
Testing Endogeneity with Possibly Invalid Instruments and

High Dimensional Covariates

Zijian Guo, Hyunseung Kang, T. Tony Cai and Dylan S. Small

September 21, 2016

Abstract

The Durbin-Wu-Hausman (DWH) test is a commonly used test for endogeneity in

instrumental variables (IV) regression. Unfortunately, the DWH test depends, among

other things, on assuming all the instruments are valid, a rarity in practice. In this

paper, we show that the DWH test often has distorted size even if one IV is invalid. Also,

the DWH test may have low power when many, possibly high dimensional, covariates

are used to make the instruments more plausibly valid. To remedy these shortcomings,

we propose a new endogeneity test which has proper size and better power when invalid

instruments and high dimemsional covariates are present; in low dimensions, the new

test is optimal in that its power is equivalent to the “oracle” DWH test’s power that

knows which instruments are valid. The paper concludes with a simulation study of

the new test with invalid instruments and high dimensional covariates.

1 Introduction

Many empirical studies using instrumental variables (IV) regression are accompanied by

the Durbin-Wu-Hausman test [Durbin, 1954, Wu, 1973, Hausman, 1978], hereafter called

the DWH test. The primary purpose of the DWH test is to test the presence of endogeneity

by comparing the ordinary least squares (OLS) estimate of the structural parameters in

the IV regression to that of the two-stage least squares (TSLS). Consequently, the DWH

test is often used to decide whether to use an IV analysis compared to a standard OLS

analysis; the IV analysis has lower bias when the included possibly endogenous variable

in the IV regression is truly endogenous whereas the standard OLS analysis has smaller

variance [Davidson and MacKinnon, 1993].

Properly using the DWH test depends, among other things, on having instruments that

are (i) strongly associated with the endogenous variable, often called strong instruments,
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and are (ii) known, with absolute certainty, to be exogenous1, often referred to as valid

instruments [Murray, 2006]. For example, when instruments are not strong, Staiger and

Stock [1997] showed that the DWH test that used the TSLS estimator for variance, which

is attributed to Durbin [1954] and Wu [1973], had distorted size under the null hypothe-

sis while the DWH test that used the OLS estimator for variance, which is attributed to

Hausman [1978], had proper size. Unfortunately, when instruments are not valid, which is

perhaps a bigger concern in practice [Murray, 2006, Conley et al., 2012] and has arguably

received far less attention than when the instruments are weak, there is a paucity of work

on exactly characterizing the behavior of the DWH test. Also, with large datasets becom-

ing more prevalent, there has been a trend toward conditioning on many, possibly high

dimensional, exogenous covariates in structural models to make instruments more plausi-

bly valid2 [Gautier and Tsybakov, 2011, Belloni et al., 2012, Chernozhukov et al., 2015].

However, it’s unclear how the DWH test is a↵ected in the presence of many covariates.

More importantly, even after conditioning, some IVs may still be invalid and subsequent

analysis, including the DWH test, assuming that all the IVs are valid after conditioning

can be misleading.

Prior work in analyzing the DWH test in instrumental variables is diverse. Estimation

and inference under weak instruments are well-documented [Staiger and Stock, 1997, Nel-

son and Startz, 1990, Bekker, 1994, Bound et al., 1995, Dufour, 1997, Zivot et al., 1998,

Wang and Zivot, 1998, Kleibergen, 2002, Moreira, 2003, Chao and Swanson, 2005, Andrews

et al., 2007]. In particular, when the instruments are weak, the behavior of the DWH test

under the null depends on the variance estimate [Staiger and Stock, 1997, Nakamura and

Nakamura, 1981, Doko Tchatoka, 2015]. Some recent work extends the specification test

to handle growing number of instruments [Hahn and Hausman, 2002, Chao et al., 2014].

Unfortunately, all these works have not characterized the properties of the DWH test when

instruments are invalid.

In addition, there is a growing literature on estimation and inference of structural e↵ects

in high dimensional instrumental variables models [Gautier and Tsybakov, 2011, Belloni

et al., 2012, Chernozhukov et al., 2015, Belloni et al., 2011a, 2013, Fan and Liao, 2014,

Chernozhukov et al., 2014]. Unfortunately, all of them assume that after controlling for

high dimensional covariates, all the IVs are valid, which may not be true in practice.

1The term exogeneity is sometimes used in the IV literature to encompass two assumptions, (a) inde-

pendence of the IVs to the disturbances in the structural model and (b) IVs having no direct e↵ect on

the outcome, sometimes referred to as the exclusion restriction [Holland, 1988, Imbens and Angrist, 1994,

Angrist et al., 1996]. As such, an instrument that is perfectly randomized from a randomized experiment

may not be exogenous in the sense that while the instrument is independent to any structural error terms,

the instrument may still have a direct e↵ect on the outcome.
2For example, in causal inference and epidemiology, Hernán and Robins [2006] and Baiocchi et al. [2014]

highlights the need to control for covariates for an instrument to remove violations of exogeneity.
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Finally, for work related to invalid instruments, Fisher [1966, 1967], Newey [1985], Hahn

and Hausman [2005], Guggenberger [2012], Berkowitz et al. [2012] and Caner [2014] con-

sidered properties of IV estimators or, more broadly, generalized method of moments esti-

mators (GMM)s when there are local deviations from validity to invalidity. Andrews [1999]

and Andrews and Lu [2001] considered selecting valid instruments within the context of

GMMs. Small [2007] approached the invalid instrument problem via a sensitivity analysis.

Conley et al. [2012] proposed various strategies, including union-bound correction, sensi-

tivity analysis, and Bayesian analysis, to deal with invalid instruments. Liao [2013] and

Cheng and Liao [2015] considered the setting where there is, a priori, a known set of valid

instruments and another set of instruments that may not be valid. Recently, Kang et al.

[2016] and Kolesár et al. [2015] worked under the case where this a priori information is

absent. Kang et al. [2016] replaced the a priori knowledge with a sparsity-type assump-

tion on the number of invalid instruments while Kolesár et al. [2015] replaced the a priori

knowledge with an orthogonality assumption on the instruments’ e↵ects on the included

endogenous variable and the outcome. In all cases, the main focus was on the selection of

valid instruments or the estimation of structural parameters; none of the authors considered

studying the properties of the endogeneity test.

Our main contribution is two-fold. First, we expand the theoretical analysis of the

DWH test under weak instruments by showing negative results about the DWH test under

invalid instruments and high dimensional covariates. We show that the DWH test fails to

have the correct size in the presence of invalid instruments and we precisely characterize

the deviation from the nominal level. We also show that the DWH test has low power

when many covariates are present, especially when the number of covariates is similar to

the sample size. Second, we remedy the failures of the DWH test by presenting an improved

endogeneity test that is robust to both invalid instruments and high dimensional covariates

and that works in settings where the number of structural parameters exceed the sample

size. The key idea behind the new endogeneity test is based on a novel methodology that

we call two-stage hard thresholding (TSHT) which allows selection of valid instruments and

subsequent inference after selection. In the low dimensional setting, we show that our new

test has optimal performance in that our test has the same asymptotic power as the “oracle”

DWH test that knows which instruments are valid and invalid. In the high dimensional

setting, we characterize the asymptotic power of the new proposed test and show that the

power of the new test is better than the DWH test. We conclude the paper with simulation

studies comparing the performance of our new test with the DWH test. We find that our

test has the desired size and has better power than that of the DWH test when invalid

instruments and high dimensional covariates are present. We also present technical proofs

and extended simulation studies that further examine the power and sensitivity of our test
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to regularity assumptions in the supplement.

2 Instrumental Variables Regression and the DWH Test

2.1 Notation

For any p dimensional vector v, the jth element is denoted as vj . Let kvk1, kvk2, and

kvk1 denote the 1, 2 and 1-norms, respectively. Let kvk0 denote the number of non-zero

elements in v and let supp(v) = {j : vj 6= 0} ✓ {1, . . . , p}. For any n by p matrix M ,

denote the ith row and jth column entry as Mij , the ith row vector as Mi., the jth column

vector as M.j , and M 0 as the transpose of M . Also, given any n by p matrix M with

sets I ✓ {1, . . . , n} and J ✓ {1, . . . , p} denote MIJ as the submatrix of M consisting of

rows specified by the set I and columns specified by the set J . Let kMk1 represent the

element-wise matrix sup norm of matrix M . Also, for any n⇥ p full-rank matrix M , define

the orthogonal projection matrices PM = M(M 0M)�1M 0 and PM? = I � M(M 0M)�1M 0

where PM +PM? = I and I is an identity matrix. For a p⇥ p matrix ⇤, ⇤ � 0 denotes that

⇤ is a positive definite matrix. For any p⇥ p positive definite ⇤ and set J ✓ {1, . . . , p}, let

⇤J |JC = ⇤JJ � ⇤JJC⇤�1
JCJC⇤JCJ denote the submatrix ⇤JJ adjusted for the columns Jc.

