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Abstract

In large-scale multiple testing problems, data are often collected from heterogeneous

sources and hypotheses form into groups that exhibit different characteristics. Conven-

tional approaches, including the pooled and separate analyses, fail to efficiently utilize the

external grouping information. We develop a compound decision theoretic framework for

testing grouped hypotheses and introduce an oracle procedure that minimizes the false

non-discovery rate subject to a constraint on the false discovery rate. It is shown that

both the pooled and separate analyses can be uniformly improved by the oracle procedure.

We then propose a data-driven procedure that is shown to be asymptotically optimal.

Simulation studies show that our procedures enjoy superior performance and yield the

most accurate results in comparison with both the pooled and separate procedures. A real

data example with grouped hypotheses is studied in detail using different methods. Both

theoretical and numerical results demonstrate that exploiting external information of the

sample can greatly improve the efficiency of a multiple testing procedure. The results also

provide insights on how the grouping information is incorporated for optimal simultaneous

inference.
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1 Introduction

Conventional multiple testing procedures, such as the false discovery rate analyses (Benjamini

and Hochberg 1995; Efron et al. 2001; Storey 2002; Genovese and Wasserman 2002; van der

laan et al. 2004), implicitly assume that data are collected from repeated or identical exper-

imental conditions, and hence hypotheses are exchangeable. However, in many applications,

data are known to be collected from heterogeneous sources and hypotheses intrinsically form

into different groups. The goal of this article is to study optimal multiple testing procedures

for grouped hypotheses in a compound decision theoretical framework.

The following examples motivate our study. The adequate yearly progress (AYP) study of

California high schools (Rogosa 2003) aimed to compare academic performances of social-

economically advantaged (SEA) versus social-economically disadvantaged (SED) students.

Standard tests in mathematics were administered to 7867 schools and a z-value for com-

paring SEA and SED students was obtained for each school. The estimated null densities of

the z-values for small, medium and large schools are plotted on the left panel of Figure 1. It is

interesting to see that the null density of the large group is much wider than those of the other

two groups. The differences in the null distributions have significant effects on the outcomes of

multiple testing procedures. See more detailed analysis of this example in Section 6. Another

example is the brain imaging study analyzed in Schwartzman et al. (2005). In this study, 6

dyslexic children and 6 normal children received diffusion tensor imaging brain scans on the

same 15443 brain locations (voxels). A z-value (converted from a two-sample t-statistic) for

comparing dyslexic versus normal children was obtained for each voxel. The right panel in

Figure 1 plots the estimated null densities of the z-values for the front and back halves of

the brain. We can see that the null cases from two groups center on different means, and

the density of the back half is narrower. There are many other examples where the hypothe-

ses are naturally grouped. For instance, in analysis of geographical survey data, individual

locations are aggregated into several large clusters; and in meta-analysis of large biomedical

studies, the data are collected from different clinical centers. An important common feature

of these examples is that data are collected from heterogeneous sources and the hypotheses
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being considered are grouped and no longer exchangeable. We shall see that incorporating the

grouping information is important for optimal simultaneous inference with samples collected

from different groups.
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Figure 1: Empirical null densities of the AYP study and the brain imaging study. The null
densities of the school data in the left panel are specified in Table 3 in Section 6. The null
density of the large group is much wider than those of the other two densities. In the right
panel, the null densities of the front and back halves of the brain are N(0.06, 1.092) and
N(−0.29, 1.012), respectively, which are centered at different means.

The analysis of above examples involves simultaneous testing of thousands of hypotheses.

In large-scale multiple testing, the false discovery rate (FDR, Benjamini and Hochberg 1995) is

often used to combine the type I errors from individual tests and serves as a target for control.

The outcomes of a multiple testing procedure can be summarized as in Table 1.

Table 1: Classification of tested hypothesis

Claimed non-significant Claimed significant Total
Null N00 N10 m0

Non-null N01 N11 m−m0

Total S R m

The FDR, defined as FDR = E(N10/R)P (R > 0), is the expected proportion of false posi-

tives among all rejections. The marginal FDR (mFDR), defined as mFDR = E(N10)/E(R), is

an asymptotically equivalent measure to the FDR in the sense that mFDR = FDR + O(m− 1
2 )
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under mild conditions (Genovese and Wasserman 2002), where m is the total number of tests.

