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Abstract

This paper shows that the informativeness principle does not automatically

extend to settings with limited liability. Even if a signal is informative about

e¤ort, it may have no value for contracting. An agent with limited liability is

paid zero for certain output realizations. Thus, even if these output realizations

are accompanied by an unfavorable signal, the payment cannot fall further and

so the principal cannot make use of the signal. Similarly, a principal with limited

liability may be unable to increase payments after a favorable signal. We derive

necessary and su¢ cient conditions for signals to have positive value. Under bilat-

eral limited liability and a monotone likelihood ratio, the value of information is

non-monotonic in output, and the principal is willing to pay more for information

at intermediate output levels.
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The informativeness principle (Holmstrom (1979), Shavell (1979), Gjesdal (1982),

Grossman and Hart (1983), Kim (1995)) is believed to be one of the most robust results

in contract theory. The textbook of Bolton and Dewatripont (2005, Section 4.7) states

that the moral hazard literature has produced very few general results �for example,

even the intuitive result that a lower cost of e¤ort increases the optimal e¤ort level need

not hold �but the informativeness principle is one of the few results that is general.

They write: �among the main general predictions of the model is the informativeness

principle, which says that the incentive contract should be based on all variables that

provide information about the agent�s actions.�Formally, a signal s is valuable for the

principal �i.e. an optimal contract is a function of s �if and only if output q is not a

su¢ cient statistic for e¤ort e given (q; s).

The informativeness principle was derived in settings without constraints on the

contract. However, contracting constraints do exist in reality. Perhaps the most im-

portant one is limited liability, which applies to almost all contracts between employees

and �rms. Entrepreneurs raising �nancing also enjoy limited liability, because their eq-

uity cannot fall below zero. This paper studies whether the informativeness principle

continues to hold under this important constraint. The textbook of Tirole (2006, p123)

conjectured that it does: he writes: �added risk is bad when the limited liability con-

straint is binding�, but we show that this is not always the case.1

Section 1 considers a model in which both the agent and principal are risk-neutral

and the only contracting constraint is that the agent is protected by limited liability.

We show that, if output q is a su¢ cient statistic for e¤ort e given (q; s), then it remains

the case that the signal has zero value. However, the reverse is no longer true: the

optimal contract may be independent of s even if output is not a su¢ cient statistic.

Some signals have zero value even though they are informative.

The intuition is as follows. Without contracting constraints, the principal can

always make use of an informative signal by adjusting the agent�s wage accordingly. If

1To establish the existence of an optimal mechanism, Holmstrom (1979) �and much of the ensuing
literature �assumed that sharing rules have a bounded total variation. As he states, �this restriction
is natural from a pragmatic point of view as well, since the agent�s wealth puts a lower bound, and the
principal�s wealth ... an upper bound [on payments].�When deriving the informativeness principle,
however, he implicitly assumed that the solution was interior. He conjectured that the informativeness
principle may not hold under contracting constraints (�if, for administrative reasons, one has restricted
attention a priori to a limited class of contracts (e.g., linear price functions or instruction-like step-
functions), then informativeness may not be su¢ cient for improvements within this class�) but does
not formally study the implications of limited liability for the informativeness principle.
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low output is accompanied by a low signal, the agent is paid even lower than with a

high signal. However, with limited liability, the agent is already being paid zero under

low output. The principal cannot punish the agent further upon a low signal, and so

the signal is of no value even though it is informative about e¤ort. Signals are only

useful if they can be used to reduce the wage, which �under limited liability �requires

the wage to be strictly positive to begin with. In turn, the agent is only paid a positive

wage for the output level that maximizes the likelihood ratio. Thus, signals are only

useful if they are informative about e¤ort at this output level.

Section 2 considers additional contracting constraints. In Section 2.1, the principal,

as well as the agent, is protected by limited liability. Thus, the contract can no longer

involve the principal paying only in the maximum likelihood ratio state, as the required

payment would exceed her pledgeable income. As in Innes (1990), the optimal con-

tract is a �live-or-die�contract where the agent receives nothing if output falls below

a threshold q�, and the entire output if it exceeds the threshold. Section 2.2 imposes

an additional monotonicity constraint which requires payments to each party to be

non-decreasing in output. The optimal contract is an option on �rm output: the agent

receives nothing if output falls below q�, and the residual q � q� if output exceeds it.
In both cases, the contract depends on the signal s if and only if it is informative

about e¤ort when q = q�, i.e. at the center of the distribution, because then it can

be used to allow the threshold q� to vary with the signal. Signals that are informative

about e¤ort at the tails of the output distribution are of no value. The intuition for

q < q� is as above: the agent is already being paid zero, and cannot be paid less

upon a low signal without violating limited liability. Turning to q > q�, the principal

cannot receive any less upon a high signal. Without the monotonicity constraint, the

principal receives zero and cannot receive less without violating limited liability; with

the monotonicity constraint, the principal receives q� and cannot receive less without

violating monotonicity. Appendix B in the Online Appendix shows that the results

continue to hold under a continuum of e¤ort levels, holding �xed the target e¤ort level.