For a sequence of random variables Xn indexed by n, we use Xn
p! X to represent that

Xn converges to X in probability. For a sequence of random variables Xn and numbers an,

we define Xn = op(an) if Xn/an converges to zero in probability and Xn = Op(an) if for

every c0 > 0, there exists a finite constant C0 such that P (|Xn/an| � C0)  c0. For any

two sequences of numbers an and bn, we will write bn ⌧ an if lim sup bn/an = 0.

For distribution of random variables, for any ↵, 0 < ↵ < 1, and B 2 R, we define

G(↵, B) = 1 � �(z↵/2 � B) + �(�z↵/2 � B) (1)

where � and z↵/2 are respectively the cumulative distribution function and ↵/2 quantile

of a standard normal distribution. We also denote �2
↵(d) to be the 1 � ↵ quantile of the

chi-squared distribution with d degrees of freedom.

2.2 Model and Definitions

Suppose we have n individuals where for each individual i = 1, . . . , n, we measure the

outcome Yi, the included endogenous variable Di, pz candidate instruments Z 0
i., and px

exogenous covariates X 0
i. in an i.i.d. fashion. We denote W 0

i. to be concatenated vector of

Z 0
i. and X 0

i. and the corresponding dimension of Wi. to be p = pz + px. The matrix W is

indexed by the set I = {1, . . . , pz} which consists of all the pz candidate instruments and the

set IC = {pz + 1, . . . , p} which consists of the px covariates. The variables (Yi, Di, Zi, Xi)
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are governed by the following structural model

Yi = Di� + Z 0
i.⇡ + X 0

i.�+ �i, E(�i | Zi., Xi.) = 0 (2)

Di = Z 0
i.� + X 0

i. + ✏i, E(✏i | Zi., Xi.) = 0 (3)

where �, ⇡, �, �, and  are unknown parameters in the model and without loss of generality,

we assume the variables are centered to mean zero3. The random disturbance terms �i and

✏i are independent of (Zi., Xi.) and, for simplicity, are assumed to be bivariate normal.

Let the population covariance matrix of (�i, ✏i) be ⌃, with ⌃11 = Var(�i|Zi., Xi.), ⌃22 =

Var(✏i|Zi., Xi.), and ⌃12 = ⌃21 = Cov(�i, ✏i|Zi., Xi.). Let the second order moments of Wi.

be ⇤ = E (Wi·W 0
i·) with ⇤I|Ic as the adjusted covariance of Wi.. Let ! represent all the

parameters ! = (�, ⇡, �, �,  ,⌃) from the parameter space ! 2 ⌦ = {R⌦Rpz ⌦Rpx ⌦Rpz ⌦
Rpz ⌦ ⌃ � 0}. Finally, we denote sz2 = k⇡k0, sx2 = k�k0, sz1 = k�k0, sx1 = k k0 and

s = max{sz2, sx2, sz1, sx1}.

If ⇡ = 0 in model (2), the models (2) and (3) represent the usual instrumental variables

regression models with one endogenous variable, px exogenous covariates, and pz instru-

ments, all of which are assumed to be valid. On the other hand, if ⇡ 6= 0 and the support

of ⇡ is unknown a priori, the instruments may have a direct e↵ect on the outcome, thereby

violating the exclusion restriction [Imbens and Angrist, 1994, Angrist et al., 1996] and mak-

ing them potentially invalid, without knowing, a priori, which are invalid and valid [Murray,

2006, Conley et al., 2012, Kang et al., 2016]. In fact, among pz candidate instruments, the

support of ⇡ allows us to distinguish a valid instrument from an invalid one and provides

us with a definition of a valid instrument.

Definition 1. Suppose we have pz candidate instruments along with the model (2). We

say that instrument j = 1, . . . , pz is valid if ⇡j = 0 and invalid if ⇡j 6= 0.

In addition, it is also useful to define relevant instruments from the irrelevant instru-

ments. This is, in many ways, equivalent to the notion that the instruments Zi. are asso-

ciated with the endogenous variable Di, except like Definition 1, we use the support of a

vector to define the instruments’ association to the endogenous variable; see Breusch et al.

[1999], Hall and Peixe [2003], and Cheng and Liao [2015] for some examples in the literature

of defining relevant and irrelevant instruments based on the support of a parameter.

Definition 2. Suppose we have pz instruments along with the model (3). We say that

instrument j = 1, . . . , pz is relevant if �j 6= 0 and irrelevant if �j = 0. Let S be the set of

relevant instruments.

Definitions 1 and 2 combine to form valid and relevant instruments. We denote the

set of instruments that satisfy both definitions as V = {j | ⇡j = 0, �j 6= 0}. Note that

3The mean-centering is equivalent to adding a constant 1 term (i.e. intercept term) in X 0
i.
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Definitions 1 and 2 are related to the definition of instruments that is well known in the

literature. In particular, if pz = 1, an instrument that is relevant and valid is identical to

the definition of an instrument in Holland [1988]. In particular, Definition 1 is the same

as ignorability and exclusion restriction while Definition 2 is the same as the condition

that the instrument is related to the exposure. Definitions 1 and 2 are also a special case

of a definition of an instrument discussed in Angrist et al. [1996] where in our setup, we

assume an additive, linear, and a constant treatment e↵ect model. Hence, when multiple

instruments, pz > 1, are present, Definitions 1 and 2, especially Definition 1, can be viewed

as a generalization of the definition of an instrument in the pz = 1 case.

In the literature, Kang et al. [2016] considered the aforementioned framework and Def-

inition 1 as a relaxation of instrumental variables assumptions where a priori information

about which of the pz instruments are valid or invalid is not available and provided su�-

cient and necessary conditions for identification of �. Guo et al. [2016a] expanded the work

in Kang et al. [2016] by allowing high dimensional covariates and instruments along with

deriving honest confidence intervals for �. Kolesár et al. [2015] also analyzed the models (2)

and (3) in the presence of invalid instruments, but they assumed orthogonality restrictions

between ⇡ and �.

Finally, for the set of valid and relevant IVs V, we define the concentration parameter,

a common measure of instrument strength,

C(V) =
�0V⇤V|VC�V

|V|⌃22
. (4)

If all instruments were relevant and valid, then V = I and equation (4) is the usual definition

of concentration parameter in Staiger and Stock [1997], Bound et al. [1995], Mariano [1973],

Stock and Wright [2000] using population quantities, i.e. ⇤V|VC . 4 However, if only a subset

of all instruments are relevant and valid so that V ⇢ {1, . . . , pz}, then the concentration

parameter represents the strength of the instruments for that subset V, adjusted for the

instruments in its complement VC = {1, . . . , pz, pz +1, . . . , p}\V. Regardless, like the usual

concentration parameter, a high value of C(V) represents strong instruments in the set V
while a low value of C(V) represents weak instruments.

2.3 The DWH Test

Consider the following hypotheses for endogeneity in models (2) and (3),

H0 : ⌃12 = 0, H1 : ⌃12 6= 0, (5)

4For example, if V = I so that all IVs are valid, C(V) corresponds exactly to the quantity �0�/K2 on

page 561 of Staiger and Stock [1997] for n = 1 and K1 = 0. Without using population quantities, nC(V)

roughly corresponds to the usual concentration parameter using the estimated version of ⇤V|VC
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The DWH test tests for endogeneity as specified by the hypothesis in equation (5) by

comparing two consistent estimators of � under the null hypothesis H0, i.e. no endogeneity,

with di↵erent e�ciencies. Specifically, the DWH test statistic, denoted as QDWH, is the

quadratic di↵erence of the the OLS estimate of �, denoted as b�OLS = (D0PX?D)�1D0PX?Y ,

and the TSLS estimate of �, denoted as b�TSLS = (D0(PW � PX)D)�1D0(PW � PX)Y,

QDWH =
(b�TSLS � b�OLS)

2

dVar(b�TSLS) �dVar(b�OLS)
(6)

where dVar(b�OLS) = (D0PX?D)�1 b⌃11, dVar(b�TSLS) = (D0(PW � PX)D)�1 b⌃11, and b⌃11 can

either be the OLS estimate of ⌃, i.e. b⌃11 = kY � Db�OLS � X b�OLSk2
2/n, or the TSLS

estimate of ⌃, i.e. b⌃11 = kY � Db�TSLS � X b�TSLSk2
2/n5. Under H0, both OLS and TSLS

are consistent estimates of �, but the OLS estimate is more e�cient than TSLS. Also, under

H0, both OLS and TSLS estimates of the variance ⌃11 are consistent.

