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Abstract

This paper describes a new primal relaxation for nonlinear integer programming
problems with linear constraints. This relaxation, contrary to the standard Lagrangean
relaxation, can be solved efficiently. It requires the solution of a nonlinear penalized
problem whose linear constraint set is known only implicitly, but whose solution is
made possible by the use of a linearization method (see for instance Gunn and Rai [12]).
It can be solved iteratively by a sequence of linear integer programming problems and
nonlinear problems over a simplex. The relaxation should be designed so that the linear
integer programming problems are relatively easy to solve. These subproblems yield
Lagrangean-like integer solutions that can be used as starting points for Lagrangean
heuristics. We also describe a primal decomposition, similar in spirit to Lagrangean
decomposition, for problems with several structured subsets of constraints. A small

example is solved explicitly in each case by an extension of the linearization method of



Primal Relaxation

Frank and Wolfe [7], similar in spirit to Simplicial Decomposition (von Hohenbalken,
[17]).

The primal relaxation was introduced in Guignard [9], and described briefly in
Guignard [10]. Improved solution methods are studied in Contesse and Guignard [5]
and [6], and successful implementations are described in [1], [2], [3] and [4]. This paper

by contrast concentrates on the concept of primal relaxation and its properties.

In the linear case, the primal relaxation is equivalent to Lagrangean relaxation.

Introduction

Lagrangean relaxation [14], [15], has been used for decades as a helpful tool in solving
difficult integer programming problems. Its main advantages over the continuous
relaxation are that (1) it may yield a tighter bound than the continuous relaxation if the
subproblems do not have the Integrality Property, and (2) it produces integer, rather
than fractional, solutions that are often only mildly infeasible, and therefore can be used
as good starting points for Lagrangean heuristics. While one usually solves the
Lagrangean dual in the dual space by searching for a best set of Lagrangean multipliers,
this is not the only method possible. Michelon and Maculan [16] showed that one can
also solve the primal equivalent of the Lagrangean dual by placing the relaxed
constraints into the objective function with a large penalty coefficient, and then using a
linearization method such as Frank and Wolfe to solve the resulting nonlinear problem.
A key realization here is an idea that had already been used in particular by Geoffrion
[8]: when one maximizes a linear function over the integer points of a bounded
polyhedron, one optimal solution at least is an extreme point of the convex hull of these
integer points. Once a nonlinear objective function is linearized, one can therefore

equivalently optimize it over the integer points of a bounded polyhedron, or over the
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convex hull of these integer points, whichever is easier. In the case of Michelon and
Maculan’s approach, then, each iteration of Frank and Wolfe involves solving a linear

integer Lagrangean-like subproblem and performing a nonlinear line search.

Consider now the case of an integer problem with linear constraints and a nonlinear
convex objective function. It is usually very difficult to obtain strong bounds for such
problems. Indeed it is not easy to use standard Lagrangean relaxation in this case, as the
Lagrangean subproblems are still nonlinear integer problems, and a priori not easier to
solve than the original problem. We introduced in 1994 in an unpublished report [9]
and describe again here a novel relaxation, which is primal in nature, and can be used
with nonlinear objective functions and linear constraints!. It coincides with the standard
Lagrangean relaxation in the linear case, but it is new for the nonlinear case, and it is
computationally feasible. It can be solved for instance by penalizing some constraints
in the objective function, and then using a linearization method (see Gunn and Rai [12]
and Michelon and Maculan [16]). At each iteration of the algorithm, one solves a linear
integer programming problem over the remaining constraints. and one performs either a
simple line search if using Frank and Wolfe [7], or a search over a simplex, in the case of
simplicial decomposition [17]. There are no more nonlinear integer subproblems to solve.
We show that the bound obtained in this manner is at least as good as the continuous

relaxation bound, and may be substantially stronger.

This relaxation is very attractive, as its implementation requires solving integer
subproblems that are linear and for which one can select a good (or several for primal
decomposition) structured subset(s) of constraints, exactly as in Lagrangean relaxation
for linear integer programming problems. Finally there are better choices than a penalty

method for solving the relaxation, and Contesse and Guignard [5],[6], propose instead to

LIt is also briefly described in [10].
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use a (Proximal) Augmented Lagrangean (PAL) scheme, for its improved convergence

and Conditioning properties.