The results have a number of economic implications. First, the presence of limited

liability requires us to re�ne our notion of informativeness. When only the agent has

limited liability, a signal is valuable if and only if it is informative about e¤ort for

output levels that maximize the likelihood ratio. When the principal also has limited

liability, a signal is valuable if and only if it is informative about e¤ort at the center of

the distribution. In particular, a signal could be informative about e¤ort almost every-
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where, and still have no value in contracting. Second, the common practice of paying

agents for luck, i.e. not �ltering out industry shocks, is not necessarily suboptimal. If

a �rm su¤ers a catastrophe, the manager is typically paid zero, regardless of whether it

was down to bad luck (e.g. industry performance was also poor) or shirking. In reality,

instances of �pay for luck� typically concern very good or very bad outcomes � for

example, Bertrand and Mullainathan (2001) consider how CEO pay varies with spikes

and troughs in the oil price �but additional signals are only valuable for moderate

outcomes. Third, the value of information is non-monotonic in output. Our results

suggest that the principal should only invest in signals (e.g. through costly monitoring)

at moderate output realizations.

1 Limited Liability on Agent

We consider a model with a principal (�rm) and an agent (worker). Both parties are

risk-neutral and the agent is protected by limited liability. The agent exerts unobserv-

able e¤ort of e 2 f0; 1g, where e = 0 (�low e¤ort�) costs the agent 0, and e = 1 (�high
e¤ort�) costs C > 0.

E¤ort improves the probability distribution of output q 2 fq1; q2; :::; qQg in the sense
of �rst-order stochastic dominance. It also a¤ects the probability distribution of an

additional signal s 2 fs1; s2; :::; sSg. Let �q;s (pq;s) denote the joint probability of (q; s)
conditional on high (low) e¤ort. Both output and the signal are contractible. We refer

to each realization of an output/signal pair (q; s) as a �state�.

The principal o¤ers a vector of payments fwq;sg to the agent conditional on the
state. She has full bargaining power. The agent accepts the contract if it satis�es his

individual rationality constraint (�IR�):X
q;s

�q;swq;s � C � 0: (1)

The agent exerts high e¤ort if the following incentive compatibility constraint (�IC�)

is satis�ed: X
q;s

(�q;s � pq;s)wq;s � C: (2)

4



Finally, the agent�s limited liability constraint (�LL�) implies:

wq;s � 0 8q; s: (3)

The IC (2) and LL (3) imply that the IR (1) is automatically satis�ed, and so we ignore

it in the analysis that follows.

We assume that the cost of e¤ort C is su¢ ciently low that the principal wishes to

implement high e¤ort, else the optimal contract trivially involves a zero wage. The

principal�s problem is to �nd the contract fwq;sg that minimizes the expected wage:

min
wq;s�0

�H;1wH;1 + �H;0wH;0 + �L;1wL;1 + �L;0wL;0 (4)

subject to IC (2).

Lemma 1 below states that a signal is valuable if and only if it is informative

about e¤ort in the states where the wage is strictly positive. Thus, the informativeness

principle �that the contract does not depend on s if and only if the likelihood ratio is

independent of s �continues to hold under limited liability when considering states in

which the wage is strictly positive. (All proofs are in Appendix A.)

Lemma 1 Let (wq;s) be an optimal contract for implementing e = 1 with wq;s > 0 and
wq;s0 > 0 for some q, s, and s0. Then, wq;s = wq;s0 if and only if

�q;s
pq;s

=
�q;s0

pq;s0
.

Lemma 2 states that the wage is strictly positive only in states that maximize the

likelihood ratio.

Lemma 2 Let the vector of payments (wq;s) be an optimal contract for implementing
e = 1. If �q;s

pq;s
< max(q0;s0)

n
�q0;s0

pq0;s0

o
, then wq;s = 0.

Combining these results, a signal is valuable if and only if it is informative about

e¤ort in states with the highest likelihood ratio. This result is stated in Proposition 1

below:

Proposition 1 A signal has positive value if and only if, for all (q; s) 2 argmax(q0;s0)
�q0;s0

pq0;s0
,

there exists ŝ such that �q;s
pq;s

6= �q;ŝ
pq;ŝ
:
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When the agent exhibits limited liability, a signal has positive value if and only if it

a¤ects the likelihood ratio at the output level at which the likelihood ratio is maximized

without the signal, as only then is the wage associated with this output level positive.