If ⇡ = 0 so that all the instruments are valid, the asymptotic null distribution of the

DWH test in equation (6) is Chi-squared with one degree of freedom. With a known

⌃11, the DWH test has an exact Chi-squared null distribution with one degree of freedom.

Regardless, both null distributions imply that for ↵, 0 < ↵ < 1, we can reject the null

hypothesis H0 for the alternative H1 by using the decision rule,

Reject H0 if QDWH � �2
↵(1)

and the Type I error of the DWH test will be exactly or asymptotically controlled at level

↵. Also, under the local alternative hypotheses,

H0 : ⌃12 = 0, H2 : ⌃12 =
�1p

n
(7)

for some constant �1, the asymptotic power of the DWH test is

! 2 H2 : lim
n!1

P(QDWH � �2
↵(1)) = G

0
BB@↵,

�1

p
C(I)r⇣

C(I) + 1
pz

⌘
⌃11⌃22

1
CCA . (8)

For more information about the DWH test, see Davidson and MacKinnon [1993] and

Wooldridge [2010] for textbook discussions.

5To be precise, the OLS and TSLS estimates of � can be obtained as follows: b�OLS =

(X 0PD?X)�1X 0PD?Y and b�TSLS = (X 0PD̂?X)�1X 0PD̂?Y where D̂ = PW D.
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3 Failure of the DWH Test

3.1 Invalid Instruments

While the DWH test performs as expected when all the instruments are valid, in practice,

some instruments may be invalid and consequently, the DWH test can be a highly misleading

assessment of the hypotheses (5). In Theorem 1, we show that the Type I error of the DWH

test can be greater than the nominal level for a wide range of IV configurations in which

some IVs are invalid; we assume a known ⌃11 in Theorem 1 for a cleaner technical exposition

and to highlight the impact that invalid IVs have on the size and power of the DWH test,

but the known ⌃11 can be replaced by a consistent estimate of ⌃11. We also show that the

power of the DWH test under the local alternative H2 in equation (7) can be shifted.

Theorem 1. Suppose we have models (2) and (3) with a known ⌃11. If ⇡ = �2/nk where

�2 is a fixed constant and 0  k < 1, then for any ↵, 0 < ↵ < 1, we have the following

asymptotic phase-transition behaviors of the DWH test for di↵erent values of k.

a. 0  k < 1/2: The asymptotic Type I error of the DWH test under H0 is 1, i.e.

! 2 H0 : lim
n!1

P
�
QDWH � �2

↵(1)
�

= 1 (9)

and the asymptotic power of the DWH test under H2 is 1.

b. k = 1/2: The asymptotic Type I error of the DWH test under H0 is

! 2 H0 : lim
n!1

P
�
QDWH � �2

↵(1)
�

= G

0
BB@↵,

1
pz
�0⇤I|Ic�2r

C(I)
⇣
C(I) + 1

pz

⌘
⌃11⌃22

1
CCA � ↵ (10)

and the asymptotic power of the DWH test under H2 is

! 2 H2 : lim
n!1

P
�
QDWH � �2

↵(1)
�

= G

0
BB@↵,

1
pz
�0⇤I|Ic�2r

C(I)
⇣
C(I) + 1

pz

⌘
⌃11⌃22

+
�1

p
C(I)r⇣

C(I) + 1
pz

⌘
⌃11⌃22

1
CCA (11)

c. 1/2 < k < 1: The asymptotic Type I error of the DWH test is ↵, i.e.

! 2 H0 : lim
n!1

P
�
QDWH � �2

↵(1)
�

= ↵ (12)

and the asymptotic power of the DWH test under H2 is equivalent to equation (8).
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Theorem 1 presents the asymptotic behavior of the DWH test under a wide range of

behaviors for the invalid IVs as represented by ⇡. For example, when the instruments are

invalid in the sense that their deviation from valid IVs (i.e. ⇡ = 0) to invalid IVs (i.e.

⇡ 6= 0) is at rates slower than n�1/2, say ⇡ = �2n
�1/4 or ⇡ = �2, equation (9) states that

the DWH will always have Type I error that reaches 1. In other words, if some IVs, or even

a single IV, are moderately (or strongly) invalid in the sense that they have moderate (or

strong) direct e↵ects on the outcome above the usual noise level of the model error terms

at n�1/2, then the DWH test will always reject the null hypothesis of no endogeneity even

if there is truly no endogeneity present.

Next, suppose the instruments are invalid in the sense that their deviation from valid

IVs to invalid IVs are exactly at n�1/2 rate, also referred to as the Pitman drift.6 This

is the phase-transition point of the DWH test’s Type I error as the error moves from 1 in

equation (9) to ↵ in equation (12). Under this type of invalidity, equation (10) shows that

the Type I error of the DWH test depends on some factors, most prominently the factor

�0⇤I|Ic�2. The factor �0⇤I|Ic�2 has been discussed in the literature, most recently by

Kolesár et al. [2015] within the context of invalid IVs. Specifically, Kolesár et al. [2015]

studied the case where �2 6= 0 so that there are invalid IVs, but �0⇤I|Ic�2 = 0, which

essentially amounted to saying that the IVs’ e↵ect on the endogenous variable D via � is

orthogonal to their direct e↵ects on the outcome via �2; see Assumption 5 of Section 3

in Kolesár et al. [2015] for details. Under their scenario, if �0⇤I|Ic�2 = 0, then the DWH

test will have the desired size ↵. However, if �0⇤I|Ic�2 is not exactly zero, which will most

likely be the case in practice, then the Type I error of the DWH test will always be larger

than ↵ and we can compute the exact deviation from ↵ by using equation (10). Also,

equation (11) computes the power under H2 in the n�1/2 setting, which again depends on

the magnitude and direction of �0⇤I|Ic�2. For example, if there is only one instrument

and that instrument has average negative e↵ects on both D and Y , the overall e↵ect on the

power curve will be a positive shift away from the case of valid IVs (i.e. ⇡ = 0). Regardless,

under the n�1/2 invalid IV regime, the DWH test will always have size that is at least as

large as ↵ if invalid IVs are present.

Theorem 1 also shows that instruments’ strength, as measured by the population con-

centration parameter C(I) in equation (4), impacts the Type I error rate of the DWH test

when the IVs are invalid at the n�1/2 rate. Specifically, if ⇡ = �2n
�1/2 and the instruments

are strong so that the concentration parameter C(I) is large, then the deviation from ↵ will

be relatively minor even if �0⇤I|Ic�2 6= 0. This phenomena has been mentioned in previous

6Fisher [1967] and Newey [1985] have used this type of n�1/2 asymptotic argument to study misspecified

econometrics models, specifically Section 2, equation (2.3) of Fisher [1967] and Section 2, Assumption 2

of Newey [1985]. More recently, Hahn and Hausman [2005] and Berkowitz et al. [2012] used the n�1/2

asymptotic framework in their respective works to study plausibly exogenous variables.
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work, most notably Bound et al. [1995] and Angrist et al. [1996] where strong instruments

can lessen the undesirable e↵ects caused by invalid IVs.

Finally, if the instruments are invalid in the sense that their deviation from ⇡ = 0 is

faster than n�1/2, say ⇡ = �n�1, then equation (12) shows that the DWH test maintains

its desired size. To put this invalid IV regime in context, if the instruments are invalid at

n�k where k > 1/2, the convergence toward ⇡ = 0 is faster than the usual convergence

rate of a sample mean from an i.i.d. sample towards a population mean. Also, this type of

deviation is equivalent to saying that the invalid IVs are very weakly invalid and essentially

act as if they are valid because the IVs are below the noise level of the model error terms

at n�1/2. Consequently, the DWH test is not impacted by these type of IVs with respect

to size and power.