Notation

For an optimization problem (P), FS(P) denotes the feasible set, V(P) the optimal value
and OS(P) the optimal set of (P). If (P) is a (mixed-)integer programming problem,

CR(P) (or (CR) if it is not ambiguous) denotes the continuous relaxation of (P). If Kis a

set in R", Co(K) denotes the convex hull of K. If x is a vector of R, | x | denotes a norm

of x.

1. Primal Equivalent of Lagrangean Relaxation for Linear Integer
Problems

We shall first recall Michelon and Maculan’s approach [16] for solving Lagrangean duals
in the linear integer problem case. Consider a linear integer programming problem

(LIP) Minx { fx | Ax=b, Cx<d, xe X}

where X specifies in particular the integrality requirements on x, and a Lagrangean
relaxation of (LIP) :

LR(u) Minx {fx+u(Ax-b) | Cx<d, xe X}

with the corresponding Lagrangean dual

(LR) Max« Minx {fx+u(Ax-b) | Cx<d, xeX}

and its primal equivalent problem (Geoffrion [8])

(PLR) Min« {fx | Ax=b, xeCo{x|Cx<d, xeX}}.

As p approaches infinity, (PLR) becomes equivalent to the penalized problem

(PP) Min: {g (x) =fx + (¥2) p | Ax-b|? | xeCof x|Cx<d, x eX}}.

Notice that ¢ (x) is a convex function. (PP) can be solved by a linearization method such

as the method of Frank and Wolfe or, even better, simplicial decomposition. For
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simplicity, let us describe the approach using Frank and Wolfe. At iteration k, one has a
current iterate x(k) in whose vicinity one creates a linearization of the function ¢(x) :

vk x = @[ x(k)] + Vo [x(k)].[x-x(K)].

One solves the linearized problem

(LPPx) Min: {yrx | xeCo{ x|Cx< d, xeX}}

or equivalently, because the objective function is linear,

(LPPy) Mins {yr x | Cx<d, xe X}.

Let y(k) be its optimal solution. Then x(k+1) is obtained by minimizing ¢(x) on the half-
line x=x(k)+A [y(k)-x(k)], A>0. The process is repeated until either a convergence criterion
is satisfied or a limit on the iteration number is reached.

The idea is attractive because

1) while one cannot eliminate the convex hull in (PP), one can do so after the
linearization, i.e., the convex hull computation is not necessary any more after (PP) has
been transformed into a sequence of problems (LPPx). Notice too that (LPPx) has the
same constraint set as LR(u), i.e., it must be solvable if (LR(u)) is.

(2)  even in case (LR(#)) decomposes into a family of smaller subproblems, this is
usually not the case for (PP). (LPPx), though, will also decompose, and the primal
approach is fully as attractive as the original Lagrangean relaxation.

The slow convergence of Frank and Wolfe’s algorithm, however, may make one prefer a
faster linearization method, such as simplicial decomposition [17], or restricted

simplicial decomposition [13].
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2.Primal Relaxation for Nonlinear Integer Programming Problems

Consider now an integer programming problem with a nonlinear convex objective
function and linear constraints

(IP) Minx {f(x) | Ax=b, Cx<d, xeX}.

We could try to solve (IP) directly by noticing that as p goes to infinity, (IP) becomes
equivalent to

(P1) Min:  {f(x) + (%) p | Ax-b|? | Cx<d, xeX]}.

Unfortunately (P1) is almost always as difficult to solve as (IP). The constraint set of (P1)
is not a polygon, and the objective function of (P1) is still nonlinear. We could consider
problem (P2) Minx { f(x) + (¥2) p | Ax-b|? | xeColx | Cx<d, xeX}}.

which is a relaxation of (P1), but in general is not equivalent to (P1) because the optimal
solution of (P2) is not necessarily an extreme point of FS(P2) and thus not necessarily a
point in FS(P1).