A dual quantity of the FDR is the false non-discovery rate (FNR, Genovese and Wasserman

2002), which is defined as FNR = E(N01/S|S > 0)Pr(S > 0), the expected proportion of

false negatives among all non-rejections. An FDR procedure is said to be valid if it controls

the FDR at a prespecified level α and optimal if it has the smallest FNR among all FDR

procedures at level α.

The problem of combining the tests from several large groups is conceptually complicated

in an FDR analysis. On the one hand, it is desirable in practice to define the FDR and FNR

as global measures by pooling together all tests from different groups. On the other hand, it

is beneficial to perform the analysis separately in some way when the groups are different. For

example, the implementation of the adaptive p-value FDR procedure (Benjamini and Hochberg

2000; Genovese and Wasserman 2004) requires the information about the proportion of non-

nulls, which may vary across groups.

Two natural strategies to testing grouped hypotheses have been considered in the literature.

The first approach, termed as the pooled analysis, simply ignores the information of group labels

and conducts a global analysis on the combined sample at a given FDR level α. It is argued

by Efron (2008a) that a pooled FDR analysis may distort inferences made for separate groups

because highly significant cases from one group may be hidden among the nulls from another

group, while insignificant cases may be possibly enhanced. Another natural approach is the

so-called separate analysis which first conducts separately the FDR analysis within each group

at the same FDR level α, and then combines the testing results from individual analyses. It

was shown by Efron (2008a) that the separate analysis is valid. However, the choice of identical

FDR levels for all groups is somewhat arbitrary since there are many combinations of group-

wise FDR levels αi’s that lead to an overall FDR level α. The choice of identical FDR levels

αi = α for all groups is merely one of the combinations, and is not optimal in general.

This article studies the optimal procedure for testing grouped hypotheses in a compound

decision theoretical framework and shows that both the pooled and separate analyses can

be uniformly improved. We first introduce an oracle procedure in an ideal setting where the

distributional information of each group is assumed to be known. It is shown that the oracle
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procedure is optimal in a global sense, that is, it minimizes the overall FNR subject to a

constraint on the overall FDR level. Our approach is different from conventional methods in

that it is a hybrid strategy that has combined features from both pooled and separate analyses.

The optimality of our new procedure is achieved by utilizing the information of group labels

to create efficient rankings of all hypotheses, and adaptively weighting the FDR levels among

different groups to minimize the overall FNR level.
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Figure 2: A comparison of the pooled, separate and optimal analyses in a two-group model: the
group sizes are m1 = 3000, m2 = 1500; the group densities are f1 = 0.8N(0, 1) + 0.2N(µ1, 1)
and f2 = 0.9N(0, 1)+0.1N(2, 0.52). In panel (a), the FDR levels are plotted as functions of µ1

(# , pooled analysis; 4, separate analysis; +, optimal analysis; dashed line, optimal FDR levels
for Group 1; dash-dotted line, optimal FDR levels for Group 2). In Panel (b), the FNR levels
are plotted as functions of µ1 (# , pooled analysis; 4, separate analysis; +, optimal analysis).

Figure 2 gives a comparison of the pooled, separate and optimal testing procedures. The

left panel shows that all three procedures controls the FDR at the nominal level 0.10 (the three

lines are overlapped at 0.10). The right panel shows that neither the pooled nor the separate

analysis is efficient, and both are uniformly dominated by the optimal procedure. The pooled

analysis is inefficient because the information of group labels can be exploited to construct

more efficient tests. The separate analysis with identical FDR levels is also inefficient because

different group-wise FDR levels should be chosen to minimize the overall FNR level. The

optimal group-wise FDR levels suggested by our new procedure are given by the dashed and

dash-dotted lines in Panel (a).
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We then develop a data-driven procedure that mimics the oracle procedure by plugging-in

consistent estimates of the unknown parameters. It is shown that the data-driven procedure

controls the overall FDR at the nominal level and attains the FNR level of the oracle procedure

asymptotically. In this sense, it is asymptotically valid and optimal. Consistent estimates

of the optimal FDR levels for separate groups are also provided based on the data-driven

procedure. Simulations are conducted in Section 5, showing that our procedures enjoy superior

performance and yield the most accurate results in comparison with both the pooled and

separate procedures.