In short, Theorem 1 shows that the DWH test can fail with regards to not being able

to control its Type I error. Indeed, the only cases when the DWH test achieves its desired

size ↵ are (i) when the invalid IVs essentially behave as valid IVs asymptotically, i.e. the

case when 1/2 < k < 1, and (ii) when the IVs’ e↵ects on the endogenous variables are

orthogonal to each other. However, in all other cases, which are arguably more realistic,

the DWH test will have Type I error that is strictly greater than ↵.

3.2 Large Number of Covariates

Next, we consider the behavior of the DWH test when the instruments are assumed to be

valid after conditioning on many covariates. As noted in Section 1, many empirical studies

often condition on covariates to make instruments more plausibly valid, with the likelihood

of having valid IVs increasing as one conditions on more covariates. Theoretically, this

setting was studied by Gautier and Tsybakov [2011], Belloni et al. [2012, 2011a, 2013], Fan

and Liao [2014], Chernozhukov et al. [2014] and Chernozhukov et al. [2015], who provided

honest confidence intervals for a treatment e↵ect, even in the case when the number of

covariates and instruments exceeded the sample size. The authors have not studied the

behavior of the DWH test under this scenario, specifically the e↵ect on the DWH test by

having many covariates to make IVs valid. As we will see below, a tradeo↵ of having more

covariates to make IVs valid is a reduction in the power of the DWH test.

Formally, suppose the number of covariates and instruments are growing with sample

size n, px = px(n) and pz = pz(n), so that p = px + pz and n� p are increasing with respect

to n. We assume p  n since the DWH test with OLS and TSLS estimators cannot be

implemented when the sample size is smaller than the dimension of the model parameters.

As in Section 3.1, we assume a known ⌃11 for simpler exposition. But, more importantly, we

assume that after conditioning on many covariates, our IVs are valid and ⇡ = 0. Theorem

2 characterizes the asymptotic behavior of the decision rule for the DWH test under this

10



regime.

Theorem 2. Suppose we have models (2) and (3) with a known ⌃11, ⇡ = 0, and Wi.

is a zero-mean multivariate Gaussian. If
p

C(I) �
p

log(n � px)/(n � px)pz, for any ↵,

0 < ↵ < 1, the asymptotic Type I error of the DWH test under H0 is controlled at ↵

! 2 H0 : lim sup
n,px,pz!1

P
�
|QDWH| � z↵/2

�
= ↵.

and the asymptotic power of the DWH test under H2 is

! 2 H2 : lim
n,px,pz!1

��������
P
�
QDWH � �2

↵(1)
�
� G

0
BB@↵,

C(I)�1

q
1 � p

nr⇣
C(I) + 1

n�px

⌘⇣
C(I) + 1

pz

⌘
⌃11⌃22

1
CCA

��������
= 0

(13)

Theorem 2 characterizes the asymptotic behavior of the DWH test under the regime

where the covariates (or instruments) may grow with the sample size and the instruments are

valid after conditioning on said covariates. Unlike Theorem 1, the DWH test asymptotically

controls the Type I error under this regime at level ↵ and equation (13) characterizes the

asymptotic power of the DWH under the local alternative H2. For example, if covariates

and/or instruments are growing at p/n ! 0, equation (13) reduces to the usual power of the

DWH test with fixed p in equation (8). On the other hand, if covariates and/or instruments

are growing at p/n ! 1, then the usual DWH test essentially has no power against any

local alternative in H2 since G(↵, ·) in equation (13) equals ↵ for any value of �1.

This phenomena suggests that in the “middle ground” where p/n ! c, 0 < c < 1, the

usual DWH test may su↵er in terms of power. As a concrete example, if px = n/2 and

pz = n/3 so that p/n = 5/6, then G(↵, ·) in equation (13) reduces to

G

0
BB@↵,

C(I)�1r
2
�
C(I) + 2

n

� ⇣
C(I) + 1

pz

⌘
⌃11⌃22

1
CCA ⇡ G

0
BB@↵,

1p
6

·
p

C(I)�1r⇣
C(I) + 1

pz

⌘
⌃11⌃22

1
CCA

where the approximation sign is for n su�ciently large enough so that C(I) + 2/n ⇡ C(I).

Under this setting, the power of the DWH test is smaller than the power in equation

(8) under the fixed p regime; see also Section 6 for a numerical demonstration of this

phenomena. Hence, including many covariates to make an IV valid may lead to poor power

of the DWH test.

Finally, we make two additional remarks about Theorem 2. First, Theorem 2 controls

the growth of the concentration parameter C(I) to be faster than log(n � px)/(n � px)pz.

This growth condition is satisfied under the many instrument asymptotics of Bekker [1994]

11



and the many weak instrument asymptotics of Chao and Swanson [2005] where C(I) con-

verges to a constant as pz/n ! c for some constant c. The weak instrument asymptotics of

Staiger and Stock [1997] is not directly applicable to our growth condition on C(I) because

the asymptotics keeps pz and px fixed. Second, we can replace the condition that Wi. is a

zero-mean multivariate Gaussian in Theorem 2 by a condition used in Chernozhukov et al.

[2015], specifically page 486 where (i) the vector of instruments Zi· is a linear model of Xi·,

i.e. Z 0
i. = X 0

i.B + Z̄ 0
i., (ii) Z̄i· is independent of Xi·, and (iii)Z̄i· is a multivariate normal

distribution and the result in Theorem 2 will hold.

Sections 3.1 and 3.2 show that the usual DWH test can (i) fail to have Type I error con-

trol when invalid IVs are present and (ii) su↵er from low power when many covariates are

added to make the invalid IVs more plausibly valid. Both Theorems 1 and 2 characterize

exactly how the DWH test fails and reveal di↵erent types of asymptotic phenomena de-

pending on the parameter regime. In subsequent sections, we will address these deficiencies

of the DWH test by proposing an improved endogeneity test that overcomes both invalid

instruments and high dimensional covariates.

4 An Improved Endogeneity Test

4.1 Overview

Given the failures of the DWH test for endogeneity when invalid instruments and high

dimensional variables are present, we present an improved endogeneity test that addresses

both of these concerns. Our test covers many settings encountered in practice where it

is guaranteed to have correct size in the presence of invalid instruments and have better

power than the DWH test with many covariates. Our test also covers the case when the

instruments are invalid even after controlling for high dimensional covariates, a generaliza-

tion of the setting in Section 3.2. Furthermore, our endogeneity test can test endogeneity

even if the number of parameters exceeds the sample size.

The key parts of our endogeneity test are (i) well-behaved estimates of reduced-form

parameters and (ii) a novel two-stage hard thresholding (TSHT) to deal with invalid in-

struments. For the first part, consider the models (2) and (3) as reduced-forms models

Yi = Z 0
i.� + X 0

i. + ⇠i, (14)

Di = Z 0
i.� + X 0

i. + ✏i. (15)

Here, � = �� + ⇡ and  = � + � are the parameters of the reduced-form model (14)

and ⇠i = �✏i + �i is the reduced-form error term. The errors in the reduced-models have

the property that E(⇠i|Zi., Xi.) = 0 and E(✏i|Zi., Xi.) = 0 and the covariance matrix of the

error terms, denoted as ⇥, are such that ⇥11 = Var(⇠i|Zi., Xi.) = ⌃11 + 2�⌃12 + �2⌃22,

12



⇥22 = Var(✏i|Zi., Xi.), and ⇥12 = Cov(⇠i, ✏i|Zi., Xi.) = ⌃12 + �⌃22. Each equation in the

reduced-form model is the classic regression model with covariates Zi. and Xi. and outcomes

Yi and Di, respectively. Our endogeneity test requires any estimator of the reduced-form

parameters that are well-behaved, which we define precisely in Section 4.2.

The second part of the endogeneity test is dealing with invalid instruments. Here, we

take a novel two-stage hard thresholding approach that was introduced in Guo et al. [2016a]

to correctly select the valid IVs. Specifically, in the first step, we estimate the set of IVs

that are relevant and in the second step, we use the relevant IVs as pilot estimates to find

IVs that are valid. Section 4.3 details this procedure.