Since in any case neither (P1) nor (IP) is easy to solve, we will build a new primal
relaxation of (IP) which will use (P2) as a subproblem. We will then show in detail how

the relaxed problem can actually be solved.
We will more specifically show that if a linear integer programming problem of the form
(LIP) Min: {gx | Cx=d, x eX}

can be solved relatively easily, then we can design a relaxation approach similar to the

one described above for the integer linear case.

2.1.Definition of the Primal Relaxation.

We now formally define the new relaxation.
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Definition 1.

We define the Primal Relaxation problem as the problem

(PR) Min: {f(x) | Ax=b, xeCofx | Cx<d, xeX}}.

See Figure 1.

(PR) is indeed a relaxation of (IP):

{x| Ax=b, xeCofx | Cx<d, xe X}} o {x|Ax=b, Cx<d, xeX},

and the so-called continuous relaxation of (IP), (CR) Minx { f(x) | Ax=b, Cx<d, xeCo(X)},

is itself a relaxation of (PR), since

{xeCo(X) | Ax=b, Cx<d} o {xeCofxeX|Cx<d}|Ax=b}.

(PR) cannot in general be solved directly, since Co{ xeX | Cx<d} is usually not known
explicitly, and even if it were, (PR) would probably be of the same level of difficulty as
(IP).

Co{xeX | Cx<dH

<+—{x | Ax=b, xeCo{xeX | Cx<d }}

{x| Cx=d} {x| Ax=b}

Figure 1

Roughly speaking, though, for p large enough, (PR) is equivalent to the penalized
ghly sp g g g g q P

problem
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(PP) Min: {@(x) = flx)+p | | Ax-b| 12 | xeCofxeXICx<d}},

where ¢(x) is a convex function. (PP) can be solved by a linearization method such as
Frank and Wolfe. This method unfortunately is known to converge rather slowly.
Another linearization method, called Simplicial Decomposition, could be used as well,
and the overall convergence would be improved further if one used an augmented
Lagrangean method instead of the penalization method described above. Such an
approach is studied in Contesse and Guignard [5],[6], and successful implementations
are described in [1] and [2], and in recent papers by Ahn, Contesse and Guignard [3] and

Ahlatcioglu and Guignard [4].

2.2 Properties of the Primal Relaxation.

We concentrate in this paper on the characteristics of the primal relaxation and not on
algorithmic details or on obtaining an efficient implementation. This is why we choose
to describe the approach based on Frank and Wolfe’s linearization method, to illustrate
the relaxation and the general idea of its solution, rather than a more efficient

linearization method, such as simplicial decomposition.

At iteration k, one has a current iterate x(k) in whose vicinity one creates a linearization
of the function ¢(x):
ye x =[x(k) ]+ Vo [x(k)][x-x(K)].
One solves the linearized problem
(LPx) Minx {yrx [xeCo{x | Cx<d, xeX}}
or equivalently, because the objective function is linear,
(LPx) Min: {yex | Cx <d, xeX].
Let y(k) be its optimal solution. Then x(k +1), the new linearization point, is obtained by

minimizing ¢(x) on the half-line x=x(k) + A [y(k)-x(k)], A>0. The process is repeated until

8
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either a convergence criterion is satisfied or a limit on the iteration number is reached.
This process has roughly the same advantages as in the linear case:

(1)  while one cannot eliminate the convex hull in (PP), one can do it for (LPx). We
made the assumption earlier that a problem with a structure such as (LPx) is solvable.

(2)  in case the constraints of (IP) decompose into a family of smaller subproblems if
the constraints Ax=b are removed, this property allows (LPx) to decompose as well, even
though this is not the case for (PP). The linearization of the objective function thus
allows one to solve the problem via a sequence of decomposable linear integer programs
and line searches. This is very attractive if it reduces substantially the size of the integer
problems one has to solve. It is usually much easier to solve ten problems with thirty 0-
1 variables each than a single problem with three hundred 0-1 variables.

One can also handle the case of inequality constraints Ax<b with some minor

modification (see [16]).