In this case, the principal can improve on the contract by making the wage at this

output level contingent upon the signal �increase it at the signal where (q; s) has the

highest likelihood ratio and decrease it to zero at other signal realizations. In contrast,

a signal is not useful if it changes the likelihood ratio only for output levels at which the

likelihood ratio is not maximized. Since the wage is zero to begin with, the principal

cannot decrease it upon a low signal.

In sum, if output q is a su¢ cient statistic for e¤ort e given (q; s), the signal s has

zero value to the principal. However, even if q is not a su¢ cient statistic, s still has

zero value if it is informative about e¤ort only for output levels at which the likelihood

ratio is not maximized. The presence of limited liability requires us to re�ne our notion

of informativeness �what matters is whether signals are informative about e¤ort in

states with the maximum likelihood ratio, rather than in general.

We conclude this section with two examples. The �rst one illustrates the result

from Proposition 1:

Example 1 Consider a setting with binary outputs and binary signals with the follow-
ing conditional probabilities:

e = 1 e = 0 Likelihood Ratio

q = qH q = qL q = qH q = qL q = qH q = qL

s = 1 1
3

1
6

1
8

1
2

8
3

1
3

s = 0 1
3

1
6

1
8

1
4

8
3

2
3

Marginal 2
3

1
3

1
4

3
4

Note that q is not a su¢ cient statistic for e given (q; s) since the likelihood ratio

conditional on q = qL is not constant:

pL;1
�L;1

=
1=6

1=2
=
1

3
;
pL;0
�L;0

=
1=6

1=4
=
2

3
:

By Lemma 2, the optimal contract entails paying only in states (qH ; 1) and (qH ; 0)

where the likelihood ratio is maximized at 8
3
. Since the likelihood ratio is equal in

both states, any share of payments across these states generates the same payo¤ to the

principal as long as they add up to 24
5
(which is the amount required to satisfy incentive
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compatibility). One solution is wH;1 = wH;0 =
12
5
, wL;1 = wL;0 = 0. The wage does

not depend on s, because it is only informative at output levels for which the wage is

already zero. Since an optimal contract is not a function of the signal realization, the

signal has zero value.

The second example shows that the key driver of our results is limited liability

and not risk neutrality. With risk aversion, paying di¤erent amounts in states with

equal likelihood ratios not only fails to improve incentives, but also forces the princi-

pal to compensate the agent for the additional risk. Thus, risk aversion removes the

multiplicity of optimal contracts from the previous example.

Example 2 Let the agent�s utility be u (w; e) =
p
w � e; e 2 f0; 1g. Consider the

following conditional probabilities:

e = 1 e = 0

q = qH q = qL q = qH q = qL

s = 1 �
2

�
2

0 


s = 0 1��
2

1��
2

0 1� 

Marginal 1

2
1
2

0 1

Let �
2
� 
 � 1+�

2
. The likelihood ratios conditional on q = qL are not constant

whenever � 6= 
:
pL;1
�L;1

= 2



�
;
pL;0
�L;0

= 2
1� 

1� � :

In Appendix A, we show that the unique solution is wH;1 = wH;0 = 4 and wL;1 = wL;0 =

0. Thus, the optimal contract is again independent of the signal even though the signal

is informative about e¤ort.

2 Additional Contracting Constraints

When the only constraint is limited liability on the agent, generically the wage is

positive in a single state only. In a tradition initiated by Innes (1990), we now introduce

additional contracting constraints that yield more realistic contracts. For tractability,

we retain the assumption of binary e¤ort levels; Appendix B studies the continuous

e¤ort case.
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Although the results can be easily replicated for the discrete output case of Section 1,

we expand the model to a continuum of outputs since it simpli�es notation. Formally,

output is now distributed over an interval q 2 [0; �q], where �q may be +1. E¤ort
e 2 f0; 1g and the signal s 2 fs1; :::; sSg are speci�ed as before.2

Since the model combines discrete and continuous variables, it is convenient to

specify the distributions in terms of the conditional f(qje; s) and the marginal �ŝê �
Pr (s = ŝje = ê). The joint distribution of (q; s) conditional on e¤ort is determined by
their product. Conditional on e¤ort e and signal s, output q is distributed according

to the probability density function (�PDF�):

f (qje; s) �
(
�s (q) if e = 1

ps (q) if e = 0
:

The marginal distribution of q is:

f (qje = 1) =
X
s

�s1�s (q) ; and f (qje = 0) =
X
s

�s0ps (q) : (5)

Let

LRs (q) �
�s1�s (q)

�s0ps (q)
(6)

denote the likelihood ratio associated with signal s at output q, and ws (q) denote the

agent�s payment conditional on output q and signal s.