4.2 Well-Behaved Estimators

The first step of the endogeneity test is the estimation of the reduced-form parameters in

equations (14) and (15). As mentioned before, our endogeneity test doesn’t require a specific

estimator for the reduced-form parameters. Rather, any estimator that is well-behaved as

defined in Definition 3 will be su�cient for our endogeneity test.

Definition 3. Consider estimators (b�, b�, b⇥11, b⇥22, b⇥12) of the reduced-form parameters,(�,�,

⇥11,⇥22,⇥12) respectively, in equations (14) and (15). The estimators (b�, b�, b⇥11, b⇥22, b⇥12)

are well-behaved estimators if they satisfy the following criteria

(W1) There exists a matrix bV = (bv[1], · · · , bv[pz ]) which is a function of W such that the

reduced-form estimators of the coe�cients b� and b� satisfy

p
nk (b� � �) � 1

n
bV 0✏k1 = Op

✓
s log pp

n

◆
,

p
nk
⇣
b�� �

⌘
� 1

n
bV 0⇠k1 = Op

✓
s log pp

n

◆
.

(16)

and the matrix bV satisfies

lim inf
n!1

inf
!2⌦

P

0
@c  min

1jpz

kbv[j]k2p
n

 max
1jpz

kbv[j]k2p
n

 C, ck�k2  1p
n
k
X

j2V
�jbv[j]k2

1
A = 1

(17)

for some constants c > 0 and C > 0.

(W2) The reduced-form estimators of the error variances, b⇥11, b⇥22, and b⇥12, have the

following behavior,

p
n max

⇢����b⇥11 �
1

n
⇠0⇠

���� ,
����b⇥12 �

1

n
✏0⇠

���� ,
����b⇥22 �

1

n
✏0✏

����
�

= Op

✓
s log pp

n

◆
. (18)

In the literature, there are many estimators for the reduced-form parameters that are

well-behaved as specified in Definition 3. Some examples of well-behaved estimators are

listed below.
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1. (OLS): In low dimensional settings where p is fixed, the OLS estimates of the reduced-

form parameters, i.e.

(b�, b )0 = (W 0W )�1W 0Y , (b�, b )0 = (W 0W )�1W 0D,

b⇥11 =

���Y � Zb�� X b 
���

2

2

n
, b⇥22 =

���D � Zb� � X b 
���

2

2

n

b⇥12 =

⇣
Y � Zb�� X b 

⌘0 ⇣
D � Zb� � X b 

⌘

n

trivially satisfy conditions for well-defined estimators. Specifically, let bV 0 = ( 1
nW 0W )�1

I· W .

Then equation (16) holds because (b� � �) � bV 0✏ = 0 and
⇣
b�� �

⌘
� bV 0⇠ = 0. Also,

equation (17) holds because n�1/2kbv[j]k2
p! ⇤�1

jj and n�1 bV 0 bV p! ⇤�1
II , thus sat-

isfying (W1). Also, (W2) holds because kb� � �k2
2 + kb �  k2

2 = Op

�
n�1

�
and

kb� � �k2
2 + k b �  k2

2 = Op

�
n�1

�
, which implies equation (18) going to zero at n�1/2

rate.

2. (Debiased Lasso Estimates) In high dimensional settings where p is growing with

n, one of the most popular estimators for regression model parameters is the Lasso

[Tibshirani, 1996]. Unfortunately, the Lasso estimator, let alone many penalized

estimators, do not satisfy the definition of a well-defined estimator, specifically (W1),

because penalized estimators are typically biased. Recent works by Zhang and Zhang

[2014], Javanmard and Montanari [2014], van de Geer et al. [2014] and Cai and Guo

[2016] remedied this bias problem by doing a bias correction on the original penalized

estimates.

As an example, suppose we use the square root Lasso estimator by Belloni et al.

[2011b],

{e�, e } = argmin
�2Rpz , 2Rpx

kY � Z�� X k2p
n

+
�0p
n

0
@

pzX

j=1

kZ.jk2|�j | +

pxX

j=1

kX.jk2| j |

1
A (19)

for the reduced-form model (14) and

{e�, e } = argmin
�2Rpz , 2Rpx

kD � Z� � X k2p
n

+
�0p
n

0
@

pzX

j=1

kZ.jk2|�j | +

pxX

j=1

kX.jk2| j |

1
A (20)

for the reduced-form model (15). The term �0 in both estimation problems (19) and

(20) represents the penalty term in the square root Lasso estimator and typically, in

practice, the penalty is set at �0 =
p

a0 log p/n for some small constant a0 greater

than 2. To transform the above penalized estimators in equations (19) and (20)

into well-behaved estimators as defined in Definition 3, we can follow Javanmard
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and Montanari [2014] to debias the penalized estimators. Specifically, we solve pz

optimization problems where the solution to each pz optimization problem, denoted

as bu[j] 2 Rp, j = 1, . . . , pz, is

bu[j] = argmin
u2Rp

1

n
kWuk2

2 s.t. k 1

n
W 0Wu � I.jk1  �n,

Typically, the tuning parameter �n is chosen to be 12M2
1

p
log p/n where M1 defined

as the largest eigenvalue of ⇤. Define bv[j] = W bu[j] and bV = (bv[1], · · · , bv[pz ]). Then,

we can transform the penalized estimators in (19) and (20) into the debiased, well-

behaved estimators, b� and b�

b� = e� +
1

n
bV 0
⇣
Y � Ze�� X e 

⌘
, b� = e� +

1

n
bV 0
⇣
D � Ze� � X e 

⌘
. (21)

Lemma 3, 4 and 11 in Guo et al. [2016a] show that the above estimators for the

reduced-form coe�cients, b� and b� in equation (21), satisfy (W1).

As for the error variances, following Belloni et al. [2011b], Sun and Zhang [2012]

and Ren et al. [2013], we estimate the covariance terms ⇥11,⇥22,⇥12 by using the

estimates from equations (19) and (20)

b⇥11 =

���Y � Ze�� X e 
���

2

2

n
, b⇥22 =

���D � Ze� � X e 
���

2

2

n

b⇥12 =

⇣
Y � Ze�� X e 

⌘0 ⇣
D � Ze� � X e 

⌘

n
.

(22)

Lemma 3 and equation (180) of Guo et al. [2016a] show that the above estimators

of b⇥11, b⇥22 and b⇥12 in equation (22) satisfy (W2). In summary, the debiased Lasso

estimators in (21) and the variance estimators in (22) are well-behaved estimators.

3. (One-Step and Orthogonal Estimating Equations Estimators) Recently, Chernozhukov

et al. [2015] proposed the one-step estimator of the reduced-form coe�cients, i.e.

b� = e� +
1

n
d⇤�1I,·W |

⇣
Y � Ze�� X e 

⌘
, b� = e� +

1

n
d⇤�1I,·W |

⇣
D � Ze� � X e 

⌘
.

(23)

where e� and e� and d⇤�1 are initial estimators of �, � and ⇤�1. The initial estimators

must satisfy conditions (18) and (20) of Chernozhukov et al. [2015] and many popular

estimators like the Lasso or the square root Lasso satisfy these two conditions. Then,

using the arguments in Theorem 2.1 of van de Geer et al. [2014], the one-step estimator

of Chernozhukov et al. [2015] satisfies (W1). Relatedly, Chernozhukov et al. [2015]

proposed estimators for the reduced-form coe�cients based on orthogonal estimating
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equations. In Proposition 4 of Chernozhukov et al. [2015], the authors showed that

the orthogonal estimating equations estimator is asymptotically equivalent to their

one-step estimator.

For variance estimation, one can use the variance estimator in Belloni et al. [2011b],

which reduces to the estimators in equation (22), satisfying (W2).

In short, the first part of our endogeneity test requires any estimator that is well-behaved.

As illustrated above, many estimators in the literature satisfy the criteria for a well-behaved

estimator laid out in Definition 3. Most notably, the OLS estimator in low dimensions and

various versions of the Lasso estimator in high dimensions are well-behaved.

4.3 Two-Stage Hard Thresholding for Invalid Instruments

Once we have well-behaved estimators (b�, b�, b⇥11, b⇥22, b⇥12) satisfying Definition 3, we can

proceed with the second step of our endogeneity test, which is dealing with invalid instru-

ments. This step essentially amounts to selecting relevant and valid IVs among pz candidate

IVs, i.e. the set V, so that we can use this set V to properly calibrate our well-behaved

reduced-form estimates we obtained in Section 4.2. The estimation of this set V occurs in

two stages, which are elaborated below.