2.3. A special case.
As in standard Lagrangean relaxation, the “extreme” case of subproblems with the
Integrality Property will not yield any improvement over the continuous nonlinear

programming relaxation.

Proposition 1.
If in the Primal Relaxation problem
(PR) Min: {f(x) | Ax=b, xeColx | Cx<d, xeX}},
the polyhedron P = Co{x | Cx<d, xe X} coincides with the set {x | Cx<d, xe X}, then
v(PR) = v(CR).
Although, as in the linear case, one will not be able then to use primal relaxation to

obtain a stronger bound than (CR), one might still want to use it if solving (CR) requires
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using an exponential number of constraints. One such example is the TSP, for which
Held and Karp [14], [15], showed that Lagrangean relaxation was nevertheless an

attractive option.

2.4. An Example.

The following example illustrates that the bound v(PR) can be anywhere between V(IP)
and V(CR), depending on the problem parameters, as happens for standard Lagrangean
relaxation bounds.

Consider the following very simple 2-dimensional problem (see Figure 2). One wants to
minimize the distance to the point A(1,1) subject to the constraints x1 = 2x2 and ax: + bx2
< ¢, where x1 and x2 are (0-1) variables. We will write z(M) to denote the value of the

objective function at the point M(x1,x2). The problems under consideration are:

(IP) Min (1-x1)? + (1-x2)? (PR) Min (1-x1)? + (1-x2)? (CR) Min (1-x1)? + (1-x2)?
st.x1 -2x2 =0 st. x1 - 2x2 =0 s.t. x1 -2x2 =0
axi1 + bx2 < ¢ X € Co{x|ax1 + bx2<c¢, ax1 + bx2 < ¢
x1, x2 €{0,1} x1,x2 €{0,1} } x1,x2 € [0,1]

We will place x1 =2x2 in the objective function as a penalty term. We will consider
several cases :

1. a=10, b=1, ¢=9. Then Co {x | 10x1 +x2<9, x1, x2 €{0, 1} is OD, and

{x| Ax=b, xeCol{x | Cx<d, xe X}} is O. Thus V(PR) = V(IP) = z(O) = (1-0)2+ (1-0)? = 2, while
V(CR) is reached at P(18/21, 9/21) and is equal to z(P) =0.35.

0.35 2

V(CR) V(PR)=V(IP)

10
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2. a=2,b=1, c=2. Then Co {x | 2x1+x2<2, x1, x2 €{0,1}} is ODF, and {x | Ax=b, xeCofx |
Cx<d, xe X}} is OS. Thus V(IP) = (1-0)? + (1-0)2 = 2, while V(PR) = z(S) = (1-2/3)*+(1-1/3)?
and V(CR) is reached at Q (2/5, 4/5) and is equal to z(Q) = (1-4/5)? + (1-2/5)? =0.4.

04 0.55 2

V(CR)  V(PR) V(IP)

3. a=1,b=1, c=1. Then Co {x | x1+x2<1, x1, x2 €{0, 1}} is ODF, and
{x | Ax=b, xeCo{x | Cx<d, xe X}} is OS. Thus V(IP) = (1-0)? + (1-0)? = 2, while V(PR) =
V(CR) = z(S) = (1-2/3)*> +(1-1/3)? =0.55.

.55 2

V(CR)=V(PR) V(IP)

It can be seen on the above examples that the value of V(PR) can be arbitrarily close to
either the integer optimum or the continuous optimum. This is rather similar to what

happens for Lagrangean relaxation bounds in linear integer programming.

X1+ X2 =1 2X1 + X, =2| 10Xy + X, =9

D A(L1)

X1 = 2Xo

P (18/21,9/21)
Q (4/5,2/5)

S(2/3,1/3)

-

Figure 2

11
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3. Primal Decomposition for Nonlinear Integer Programming Problems

We will now show that one can similarly define a primal decomposition, similar in spirit
to that described for instance in Guignard and Kim [11].

Consider an integer programming problem with a nonlinear objective function and
linear constraints in which one has replaced x by y in some of the constraints, after
adding the copy constraint x=y:

(IP) Min: {f(x) | Ay <b, yeX, Cx<d, xeX, x=y}.