The IC is: X
s

Z �q

0

ws (q) [�
s
1�s (q)� �s0ps (q)] dq � C: (7)

2.1 Bilateral Limited Liability

In this subsection, we assume that both parties are subject to limited liability:

0 � ws (q) � q: (8)

As in Section 1, IC and the agent�s LL guarantee that IR holds.

2Although the assumption of a discrete signal space is unimportant for our results, it allows us to
avoid unnecessary measurability issues. Since s is discrete and q is continuous, we use the notation
�s (q) rather than �q;s as in the previous section.
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The principal o¤ers a contract that minimizes the expected wage:

min
fws(q)g

X
s

Z �q

0

ws (q)�
s
1�s (q) dq;

subject to (7) and (8). Recall that in Section 1, where only the agent is subject to

limited liability, the principal pays only in the maximum likelihood ratio state. This

requires her to make a very large payment, which would violate her LL.3 Thus, she

must spread the payments out across more states. As in Innes (1990), the solution

involves paying the minimum amount possible � zero �when the likelihood ratio is

below a certain threshold �, and the maximum amount possible �the whole output �

when it exceeds that threshold. The threshold level is chosen so that IC holds with

equality. If more than one such threshold exists, the optimal contract involves the

largest one:4

� � sup
(
�̂ :
X
s

Z
LRs(q)>�̂

ws (q) [�
s
1�s (q)� �s0ps (q)] dq = C

)
: (9)

As we show in Appendix A, � exists.

Lemma 3 The optimal contract is ws(q) = 1LRs(q)>� � q.

In the remainder of this section, we assume that the distributions of outputs con-

ditional on (q; s) satisfy the monotone likelihood ratio property (�MLRP�): �s(q)
ps(q)

is increasing in q 8 s. Then, Lemma 3 implies that there exist unique thresholds

q�s1 ; :::; q
�
sS
, such that the principal keeps (pays) the entire output when it is below

(above) that threshold. For a given s, the threshold levels solve LRs (q�s) = � andX
s

Z
q>q�s

q [�s1�s (q)� �s0ps (q)] dq = C: (10)

3Intuitively, with a continuum of outputs, the principal wishes to concentrate the payment as much
as possible in a neighborhood around the maximum likelihood ratio state. Without limited liability on
the principal, existence of an optimal contract is typically an issue. The contract cannot involve the
principal paying only in the state with the highest likelihood ratio (as with discrete outputs) since this
is a set of measure zero, so it must involve her paying in a neighborhood around that state. Without
limited liability, the principal can generically improve on the contract by concentrating the payment
in a smaller neighborhood, in which case an optimal contract fails to exist. Accordingly, Section 1
assumed discrete outputs.

4In general, there may be an interval of optimal thresholds which happen with probability zero.
Under full support and continuity of the PDFs, the optimal threshold � is unique.
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In general, these thresholds will be contingent on the signal s, and so the contract

is contingent upon both output and the signal. Proposition 2 gives a necessary and

su¢ cient condition under which the thresholds are independent of the signal (q� =

LR�1s (�) 8 s). In this case, there exists an optimal contract that is contingent only
upon output and the signal has zero value.

Proposition 2 Suppose the conditional distributions satisfy MLRP. The optimal con-
tract is independent of the signal if and only if, 8 s and s0

�s1
�s0

�s(q
�)

ps(q�)
=
�s

0
1

�s
0
0

�s0(q
�)

ps0(q�)

for q� given by
R �q
q� q [f (qje = 1)� f (qje = 0)] dq = C:

Thus, any signal that does not a¤ect the likelihood ratio at the threshold output q�

does not in�uence the optimal contract and has zero value. Information about e¤ort

at output levels in the tails of the distribution is not valuable. The signal has no value

for q < q� because the principal is already paying the lowest amount possible (zero).

It has no value for q > q� because the principal is already paying the full output. A

signal may a¤ect the likelihood ratio almost everywhere and still have zero value: all

that matters is the likelihood ratio at the threshold q�, which has zero measure.

As a result, signals are only useful for moderate output realizations. It may not

be optimal to investigate whether very good or very bad performance was down to

luck (e.g. industry conditions) or e¤ort. For example, if the �rm su¤ers a catastrophe,

the manager is �red and paid zero. Investigating whether the catastrophe was due to

shirking or bad luck is not useful, since the agent will be paid zero in either case. In

practice, situations in which executives are rewarded for luck typically involve extreme

realizations; our model suggests that these contracts might indeed be optimal.