In the first stage, we find IVs that are relevant, that is the set S in Definition 2 comprised

of �j 6= 0, by thresholding the estimate b� of �

bS =

8
<
:j : |b�j | �

q
b⇥22kbv[j]k2p

n

r
a0 log max(pz, n)

n

9
=
; . (24)

The set bS is an estimate of S and a0 is some small constant greater than 2; from our

experience, a0 = 2 or a0 = 2.05 work well in practice. The threshold is based on the noise

level of b�j in equation (16) (represented by the term n�1

q
b⇥22kbv[j]k2), adjusted by the

dimensionality of the instrument size (represented by the term
p

a0 log max(pz, n)).

In the second stage, we use the estimated set of relevant instruments in the first stage

and select IVs that are valid, i.e. IVs where ⇡j = 0. Specifically, we take each instrument j

in bS that is estimated to be relevant and we define b�[j] to be a “pilot” estimate of � by using

this IV and dividing the reduced-form parameter estimates, i.e. b�[j] = b�j/b�j . We also define

b⇡[j] to be a pilot estimate of ⇡ using this jth instrument’s estimate of �, i.e. e⇡[j] = b�� b�[j]b�,
and b⌃[j]

11 to be the pilot estimate of ⌃11, i.e. b⌃[j]
11 = b⇥11 + (b�[j])2b⇥22 � 2b�[j]b⇥12. Then, for

each e⇡[j] in j 2 bS, we threshold each element of e⇡[j] to create the thresholded estimate b⇡[j],

b⇡[j]
k = e⇡[j]

k 1

0
@k 2 bS \ |e⇡[j]

k | � a0

q
b⌃[j]

11

kbv[k] � b�k
b�j
bv[j]k2p

n

r
log max(pz, n)

n

1
A (25)
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for all 1  k  pz. Each thresholded estimate b⇡[j] is obtained by looking at the elements of

the un-thresholded estimate, e⇡[j], and examining whether each element exceeds the noise

threshold (represented by the term n�1

q
b⌃[j]

11kbv[k] � b�k
b�j
bv[j]k2), adjusted for the multiplicity

of the selection procedure (represented by the term a0

p
log max(pz, n)). Among the | bS|

candidate estimates of ⇡ based on each instrument in bS, i.e. b⇡[j], we choose b⇡[j] with the

most valid instruments, i.e. we choose j⇤ 2 bS where j⇤ = argmin kb⇡[j]k0; if there is a

non-unique solution, we choose b⇡[j] with the smallest `1 norm, the closest convex norm of

`0. Subsequently, we can estimate the set of valid instruments bV ✓ {1, . . . , pz} as those

elements of b⇡[j⇤] that are zero,

bV = bS \ supp
⇣
b⇡[j⇤]

⌘
. (26)

Then, using the estimated bV, we obtain our estimates of parameters ⌃12, ⌃11, and �

b⌃12 = b⇥12 � b�b⇥22, b⌃11 = b⇥11 + b�2b⇥22 � 2b�b⇥12, b� =

P
j2bV b�j

b�jP
j2bV b�2

j

(27)

Equation (27) provides us with the ingredients to construct our new test for endogeneity,

which we denote as Q

Q =

p
nb⌃12q
dVar(b⌃12)

, dVar(b⌃12) = b⇥2
22
bV1 + bV2 (28)

where bV1 = b⌃11

���
P

j2bV b�jbv[j]
���

2

2
/
⇣P

j2bV b�2
j

⌘2
and bV2 = b⇥11

b⇥22+b⇥2
12+2b�2b⇥2

22�4b�b⇥12
b⇥22.

Here, V1 is the variance associated with estimating � and the V2 is the variance associated

with estimating ⇥.

Key di↵erences between the original DWH test in equation (6) and our endogeneity test

in equation (28) is that our endogeneity test directly estimates and tests the endogeneity

parameter ⌃12 while the original DWH test implicitly tests for the endogeneity parameter by

checking the consistency between the OLS and TSLS estimators under the null hypothesis.

Also, as we will show in Section 5, unlike the DWH test, our endogeneity test will have

proper size and superior power in the presence of invalid instruments and high dimensional

covariates.

4.4 Special Cases

While our new endogeneity test in (28) is general in that it handles both low dimensional

and high dimensional cases with potentially invalid IVs, we can simplify the procedure above

in certain settings and, in some cases, achieve slightly better performance. We discuss two
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such scenarios, the low-dimensional invalid IV scenario described in Section 3.1 and the

high dimensional valid IV scenario described in Section 3.2.

First, in the low dimensional invalid IV scenario described in Section 3.1, we can simply

use the OLS estimators for our well-behaved estimators of the reduced-form parameters

and replace the estimate of � in (27) with a slightly better estimate of �, which we denote

as b�E .

b�E =
b�0bV b⇤bV|bVC

b�bV

b�0bV
b⇤bV|bVCb�bV

. (29)

We define the test statistic QE to be the test statistic Q except we replace the estimate
b� with b�E . Then, in Section 5.1, under fixed p invalid IV setting, we show that QE ,

unlike the DWH test in this setting, not only controls for Type I error, but also achieves

oracle performance in that the power of QE under H2 is asymptotically equivalent to the

power of the “oracle” DWH test that has information about instrument validity a priori,

or equivalently, has knowledge about V.

Second, in the high dimensional valid IV scenario described in Section 3.2, we can use

any of the well-behaved estimators in high dimensional settings and simplify our threshold-

ing procedure by skipping the second thresholding step. Specifically, once we obtained a

set of relevant instruments bS in the first thresholding step, we can estimate the set of valid

instruments to be bV = bS instead of doing a second thresholding with respect to ⇡. Then,

an estimate of � from this modification, denoted as b�H , would be

b�H =

P
j2bV b�j

b�jP
j2bV b�2

j

. (30)

We define the test statistic QH to be the test statistic Q except we replace the estimate b�
with b�H . Then, in Section 5.2 where p grows with respect to n and instruments are valid

after conditioning on growing number of covariates, we show that QH has better power

than the usual DWH test.

5 Properties of the New Endogeneity Test

5.1 Invalid Instruments in Low Dimensions

We start o↵ the discussion about the properties of our endogeneity test by first, showing that

our new test addresses the deficiencies of the DWH test in settings described in Section 3.1

where we are in the low dimensional, fixed p setting with invalid instruments. In addition

to the modeling assumptions in equations (2) and (3), we make the following assumption

(IN1) (50% Rule) The number of valid IVs is more than half of the number of non-redundant

IVs, that is |V| > 1
2 |S|.
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We denote the assumption as “IN” since the assumption is specific to the case of invalid

IVs. In a nutshell, Assumption (IN1) states that if the number of invalid instruments is

not too large, then we can use the observed data to separate the invalid IVs from valid IVs,

without knowing a priori which IVs are valid or invalid. Assumption (IN1) is a relaxation

of the assumption typical in IV settings where all the IVs are assumed to be valid a priori

so that |V| = pz and (IN1) holds automatically. In particular, Assumption (IN1) entertains

the possibility that some IVs may be invalid, so |V| < pz, but without knowing a priori

which IVs are invalid, i.e. the exact set V. Assumption (IN1) is also the generalization of

the 50% rule in Han [2008] and Kang et al. [2016] in the presence of redundant IVs. Also,

Kang et al. [2016] showed that this type of proportion-based assumption is a necessary

component for identification of model parameters when instrument validity is uncertain.

Theorem 3 states that in the low dimensional setting, under Assumption (IN1), our new

test controls for Type I error in the presence of possibly invalid instruments and the power

of our test under H2 is identical to the power of the DWH test that knows exactly which

instruments are valid a priori.

Theorem 3. Suppose we have models (2) and (3) with fixed p and Assumption (IN1) holds.

Then, for any ↵, 0 < ↵ < 1, the asymptotic Type I error of QE under H0 is controlled at

↵, i.e.

! 2 H0 : lim
n!1

P
�
|QE | � z↵/2

�
= ↵.