An important issue here is that the assumption that all hypotheses are exchangeable, which

has been implicitly used in the multiple testing literature, often does not hold in practice where

hypotheses are grouped. It was conjectured by Morris (2008) that when the exchangeability

assumption does not hold, the resulting rankings of the hypotheses should be different; this

conjecture is verified by the efficiency gain of our optimal testing procedure over the conven-

tional methods. Generally speaking, testing procedures developed under the exchangeability

assumption are symmetric rules (defined in Section 7); examples include the BH step-up pro-

cedure (Benjamini and Hochberg 1995), Efron’s local FDR procedure (Efron et al. 2001) and

Storey’s optimal discovery procedure (Storey 2007). When the hypotheses are not exchange-

able, even the optimal symmetric rules may suffer from substantial efficiency loss. Recent

works by Efron (2008a) and Ferkinstad et al. (2008) suggest that hypotheses should be ana-

lyzed separately when they are not exchangeable. However, it is not discussed how to optimally

combine the testing results from separate groups. Our new procedure not only gives the opti-

mal rankings of all hypotheses, but also suggests an optimal way of combining testing results

(where group-wise FDR levels are automatically and optimally determined and adaptively

weighted among groups). Therefore it provides a convenient and efficient approach to testing

grouped hypotheses.

The article is organized as follows. We begin in Section 2 with an introduction of the

multiple-group model and the two natural approaches to testing grouped hypotheses. Section

3 first introduces, under an ideal setting, an oracle procedure which minimizes the overall

FNR subject to a constraint on the overall FDR, and then proposes a data-driven procedure
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that asymptotically mimics the oracle procedure. In Section 4, a compound decision-theoretic

framework for testing grouped hypotheses is developed and the optimality of the new testing

procedure is established. Simulation studies are carried out in Section 5 to investigate the

numerical performance of our procedure. The methods are illustrated in Section 6 for analysis

of the AYP study of California high schools. Section 7 discusses the main findings of the article

as well as some open problems. The proofs are given in the Appendix.

2 Pooled and Separate FDR Analysis

The random mixture model provides a convenient and efficient framework for large-scale mul-

tiple testing and has been widely used in many applications, especially in DNA microarray

analyses (Efron et al. 2001; Newton et al. 2001; Storey 2002). In a random mixture model,

observations x1, · · · , xm are assumed to be generated from a mixture distribution:

X ∼ (1− p)F0(x) + pF1(x), (2.1)

where F0 and F1 are null and non-null distributions, and p is the proportion of non-nulls. The

mixture density is denoted by f(x) = (1− p)f0(x) + pf1(x).

We begin by reviewing the optimal and adaptive testing procedures developed in Sun and

Cai (2007) under the mixture model (2.1). Then we introduce the multiple-group random

mixture model that extends model (2.1) to describe grouped hypotheses. Finally we discuss

two natural methods, pooled and separate FDR procedures, for testing grouped hypotheses.

2.1 Optimal testing procedures for a single group model

Conventional FDR procedures, such as the step-up procedure (Benjamini and Hochberg 1995),

the adaptive p-value procedure (Benjamini and Hochberg 2000; Genovese and Wasserman