2.2 Monotonicity Constraint

We now introduce a monotonicity constraint as in Innes (1990):

0 � w (q + �)� w (q) � �; 8 � > 0: (11)

Innes (1990) justi�es these constraints on two grounds. If the constraint on the right

did not hold, the agent could borrow on his own account to arti�cially increase output,
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raising his payo¤. If the constraint on the left did not hold, the principal would exercise

her control rights to �burn�output, raising her payo¤.

For simplicity, we assume that the likelihood ratio is unbounded from above:

lim
q!�q

LRs(q) = +1; 8s: (12)

This assumption is not needed for our main results. However, it allows us to rule out

corner solutions, thereby ensuring that the thresholds in the optimal contract are lower

than �q: The optimal contract is then given by Lemma 4:

Lemma 4 Suppose the conditional distributions satisfy MLRP. The optimal contract
is ws(q) = max fq; zsg ; where (zs1 ; :::; zsS) satisfy the IC (7) with equality and

�s1
R �q
zs
�s (q) dq

�s0
R �q
zs
ps (q) dq

=
�s

0
1

R �q
zs0
�s0 (q) dq

�s
0
0

R �q
zs0
ps0 (q) dq

8s; s0;

Lemma 4 yields a standard option contract, where the threshold zs is the strike

price.5 If output exceeds zs, the agent receives the residual q � zs, rather than the
entire output as in Section 2.1. In general, zs may depend on the realized signal s:

Proposition 3 gives the conditions under which the strike price is independent of the

signal (i.e. zs = z� 8 s), and so the signal has no value for the contract.

Proposition 3 Suppose the conditional distributions satisfy MLRP. The optimal con-
tract is independent of the signal if and only if, 8 s; s0;

Pr (q > z�; sje = 1)
Pr (q > z�; sje = 0) =

Pr (q > z�; s0je = 1)
Pr (q > z�; s0je = 0) ;

where z� is given by
R �q
z� (q � z

�) [f (qje = 1)� f (qje = 0)] dq = C:

Proposition 3 shows that the intuition behind Section 2.1 continues to apply when

a monotonicity constraint is introduced. Regardless of whether the monotonicity con-

straint is imposed, the agent receives zero for low output levels and the maximum

5Innes (1990) considers a �nancing model, where the contract stipulates the payment from the
agent to the principal. The optimal contract is debt, and so the agent has equity � an option on
output. Here, we consider a contracting model, where the contract stipulates the payment from the
principal to the agent, in line with the literature on the informativeness principle.
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possible for high output levels �without monotonicity he receives the maximum pos-

sible without violating the principal�s limited liability constraint; with monotonicity

he receives the maximum possible without violating the monotonicity constraint. The

principal�s only degree of freedom is on the threshold zs that separates �low� from

�high�output levels. Thus, the signal is only valuable if it leads to the principal op-

timally setting di¤erent strike prices �i.e. it a¤ects the likelihood ratio of the event

that the agent�s option is in-the-money.

3 Conclusion

This paper studies whether the informativeness principle holds under limited liability,

an important constraint in most contracting environments. The limited liability (and,

where imposed, monotonicity) constraints bind at almost all output levels under the

optimal contract. As a result, signals may be informative about e¤ort at almost all

outputs and still have zero value �since the wage already lies at the boundary of the

contracting space, the principal cannot use the signal to modify the wage. When the

agent�s limited liability is the only contractual constraint, a signal is valuable if and

only if it is informative about e¤ort at the state with the highest likelihood ratio, which

has zero measure. With limited liability on the principal or monotonicity constraints,

a signal is valuable if and only if it is informative about e¤ort at a single intermediate

output, which also has zero measure. Thus, the principal�s willingness to invest in

signals is greatest for intermediate output realizations.
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A Proofs

Proof of Lemma 1
Fix a vector of wages that satisfy IC, and consider the following perturbation:

w0q;s = wq;s +
�

�q;s � pq;s
; and w0q;s0 = wq;s0 �

�

�q;s0 � pq;s0
:

This perturbation keeps the incremental bene�t from e¤ort constant and therefore

preserves IC. LL continues to hold for � > 0 if wq;s0 > 0, and for � < 0 if wq;s > 0. The

expected wage (4) increases by:�
�q;s

�q;s � pq;s
� �q;s0

�q;s0 � pq;s0

�
�: (13)

If the original contract entails wq;s = wq;s0 > 0 (i.e., a strictly positive wage for output q

that does not depend on whether the signal is s or s0), then such a perturbation would

satisfy both IC and LL. Thus, for this contract to be optimal, such a perturbation

cannot reduce the expected wage. The term in (13) must be non-positive 8 �:

�q;s
�q;s � pq;s

=
�q;s0

�q;s0 � pq;s0
;

which yields �q;s
pq;s

=
�q;s0

pq;s0
.

