?nsections=9 

Hotelling, H. 1929. Stability in competition. Economic Journal, vol. 39, 41-57. 

Joe, H.  1997.  Multivariate Models and Dependence Concepts. Chapman & Hall, London. 

Karlin, S. and Rinott, Y. 1980. Classes of orderings of measures and related correlation inequalities I.  
Multivariate totally positive distributions.  J. Multivariate Anal., 10, 467-498. 

Lederer P. J. and Nambimadom R. S. 1998. Airline network design. Operations Research, vol. 46, no. 6, 
785-804. 

Li, M. Z. F. and T. H. Oum. 1998. Seat allocation game on flights with two fares. Working Paper, 
Nanyang Technological University. 

Lippman, S. A. and K. F. McCardle.  1997. The Competitive Newsboy.  Operations Research, vol. 45, 
no. 1, 54-65. 

Mahajan, S.  and G. J. van Ryzin.  2001. Inventory competition under dynamic consumer choice. 
Operations Research, Vol. 49, No. 5, 464-657. 

McGill, J. I. and G. J. van Ryzin. 1999. Revenue management: research overview and prospects. 
Transportation Science, vol. 33, no. 2, 233-256. 

Morrison, S. A. and C. Winston. 1995.  The Evolution of the Airline Industry.  The Brookings Institution, 
Washington, D.C. 

Netessine, S. and N. Rudi. 2003. Centralized and competitive inventory models with demand 



35 

substitution. Operations Research, Vol. 51, No.2, 329-335. 

Netessine, S. and R. Shumsky. 2004. Revenue management games: vertical and horizontal competition.  
On-line Companion, University of Rochester.  Available at 
http://mansci.pubs.informs.org/ecompanion.html. 

Parlar, M. 1988.  Game Theoretic Analysis of the Substitutable Product Inventory Problem with Random 
Demands.  Naval Research Logistics. Vol. 35, 397-409. 

Richard, O. 2003.  Flight Frequency and Mergers in Airline Markets.  International Journal of Industrial 
Organization, Vol. 21, 907-922. 

Rudi, N. 2000.  Some models of risk pooling.  PhD dissertation, University of Pennsylvania.  

Spengler. 1950. Vertical Integration and Anti-Trust Policy. Journal of Political Economy. Vol. 58, 347-
352. 

Talluri K. and G. van Ryzin. 2004. The theory and practice of revenue management.  Kluwer Academic 
Publishers. 

Tong, Y. L. 1990.  The Multivariate Normal Distribution.  Springer-Verlag, New York. 

Topkis, D. M. 1998.  Supermodularity and Complementarity. Princeton University Press, Princeton, New 
Jersey. 

U.S. Department of Transportation. 2000.  Multinational Airline Alliances, in Airline Mergers and 
Alliances, Organisation for Economic Cooperation and Development, DAFFE/CLP(2000)1, 
available at www.oecd.org. 

Vives, X. 2000.  Oligopoly Pricing: Old Ideas and New Tools.  The MIT Press, Cambridge, 
Massachusetts. 

Williamson, E. L. 1992.  Airline Network Seat Inventory Control: Methodologies and Revenue Impacts.  
PhD thesis, Flight Transportation Laboratory, Massachusetts Institute of Technology, Cambridge, 
Massachusetts. 

Wynne, R. 1995. From Queen Airs to RJs: evolution in major-regional airline alliances and code sharing. 
In Handbook of Airline Economics, Aviation Week Group. 

Zhao, X. and D. Atkins. 2002.  Strategic Revenue Management under Price and Seat Inventory 
Competition.  Working Paper, University of British Columbia. 

Zuckerman, L. 2002.  Antitrust Laws an Issue In Airline Alliances. New York Times; New York, N.Y.; 
Apr 28, 2002, pg. 5.3.