We will show that if linear integer programming problems of the form

(LIPx) Minx {gx | Cx <d, xe X}
and
(LIPy) Miny {hy | Ay<b, yeX}

can be solved relatively easily, then we can design a primal decomposition approach
similar to the primal relaxation approach described above. A related decomposition idea
for continuous problems can be found in [12], in which equality constraints linking
variables are placed in the objective function to form an augmented Lagrangean, and the
resulting problem is solved by the Frank and Wolfe algorithm, allowing the objective
function to decompose thanks to the linearization. In our case, the linearization
procedure allows us in addition to replace linear programs with implicitly defined
polyhedral constraint sets by linear integer programs with well structured discrete
constraint sets. If we applied the decomposition idea directly to (IP), we would obtain a
nonlinear integer program for which the Frank and Wolfe algorithm would be
meaningless. This is why we consider a convex hull relaxation of the constraint set first

before introducing a penalty function.

12
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3.1. Definition of Primal Decomposition.

We define the primal decomposition of problem (IP) to be problem
(PD) Min: {f(x) | xeCofx | Ax<b,xeX} NColx | Cx<d, xeX }}.

See Figure 3.

Problem (PD) is indeed a relaxation of (IP), since

Cof{x| Ax=b, xe X}nColx| Cx<d, xe X}o{x| Ax<b, Cx<d, xe X }.
At the same time, problem

(PR) Min: {f(x) | Ax<b, xeCofx | Cx<d, xeX}}.

is a relaxation of (PD), since

{x |Axsb, xeCo{x | Cx<d, xe X} o Co{x| Ax<b, xe X}nCo{x| Cx<d, xe X}

Co{xXX | Cx<d}
Co{xeX | Ax<b }
4
/ {x| Ax<b}
{x| Cx<d}
Figure 3
and finally problem

13
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(CR) Minx { f(x) | Ax<b, Cx<d, xeCo(X)},
the so-called continuous relaxation of (IP), is itself a relaxation of (PD), since
{x ]| Ax<b, Cx<d, xeCo(X)} 2 Cofx| Ax<b, x eX}nCofx| Cxd, x X}
(PD) cannot in general be solved directly, since on the one hand Co{x | Cx<d, xeX} and
Col{x| Ax<b, xeX} are usually not known explicitly, and on the other hand, even if they
were, (PD) would probably be of the same level of difficulty as (IP).
Again, roughly speaking, for p large enough, (PD) is equivalent to the penalized
problem
(PP) Min: {p(x,y) = fix) +p |x-y|? | yeColy| Ay<bh, yeX]}, xeColx | Cx<d, xeX }}.
(PP) can be solved by a linearization method. We describe here the approach based on
Frank and Wolfe. At iteration k, one has a current iterate (x(k),y(k)) in whose vicinity one
creates a linearization of the function ¢(x,y):

ve. (1) = Px(R,yR)] + VxR y (R Lx-x(k)y-y ().
One solves the linearized problem
(LPx) Minvy  {yr(x,y)| xeColx|Cx<d, xe X}, yeColy| Ay<b, yeX }}
which separates as follows, because the objective function is linear:
(LPx) Minx {y *%.x | Cx<d, xe X} + Miny {y %.y | Ay<b, yeX}.
and again the relaxed problem separates into two linear subproblems of a type which
we assumed we can solve. Decomposition in this case is achieved at each iteration of
Frank and Wolfe where LP’s with implicit constraints are replaced by IP’s with a good

structure.

3.2. An Example

Consider again the very simple example considered earlier. One wants to minimize the
distance to the point A (1,1) subject to the constraints x1 =2x2 and ax1 +bx2 < ¢, where x1

and x2 are (0-1) variables. The problems under consideration are:

14
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(IP) Min (1-x1)? + (1-x2)?
st. x1 -2x2 =0
axi1 + bx2 < ¢

x1, x2 €1{0,1}

(PD) Min (1-x1)? + (1-x2)?
s.t. xeCo{x| x1 -2x2 =0
x1, x2 €{0,1}}

X € Co{x|ux1 + bx2<¢,

(CR) Min (1-x1)? + (1-x2)?
st. x1 - 2x2 =0
axi + bxo < ¢

x1,x2 €[0,1]

x1, x2 €{0,1}}

We will call z(M) the value of the objective function at M(x1,x2).