Proof of Lemma 2
Consider the following perturbation, which, as before, keeps the incremental bene�t

from e¤ort constant, thereby preserving IC:

w0q;s = wq;s +
�

�q;s � pq;s
; and w0q0;s0 = wq0;s0 �

�

�q0;s0 � pq0;s0
:

LL continues to hold for � > 0 if wq0;s0 > 0, and for � < 0 if wq;s > 0. The expected

wage (4) increases by: �
�q;s

�q;s � pq;s
� �q0;s0

�q0;s0 � pq0;s0

�
�: (14)

Let (q; s) 2 argmax(q00;s00)
n
�q00;s00

pq00;s00

o
denote a state with the highest likelihood ratio
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and consider a state (q0; s0) that does not have the highest likelihood ratio:

�q0;s0

pq0;s0
<
�q;s
pq;s

: (15)

From (15), the term inside the parentheses in (14) is strictly negative. Thus, the

principal can reduce the expected wage by selecting � > 0, which is feasible without

violating LL when wq0;s0 > 0. As a result, the solution entails zero payments in all

states that do not maximize the likelihood ratio.

Proof of Example 2
It can be shown that the principal would like to implement high e¤ort. Writing in

�utils�, the principal�s program becomes:

min
(ui;j)

�

2
u2H;1 +

(1� �)
2

u2H;0 +
�

2
u2L;1 +

(1� �)
2

u2L;0

subject to
�

2
uH;1 +

(1� �)
2

uH;0 +
�

2
uL;1 +

(1� �)
2

uL;0 � 1 � 0 (IR)

�

2
uH;1 +

(1� �)
2

uH;0 � 1 �
�

 � �

2

�
uL;1 +

�
1 + �

2
� 

�
uL;0; (IC)

ui;j � 0; 8i; j: (LL)

As in the core model, IC and LL imply IR, and so IR can be ignored. It is straight-

forward to verify that 
 > �
2
implies uL;1 = 0 whereas 1+�

2
> 
 implies uL;0 = 0:

Substituting back in the program, the principal solves:

min
uH;j�0

�

2
u2H;1 +

(1� �)
2

u2H;0

subject to
�

2
uH;1 +

(1� �)
2

uH;0 � 1 � 0:

The unique solution is uH;1 = uH;0 = 2. Converting to dollar units, we obtain wH;1 =

wH;0 = 4 and wL;1 = wL;0 = 0.

Proof of Lemma 3
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The principal�s program is

min
fws(q)g

X
s

Z �q

0

ws (q)�
s
1�s (q) dq

subject to

0 � ws (q) � qX
s

Z �q

0

ws (q) [�
s
1�s (q)� �s0ps (q)] dq � C:

While it is possible to obtain a proof along the same lines of Section 1, we follow a

more direct approach here. The in�nite-dimensional Lagrangian is:

L =
X
s

Z �q

0

ws (q)�
s
1�s (q) dq � �

(X
s

Z �q

0

ws (q) [�
s
1�s (q)� �s0ps (q)] dq � C

)
:

The �rst-order conditions are:

ws(q) =

(
q

0

)
if �s1�s (q)� � [�s1�s (q)� �s0ps (q)]

(
>

<

)
0; (16)

as well as IC, which must bind:

X
s

Z
LRs(q)� �

��1

q [�s1�s (q)� �s0ps (q)] dq = C: (17)

Rearranging (16), it follows that ws (q) = q if LRs (q) >
�
��1 ; and ws(q) = 0 if

LRs (q) <
�
��1 . It remains to be veri�ed that the Lagrange multiplier � exists. Note

that the LHS of (17) converges to zero as � % +1 and to E [qje = 1] � E [qje = 0]
as � & 1. By assumption, C is small enough that the principal wishes to implement

high e¤ort. In particular, high e¤ort must be optimal in the �rst-best when e¤ort is

observable:

E [qje = 1]� C > E [qje = 0] :

Thus, by the Intermediate Value Theorem, there exists a Lagrange multiplier � 2
(1;+1) for which (17) holds.
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Proof of Proposition 2
The thresholds q�s are independent of s if the likelihood ratios LRs(�) evaluated at

q� are the same for any s, where q� is the unique threshold that solves the IC in (10).

For all signals s and s0 such that the likelihood ratios (6) evaluated at q� are the same,

we have:

LRs (q
�) = LRs0 (q

�) () �s1�s (q
�)

�s0ps (q
�)
=
�s

0
1 �s0 (q

�)

�s
0
0 ps0 (q

�)
: (18)

Using the de�nition of the marginal distribution (5), when (18) holds, we can write the

IC in (10) as Z �q

q�
q [f (qje = 1)� f (qje = 0)] dq = C: (19)

where the threshold q� is independent of the realization of s.