In addition, the asymptotic power of QE under ! 2 H2 is

! 2 H2 : lim
n!1

P
�
|QE | � z↵/2

�
= G

0
BB@↵,

�1

p
C(V)r⇣

C(V) + 1
pz

⌘
⌃11⌃22

1
CCA . (31)

Theorem 3 characterizes the behavior of our new endogeneity test QE under all the

regimes of ⇡ that satisfy (IN1). Also, so long as Assumption (IN1) holds, in the fixed

p regime, our test QE has the same performance as the DWH test that incorporates the

information about which instruments are valid or invalid, a priori. In short, our test QE is

adaptive to the knowledge of IV validity.

We also make a technical note that in the low dimensional case, the assumptions of

normal error terms or independence between the error terms and Wi., which we made in

Section 2.2 when we discussed the models (2) and (3) are not necessary to obtain the same

results; Section B.4 of the supplementary materials details this general case. We only made

these assumptions in the text out of simplicity, especially in the high dimensional regime

discussed below where assuming said conditions simplify the technical arguments.
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5.2 Valid Instruments in High Dimensions

Next, we consider the high dimensional instruments and covariates setting where p is al-

lowed to be larger than n, but we assume all the instruments are valid, i.e. ⇡ = 0, after

conditioning on many covariates; this is a generalization of the setting discussed in Section

3.2 that encompasses the p > n regime. Theorem 2 showed that the DWH test, while it

controls Type I error, may have low power, especially when the ratio of p/n is close to 1.

Theorem 4 shows that our new test QH remedies this deficiency of the DWH test by having

proper Type I error control and exhibiting better power.

Theorem 4. Suppose we have models (2) and (3) where all the instruments are valid, i.e.

⇡ = 0. If
p

C (V) � sz1 log p/
p

n|V|, and
p

sz1s log p/
p

n ! 0, then for any ↵, 0 < ↵ < 1,

the asymptotic Type I error of QH under H0 is controlled at ↵

! 2 H0 : lim
n,p!1

P
�
|QH | � z↵/2

�
= ↵,

and the asymptotic power of QH under H2 is

lim sup
n,p!1

�����P
�
|QH | � z↵/2

�
� E

 
G

 
↵,

�1p
⇥2

22V1 + V2

!!����� = 0, (32)

with V1 = ⌃11

���
P

j2V �jbv[j]/
p

n
���

2

2
/
⇣P

j2V �
2
j

⌘2
and V2 = ⇥11⇥22 + ⇥2

12 + 2�2⇥2
22 �

4�⇥12⇥22.

In contrast to equation (13) that described the local power of the DWH test in high

dimension, the term
p

1 � p/n is absent in the local power of our new endogeneity test in

equation (32). Specifically, under H2, our power is only a↵ected by �1 while the power

of the DWH test is a↵ected by �1

p
1 � p/n. This suggests that our power will be better

than the power of the DWH test when p is close to the sample size n. In the extreme case

when p/n ! 1 and constant C(V), the power of the DWH test will be ↵ while the power of

our test QH will be strictly greater than ↵. The simulation in Section 6 also numerically

illustrates the discrepancies between the power of the two tests. We also stress that in the

case p > n, our test still has proper size and non-trivial power while the DWH test is not

even feasible in this setting.

Finally, like Theorem 2, Theorem 4 controls the growth of the concentration parameter

C(V) to be faster than sz1 log p/
p

n|V|, with a minor discrepancy in the growth rate due to

the di↵erences between the set of valid IVs, V, and the set of candidate IVs, I. But, similar

to Theorem 2, this growth condition is satisfied under the many instrument asymptotics

of Bekker [1994] and the many weak instrument asymptotics of Chao and Swanson [2005].

Also, the growth condition on s, sz1, p, n is related to the growth condition on p and n

in Theorem 2 where p  n. Specifically, the sparsity condition
p

sz1s log p/
p

n ! 0 in

Theorem 4 holds if p  n and s = O(n�0) for 0  �0 < 1/3.
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5.3 General Case

We now analyze the properties of our test Q, which can jointly handle invalid instruments

as well as high dimensional instruments and covariates, even when p > n. We start o↵

by making two additional assumptions that essentially control the asymptotic behavior of

relevant and invalid IVs as the dimension of the parameters grows.

(IN2) (Individual IV Strength) Among IVs in S, we have minj2S |�j | � �min �
p

log p/n.

(IN3) (Strong violation) Among IVs in the set S \ V , we have

min
j2S\V

����
⇡j

�j

���� �
12(1 + |�|)

�min

s
M1 log pz

n�min(⇥)
. (33)

Assumption (IN2) requires individual IV strength to be bounded away from zero. This

assumption is needed primarily for cleaner technical exposition and the simulation stud-

ies in Section 6 along with additional simulation studies in the supplementary materials

demonstrate that (IN2) is largely unnecessary for our test to have proper size and have

good power. In the literature, (IN2) is similar to the “beta-min” condition assumption in

high dimensional linear regression without IVs [Fan and Li, 2001, Zhao and Yu, 2006, Wain-

wright, 2007, Bühlmann and Van De Geer, 2011], with the exception that this condition is

not imposed on our inferential quantity of interest, ⌃12. Next, Assumption (IN3) requires

the ratio ⇡j/�j for invalid IVs to be large. Unlike (IN2), this assumption is needed to cor-

rectly select valid IVs in the presence of possibly invalid IVs and this sentiment is echoed

in the model selection literature by Leeb and Pötscher [2005] who pointed out that “in gen-

eral no model selector can be uniformly consistent for the most parsimonious true model”

and hence the post-model-selection inference is generally non-uniform (or uniform within a

limited class of models). Specifically, for any IV with a small, but non-zero |⇡j/�j |, such a

weakly invalid IV is hard to distinguish from valid IVs where ⇡j/�j = 0. If a weakly invalid

IV is mistakenly declared as valid, the bias from this mistake is of the order
p

log pz/n,

which has consequences, not for consistency of the point estimation of ⌃12, but for a
p

n

inference of ⌃12; see the detailed discussion in Proposition 2 about point estimation of ⌃12

in Section B.3 of the supplementary materials.

Overall, Assumptions (IN1)-(IN3) allow detection of each valid IV with the observed

data in order to obtain a good estimate of V. Consequently, if all the instruments are valid,

like the setting described in Section 5.2, we do not need Assumptions (IN1)-(IN3) to make

any claims about our endogeneity test. However, in the presence of potentially invalid IVs

that grow in dimension, these type of assumptions are needed to control the behavior of

the invalid IVs asymptotically. Finally, Theorem 5 characterizes the asymptotic behavior

of Q under these conditions.
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Theorem 5. Suppose we have models (2) and (3) where some instruments may be in-

valid, i.e. ⇡ 6= 0, and Assumptions (IN1)-(IN3) hold. If
p

C (V) � sz1 log p/
p

n|V|, and
p

sz1s log p/
p

n ! 0, then for any ↵, 0 < ↵ < 1, the Type I error of Q under H0 is

controlled at ↵

! 2 H0 : lim
n,p!1

P
�
|Q| � z↵/2

�
= ↵. (34)

and the asymptotic power of Q under H2 is in equation (32).

Theorem 5 shows that our new test Q controls Type I error and has power that’s

similar to the power in Theorem 4 where we know about all the instruments’ validity once

we conditioned on many covariates. Indeed, similar to the property of QE in Theorem 3

and how it was adaptive to the knowledge about instrument validity in low dimension, Q

also has this property, but in high dimensions.

6 Simulation

6.1 Setup

We conduct a simulation study to investigate (i) the performance of our new endogeneity

test and DWH test and (ii) the sensitivity of our new test to violations of the regularity

assumptions required for theoretical analysis, most notably (IN2) and (IN3). Here, we only

show the results regarding the performance of the test and summarize the results about

the sensitivity to regularity assumptions; see Section A of the supplementary materials for

all the details. For the low dimensional case, we generate data from models (2) and (3) in

Section 2.2 with pz = 9 instruments and px = 5 covariates. The vector Wi. is a multivariate

normal with mean zero and covariance ⇤ij = 0.5|i�j| for 1  i, j  p. The parameters of

the models are: � = 1, � = (0.6, 0.7, 0.8, 0.9, 1.0) 2 R5 and  = (1.1, 1.2, 1.3, 1.4, 1.5) 2 R5.