We will reformulate (PD), creating a copy y of the variable x and adding the constraint x
= y'

We will place x =y in the objective function as a penalty term. We will consider several

cases :

1. a=10, b=1, c=9. Then Co {x | 10x1 +x2 <9, x1, x> €{0, 1}} is OD, and
Cofx | Ax<b , xe X} is O. Thus V(PR) = V(IP) = z(O) = (1-0)2+ (1-0)? = 2, while V(CR) is
reached at P(18/21, 9/21) and is equal to z(P) =0.35.

0.35 2
V(CR) V(PR)=V(IP)=V(PD)

2. a=2, b=1, c=2. Then Co {x | 2v1+ 12 < 2, x1, x2 €{0,1}} is ODF, and Co{x | Ax<b, xeX} is
O. Thus V(IP) = (1-0)? + (1-0)*> = 2 = z(O) = V(PD), while V(PR) = z(S) = (1-2/3)>+(1-1/3)?*and
V(CR) is reached at Q (2/5, 4/5) and is equal to z(Q) = (1-4/5)* + (1-2/5)> =0.4.

0.4 0.55 2

V(CR) V(PR) V(IP)=V(PD)

15
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3. a=1,b=1, c=1. Then Co {x | x1+x2<1, x1, x2 €{0, 1}} is ODF, and
Co{x | Ax £ b, xeX} is O. Thus V(IP) = (1-0)? + (1-0)? = 2=V(PD), while V(PR) = V(CR) =
z(S) = (1-2/3)*> +(1-1/3)*> = 0.55.

.55 2

V(CR)=V(PR) V(IP)=V(PD)

It can be seen on the above examples that the value of V(PD) can be equal to the integer
optimum, even when V(PR) is equal to the continuous optimum, V(CR) is always
weaker than V(PR) which is itself weaker than V(PD), given than FS(CR) contains
FS(PR) which in turn contains FS(PR) which itself contains FS(PD).

4. Bound computation: an example

We will now consider a three dimensional example on which we will demonstrate what
bound computation involves. We shall use a slight modification of the algorithm of
Frank and Wolfe, in which instead of a one-dimensional line search one performs a 2-
dimensional triangular search in the triangle formed by the current linearization point
and the last two solutions of linearized subproblems. It is actually almost a form of
restricted simplicial decomposition [13].

The problem, represented in figure 4, is as follows:

Min {(2-x2)? ‘ x1-2x2+x3=0,10x1 +x2-x3 < 9, x1, x2, x3 €{0,1}}.

In (PR) and (PD), we let x1 - 2x2 + x3 =0 stand for Ax <b, and 10x1 + x2 - x3 < 9 for Cx<d.

16



Monique Guignard

That is,

(IP) Min (2-x2)?
s.t.x1 -2x2 +x3=0
10x1+x2-x3< 9

x1,x2,x3€ {0,1}

(PD) Min (2-x2)?
s.t. xeCofx \ x1 -2x2+x3=0,
and  x1, x2, x3 €{0,1}}

xeColx | 10x1 422 -x3< 9,

and  x1, x2, x3€{0,1}}
R A
s [/
MR
\V C

and (PR) Min (2-x2)?

s.t.x1-2x2+x3= 0

Figure 4

xeCofx | 10x1+x2 -x3 < 9, x1,x2,x3€{0,1}}.

(CR) Min (2-x2)?
s.t. x1 -2x2+x3=0
10x1+x2-x3< 9

x1,x2,x3 €[0,1]

Then FS(CR) = OKLN, FS(PR) = OEWN, FS(PD) = OE, and FS(IP)=O, and

V(CR)=z (L)= 1.1, V(PR) = z (W) =1.7, V(PD) = z (E) =2.25, V(IP) = z (O) =4.