Finally, we show that q� is unique. Any contract such that w(q; s) > 0 for q < q̂s,

where q̂s is implicitly de�ned by f(q̂sje = 1; s) = f(q̂sje = 0; s) and is unique due to

MLRP, is dominated. Indeed, setting w(q; s) = 0 for q < q̂s would not a¤ect payments

on other intervals, would increase incentives relative to the initial contract, and would

reduce the expected wage. Therefore, restricting attention to contracts described in

Lemma 3 such that w(q; s) > 0 only if q � q̂s, the expression under the integral sign in
(19) is positive, which implies that q� is unique.

Proof of Lemma 4
By the monotonicity constraint (11), ws(�) is Lipschitz continuous and, therefore,

di¤erentiable almost everywhere. Hence, without loss of generality, we can assume that

ws (q) is a cadlag function satisfying 0 � w0s (q) � 1 at all points of di¤erentiability.6

We will adopt a two-step approach. First, we solve for the optimal contract for a

�xed minimum wage ws (0) = Zs � 0. As we will show, the solution involves a contract
where the agent receives a �xed minimum wage of Zs if output is below a threshold,

and is the residual claimant above the threshold. Then, we will show that the minimum

is zero, so the solution is a standard option contract.

Formally, pick constants Zs � 0 and consider the following �relaxed�program:

min
ws(�)

X
s

Z �q

0

ws (q)�
s
1�s (q) dq (20)

6A cadlag function is everywhere right-continuous and has left limits everywhere.
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subject to X
s

Z �q

0

ws (q) [�
s
1�s (q)� �s0ps (q)] dq � C;

0 � _ws (q) � 1; and ws (0) = Zs �xed.

Note that monotonicity _ws (q) � 0 implies that Zs � 0 is both necessary and su¢ cient
for the agent�s LL to hold. We will ignore the principal�s LL and verify that it is

satis�ed later.

Introduce the auxiliary variables ys (q) � _ws (q) and set up the Hamiltonian:

H (w; y; �; �; q) �
X
s

f�ws�s1�s (q) + � [ws [�s1�s (q)� �s0ps (q)]� C] + �s (q) ysg ;

where ws are state variables, ys are control variables, �s are co-state variables, and �

is a (state-independent) Lagrange multiplier. The necessary optimality conditions are:

ys (q) 2 arg max
0�y�1

�s (q) y ) ys (q) =
(
0

1

)
if �s (q)

(
<

>

)
0; (21)

@H

@ws
= � _�s ) �s1�s (q)� � [�s1�s (q)� �s0ps (q)] = _�s (q) ; (22)

and the transversality condition �s (�q) = 0:

Condition (22) yields:

_�s (q) > 0 ()
1

�
> 1� �s0ps (q)

�s1�s (q)
() 1

LRs (q)
>
�� 1
�

;

where LRs (q) � �s1�s(q)

�s0ps(q)
is the likelihood ratio, which we assumed to be increasing.

Thus, the LHS of the last inequality above is decreasing in q while the RHS is constant.

Hence, there exists a threshold q�s 2 [0; �q] such that _�s (q) > 0 for q < q�s and _�s (q) < 0
for q > q�s . (Note that if q

�
s = 0 or q

�
s = �q, one of these intervals vanishes). Therefore,

�s is bell-shaped, with a unique maximum at q�s and (at most) two local minima �one

at 0 and and another at �q.

We claim that q�s < �q, i.e. �s is increasing 8 q if q�s = �q. Then, the transversality

condition �s (�q) = 0 and (21) imply that ws(q) is constant (ws (q) = ws (0) = Zs 8 q),
which violates IC. Thus, it cannot be a solution.
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There are two cases to consider. First, �s (0) � 0. In this case, we must have

�s (q) > 0 8 q 2 (0; �q), since the only candidates for global minima are 0 and �q and
�s(0) � 0 = �s(�q). Second, �s (0) < 0, and so there exists a threshold q��s 2 (0; q�s)
such that �s (q) < 0 if q < q��s and �s (q) > 0 if q > q��s . We can combine both cases by

letting q��s 2 [0; q�s) denote the threshold below which �s (q) < 0. The solution is then

w�s (q) = Zs +max fq � q��s ; 0g (23)

for some q��s 2 [0; �q). This concludes the �rst part of the proof.
We now show that the solution entails Zs = 0 8 s. We substitute the agent�s wage

from (23) into the principal�s objective function to yield:

X
s

�Z �q

0

ws (q)�
s
1�s (q) dq

�
=
X
s

�s1

�
Zs +

Z �q

q��s

(q � q��s )�s (q) dq
�
; (24)

and into the IC constraint to yield:

X
s

�Z �q

q��s

(q � q��s ) [�s1�s (q)� �s0ps (q)] dq
�
� C: (25)

Monotonicity is automatically satis�ed by (23). As before, the agent�s LL holds if and

only if Zs � 0. Since Zs increases the objective function in (24) but does not a¤ect the
IC constraint in (25), the solution entails Zs = 0 8 s. Thus, the solution of the relaxed
program is

w�s (q) = max fq � q��s ; 0g ; (26)

where the thresholds q��s are such that the IC constraint holds with equality:

X
s

�Z �q

q��s

(q � q��s ) [�s1�s (q)� �s0ps (q)] dq
�
= C:

We �nally must verify that the principal�s LL is satis�ed. This is true since w�s (q) =

max fq � q��s ; 0g � q 8 q. Thus, we have established that the optimal contract is an
option where the strike prices fq��s g are such that the IC holds with equality. Next, we
characterize the strike prices.

Substituting the contract derived in (26) into the objective function (24), the latter
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becomes

min
fq��s gs=1;:::;S

X
s

Z �q

q��s

(q � q��s )�s1�s (q) dq: (27)

Denoting the Lagrange multiplier associated with the incentive constraint by �, the

necessary �rst-order condition with respect to q��s is

��s1
Z �q

q��s

�s (q) dq + �

Z �q

q��s

[�s1�s (q)� �s0ps (q)] dq = 0 (28)

�s0
R �q
q��s
ps (q) dq

�s1
R �q
q��s
�s (q) dq

= 1� 1

�
< 1; (29)

where � is independent of s.

We must verify that the principal�s LL holds in the optimal contract. This is the

case if the optimal q��s is nonnegative 8 s. For q��s � 0, using �s (q) = 0 for q < 0, we
can rewrite the principal�s objective function (27) as

X
s

Z �q

q��s

(q � q��s )�s1�s (q) dq =
X
s

Z �q

0

(q � q��s )�s1�s (q) dq (30)

For q��s � 0, using �s (q) = ps (q) = 0 for q < 0,
R �q
0
�s (q) dq =

R �q
0
ps (q) dq = 1, andP

s �
s
1 =

P
s �

s
0, we can rewrite the LHS of the incentive constraint in (25) asX

s

Z �q

0

q [�s1�s (q)� �s0ps (q)] dq � q��s
X
s

Z �q

0

[�s1�s (q)� �s0ps (q)] dq

=
X
s

Z �q

0

q [�s1�s (q)� �s0ps (q)] dq (31)

Thus, for q��s � 0, the Lagrangian L is:

L(q��s ) =
X
s

Z �q

0

(q � q��s )�s1�s (q) dq � �
X
s

Z �q

0

q [�s1�s (q)� �s0ps (q)] dq: (32)

Its �rst derivative with respect to q��s is
R �q
0
��s1�s (q) dq < 0, and so q��s < 0 cannot be

an optimum for any s.

As the necessary �rst-order condition for an optimum only applies to interior solu-
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tions, we need to rule out corner solutions by establishing that q��s < �q 8 s. First, note
that an option with q��s � �q is equivalent to an option with q��s = �q. Thus, we need to

check that limq��s !�q� L0(q��s ) > 0. We have

lim
q��s !�q�

L0(q��s ) = lim
y!�q�

f��s1�s (y) (�q � y) + � [�s1�s (y)� �s0ps (y)] (�q � y)g ; (33)

where the expression in brackets has the same sign as ��1���
s
0ps(y)

�s1�s(y)
. Since assumption

(12) implies �
s
0ps(y)

�s1�s(y)
�!y!�q 0, we indeed have limq��s !�q� L0(q��s ) > 0 if � > 1. Finally, we

establish that � > 1 by contradiction. If � � 1, the LHS of (28) is strictly negative 8
s. This implies that the optimum is q��s = �q 8 s, which violates the incentive constraint
in (25).

Proof of Proposition 3
If the solution entails zs = z�, IC becomes:Z �q

z�
(q � z�) [f (qje = 1)� f (qje = 0)] dq = C;

which is not a function of the signal distribution (for �xed marginal distributions

f(qje = 1) and f(qje = 0)).
The condition from Lemma 4 is

�s1
R �q
z� �s (q) dq

�s0
R �q
z� ps (q) dq

=
�s

0
1

R �q
z� �s0(q)dq

�s
0
0

R �q
z� ps0 (q) dq

)Pr (q > z
�; sje = 1)

Pr (q > z�; sje = 0) =
Pr (q > z�; s0je = 1)
Pr (q > z�; s0je = 0) ;

which states that the likelihood ratios of the event that the agent�s option is in-the-

money is not a function of the signal realization.
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