For the high dimensional case, we use the same models as the low dimensional case except

pz = 100, px = 150, � = (0.6, 0.7, 0.8, · · · , 1.5, 0, 0, · · · , 0) 2 Rpx so that sx1 = 10, and

 = (1.1, 1.2, 1.3, · · · , 2.0, 0, 0, · · · , 0) 2 Rpx so that sx2 = 10. For both high dimensional

and low dimensional cases, the relevant instruments are S = {1, . . . , 7} and the instruments

that are valid and relevant are V = {1, 2, 3, 4, 5}; thus instruments 6 and 7 are relevant, but

not valid. Variance of the error terms are set to Var(�i) = Var(✏i) = 1.5.

The parameters we vary in the simulation study are: the sample size n, the endogeneity

level via Cov(�i, ✏i), IV strength via �, and IV validity via ⇡. For sample size, we let

n = (300, 1000, 10000, 50000). For the endogeneity level, we set Cov(�i, ✏i) = 1.5⇢, where

⇢ is varied and captures the level of endogeneity; a larger value of |⇢| indicates a stronger

correlation between the endogenous variable Di and the error term �i. For IV strength,

we set �V = K (1, 1, 1, 1, ⇢1) and �S⇤\V = K (1, 1) and �(S⇤)C = 0, where K is varied
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as a function of the concentration parameter (see below) and ⇢1 is varied based on the

vector (0, 0.1, 0.2) across simulations. Note that the value K controls the global strength

of instruments, with higher |K| indicating strong instruments in a global sense. Also, the

value ⇢1 controls the relative individual strength of instruments, specifically between the

first four instruments in V and the fifth instrument. For example, ⇢1 = 0.2 implies that the

fifth IV’s individual strength is only 20% of the other four valid instruments, i.e IVs 1 to

4. Also, varying ⇢1 would simulate the adherence to regularity assumption (IN2).

We specify K as follows. Suppose we set n at a baseline of 100 given the simulation

parameters V, ⇢1, ⇤ and ⌃22. For each value of nC(V), say nC(V) = 25, we find K that

satisfies it. Here, the nC(V) mimics the expected partial F-statistic one would obtain from

doing the F-test for the null �V = 0 from an OLS regression between D and W for a given

sample size n. We vary nC(V) from 25 to 150, specifying K for each value of nC(V).

Finally, we vary ⇡, which controls the validity of the IVs, by defining ⇡j = ⇢2�j for

j = 6, 7 and ⇡j = 0 for all other j so that ⇢2 controls the magnitude of IV invalidity

from the 6th and 7th instruments. In the ideal case, we would have ⇢2 = 0 so that

S = V = {1, 2, 3, 4, 5, 6, 7}. But, ⇢2 6= 0 implies that the last two instruments are not

valid and we vary ⇢2 based on the vector (0, 1, 2). Note that varying ⇢2 would simulate the

adherence to regularity assumption (IN3).

In summary, we vary the endogeneity level, the sample size n, IV strength, and IV valid-

ity in our simulation study, with ⇢1 and ⇢2 simulating the adherence to the new regularity

assumptions in the paper, (IN2) and (IN3), respectively. Since the DWH test cannot be

used when n  p, we restrict our simulation study to the case where p < n for comparison

purposes. In particular, we compare the power of our testing procedure to the DWH test

and the oracle DWH test where an oracle provides us with knowledge about valid IVs, i.e.

V, which will not occur in practice.

6.2 Results

We present the result for nC(V) = 25, which is representative of the results from the

simulation study; for reference, all the results of the simulation study are in Section A of

the supplementary materials. First, Figure 1 considers the power of three comparators, the

proposed testing procedure QE , the regular DWH test and the oracle DWH test, under the

low dimensional setting with n = 1000, px = 9, and pz = 5. Columns “Strong”,“WeakIV1”,

and “WeakIV2” represent di↵erent values of ⇢1, specifically ⇢1 = 0, ⇢1 = 0.1, and ⇢1 = 0.2

respectively. Rows “Valid” and “Invalid” represent di↵erent values of ⇢2, specifically ⇢2 = 0

where all the instruments are valid and ⇢2 = 2 where the 6th and 7th instruments are

invalid, respectively. The x-axis represents di↵erent values of endogeneity scaled by the

error variances, i.e. ⌃12/
p
⌃11⌃22, and the y-axis is the empirical proportion of rejecting
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the null hypothesis H0 over 500 simulations and is an approximation to the test’s power.

When all the instruments are valid (i.e. the first row of Figure 1), the empirical power

curves of the proposed test, the regular DWH test and the oracle DWH are identical.

However, when some of the instruments are invalid (i.e. the second row of Figure 1), the

regular DWH test cannot control Type I error and the power curve is shifted, as expected

from Theorem 1. In contrast, the power curve of our proposed test is nearly identical to that

of the oracle DWH test, which is expected based on our theoretical analysis in Theorem 3.

In all cases, our test maintains Type I error control.

Second, Figure 2 considers the power of our test Q, the regular DWH test, and the

oracle DWH test in the high dimensional setting with n = 300, px = 150, and pz = 100.

Again, when all the instruments are valid (i.e. the first row of Figure 2), all the three

tests have proper size. However, as suggested by Theorem 2, the regular DWH test su↵ers

from low power compared to our test Q. When some instruments are invalid in the high

dimensional setting (i.e. the second row of Figure 2), the DWH test cannot controls Type

I error while our proposed test not only control Type I error, but also has power that is

close to the oracle DWH test which knows a priori which instruments are valid.

All the simulation results indicate that our endogeneity test controls Type I error and is

a much better alternative to the regular DWH test in the presence of invalid instruments and

high dimensional covariates. In the low dimensional setting, the power of our endogeneity

test is identical to the power of the oracle DWH test while in the high dimensional setting,

our endogeneity test has better power than the regular DWH test and has near-optimal

performance with respect to the oracle.

Finally, we provide a brief summary of the simulation results reported in the supple-

mentary materials, especially those concerning the violation of regularity assumptions (IN2)

and (IN3); see Section A of the supplementary materials for details. First, in Figures A10

- A15 of the supplementary materials, our proposed testing procedure performs similarly

to Figures 1 and 2 for di↵erent individual IV strengths (represented by di↵erent values of

⇢1), reiterating our comment in Section 5.3 that the proposed estimator is not sensitive to

the individual instrument strength assumption (IN2) required in the theoretical analysis.

However, as discussed in Section 5.3, in high dimensions, if the instruments are weakly

invalid and consequently, violate (IN3), our procedure tends to su↵er. In particular, in

Figures A11 and A14 of the supplementary materials, when the invalid IVs weakly violated

exogeneity with ⇢2 = 1, our test’s size exceeds ↵, although at most by 5% ⇠ 10%. But

the power curve of the proposed test is still much better than that of DWH test assuming

valid IVs after conditioning, which tends to be shifted away from the power curve of oracle

DWH test.
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Figure 1: Power of endogeneity tests when n = 1000, px = 5 and pz = 9. The x-axis

represents the endogeneity ⌃12p
⌃11⌃22

and the y-axis represents the empirical power over 500

simulations. Each line represents a particular test’s empirical power over various values of

the endogeneity. The columns “Weak IV1”, “Weak IV2”, and “Strong IV” represent the

cases when ⇢1 = 0.1, ⇢1 = 0.2, and ⇢1 = 0. The rows “Valid” and “Invalid” represent the

cases when ⇢2 = 0 and ⇢2 = 2.
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Figure 2: Power of endogeneity tests when n = 300, px = 150 and pz = 100. The x-axis

represents the endogeneity ⌃12p
⌃11⌃22

and the y-axis represents the empirical power over 500

simulations. Each line represents a particular test’s empirical power over various values of

the endogeneity. The columns “Weak IV1”, “Weak IV2”, and “Strong IV” represent the

cases when ⇢1 = 0.1, ⇢1 = 0.2, and ⇢1 = 0. The rows “Valid” and “Invalid” represent the

cases when ⇢2 = 0 and ⇢2 = 2.
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7 Conclusion

In this paper, we showed that the DWH test can be highly misleading with respect to

Type I error in the presence of invalid instruments and have relatively low power in high

dimensional settings. We propose an improved endogeneity test to remedy these failures of

the DWH test and we show that our test has proper Type I error control in the presence

of invalid IVs and has much better power than the DWH test in high dimensional settings.
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