17
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V(CR) V(PR) V(PD) V(IP)

11 1.7 2.25 4

We will show the computation for (PR):

(PR) Min (2-x2)?

s.t.x1-2x2+x3= 0

xeColx | 10x1 422 -x3< 9, x1, x2, x3€{0,1}}.
(PR) is asymptotically equivalent, as p goes to infinity, to
Min  @(x) = (2-x2)? + p ( x1 -2x2 + x3)?

s.t. xeCo{x | 10x1+x2 x5 < 9, x1,x2,x3€{0,1}}.
The linearization of the objective function at x© yields the function
[2p (x1 -2x2 + x3), -2 (2-x2) -4p (x1 -2x2 + x3), 2p (X1 -2x2 + x3) ] x=x0 [X1,X2,X3]
The initial point, x® = (0.5, 1, 0), is chosen arbitrarily. The slack in the equality constraint
at x(1), i.e., the amount of violation in the penalized constraint, is s(1) =-1.5. The first
linearized problem is

Min -3pxi1+(-2+6p) x2-3px3
s.t. 10x1+x2-x3<9,
x1,x2,x3e{0,1}.

We choose to take o =5000.
Iteration 1
The gradient at x(1) is (-15000, 29998, -15000). The solution of the linearized problem is
y(1)= (1, 0, 1). Since this is the first iteration, one only does a line search, in the direction
da(1l) = y(1) — x(1) = (0.5, -1, 1). The line search yields a stepsize of 0.429. The
corresponding solution is x(2) =(0.714, 0.571, 0.429). The slack in the equality constraint

18
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at x(2) is s(2) = -8.16313E-5. The nonlinear objective function value is 2.041, and the
penalty term is 6.66367E-9.

Iteration 2

The current linearization point is x(2) = (0.714, 0.571, 0.429). The gradient at x(2) is (-
0.816,1.224, -0.81). The solution of the linearized problem is y(2) = (0, 1, 1). The
directions of triangular search are da(2) =y(2) - x(2) =(-0.714, 0.429, 0.571) and db(2) =
y(2) - x(2) = (0.286, -0.571, 0.571). The search is over the triangle formed by x(2), y(1) and
y(2), with sides da(2) and db(2). The stepsizes are step. = 0.667 in the direction da(2)
and stepy = 0.333 in the direction db(2). The sum of the stepsizes must be less than or
equal to 1 if one wants to stay within the triangle. The solution of the search is x(3) =
(0.333, 0.667, 1), and the slack in the equality constraint at x(3) is s(3) = 8.88869E-5.

The nonlinear objective function value is 1.778 and the penalty term value is 7.90088E-9.
Iteration 3

The current linearization point x(3) is (0.333, 0.667, 1). The gradient at x(3) is (-0.889, -
0.889, -0.889), and the solution y(3) of the linearized problem is (1, 0, 1). The directions
of triangular search da(3) and db(3) are respectively (0.667, 0.667, 0) and (-0.333, 0.333,
0). The stepsizes are respectively 0.282 in the direction da(3) and 0.564 in the direction
db(3). The solution is x(4) = (0.333, 0667, 1), and the slack in the equality constraint at
x(4) is s(4) =-8.88869E-5. The nonlinear objective function value is 1.778 and the penalty
value is 7.900883E-9. Since x(3) and x(4) are identical, the algorithm stops. Since the
penalty value does not affect the objective function value any more, we can consider that

problem (PR) is solved, with V(PR) = 1.778.

Conclusion

Even though in case of a nonlinear objective function the primal relaxation proposed
above may not always be equivalent to a Lagrangean relaxation, it will work in a

manner quite similar to Lagrangean relaxation. The subproblems solved in the
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linearization steps have the same constraints one would have chosen in the Lagrangean
relaxation. If the constraints are separable, so will be the subproblems. The relaxation
proposed here is always at least as good as the continuous relaxation. and possibly
much stronger as demonstrated by some of the examples presented.

The same idea can be applied to yield relaxations akin, but not necessarily equivalent, to

Lagrangean decompositions or substitutions.
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