2002), and the augmentation procedure (van der laan et al. 2004), are virtually all based

on thresholding the ranked p-values. However, the p-value ignores important distributional

information in the sample and fails to serve as the fundamental building block in large-scale
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multiple testing. Sun and Cai (2007) developed a compound decision-theoretic framework for

multiple testing and showed that the optimal testing procedure is a thresholding rule based

on the local false discovery rate (Lfdr, Efron et al. 2001). The Lfdr, defined as Lfdr(x) =

p0f0(x)/f(x), is the posterior probability that a case is null given the observed statistic. Sun

and Cai (2007) showed that the Lfdr produces more efficient rankings of hypotheses than the

p-value, and the efficiency gain is substantial when the non-null distribution is concentrated or

skewed. Let δδδ = (δ1, · · · , δm) ∈ {0, 1}m be a general decision rule, where δi = 1 if we claim that

case i is non-null and δi = 0 otherwise. Sun and Cai (2007) showed that when all distributional

information is known, the oracle testing procedure at FDR level α that minimizes the FNR is

δδδ(Lfdr, cOR(α)111) = [I{Lfdr(xi) < cOR(α)} : i = 1, · · · ,m], (2.2)

where cOR(α) = sup{c ∈ (0, 1), FDR(c) ≤ α} is the optimal cutoff for the Lfdr statistic at FDR

level α. However, the oracle procedure (2.2) is difficult to implement because the cutoff cOR(α)

is hard to compute. Denote by Lfdr(1), · · · ,Lfdr(m) the ranked Lfdr values and H(1), · · · ,H(m)

the corresponding hypotheses. An asymptotically equivalent version of the oracle procedure

(2.2) is the following procedure:

Reject all H(i), i = 1, · · · , l, where l = max



i : (1/i)

i∑

j=1

Lfdr(j) ≤ α



. (2.3)

The Lfdr procedure (2.3) is asymptotically valid and optimal in the sense that it attains both

the FDR and FNR levels of the oracle procedure (2.2) asymptotically.

Implementation of the Lfdr procedure requires the knowledge of population parameters

such as the null density f0 and proportion of non-nulls p, which may not be known in practice.

Estimates of these unknown parameters for a normal mixture model have been developed in

the literature, see Efron (2004), and Jin and Cai (2007). Let p̂, f̂0 and f̂ be estimates of the

unknown parameters and define the estimated Lfdr as L̂fdr(x) = p̂f̂0(x)/f̂(x). An adaptive

procedure was proposed in Sun and Cai (2007) which replaces the Lfdr statistics in (2.3) by

their estimates. It was shown that the adaptive procedure is asymptotically valid and optimal

8



when consistent estimates (e.g., Jin and Cai (2007)’s estimates) are used to construct the tests.

Numerical results show that conventional p-value procedures can be substantially improved by

the adaptive procedure.

2.2 The multiple-group model

The multiple-group random mixture model (Efron 2008; see Figure 3) extends the previous

random mixture model (2.1) (for a single group) to cover the situation where the m cases can

be divided into K groups. It is assumed that within each group, the random mixture model

(2.1) holds separately.
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Figure 3: The multiple group model: the m hypotheses are divided into K groups with prior
probability πk; the random mixture model (2.1) holds separately within each group, with
possibly different pk, fk0 and fk1.

Let ggg = (g1, · · · , gK) be a multinomial variable with associated parameters {π1, · · · , πK},
where gi = k indicates that case i belongs to group k. We assume that prior to analysis, the

group labels ggg have been determined by external information derived from other data or a

priori knowledge. Let θθθ = (θ1, · · · , θm) be Bernoulli variables, where θi = 1 indicates that

case i is a non-null and θi = 0 otherwise. Given ggg, θθθ can be grouped as θθθ = (θθθ1, · · · , θθθK) =

{(θk1, · · · , θkmk
) : k = 1, · · · ,K}, where mk is the number of hypotheses in group k. Different
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from ggg, θθθ are unknown and need to be inferred from observations xxx. Let θki, i = 1, · · · , mk, be

independent Bernoulli (pk) variables and XXX = (Xki) be generated conditional on θθθ:

Xki|θki ∼ (1− θki)Fk0 + θkiFk1, i = 1, · · · ,mk, k = 1, · · · ,K. (2.4)

Hence within group k, the Xki’s, i = 1, · · · , mk, are i.i.d. observations with mixture distribu-

tion Fk = (1 − pk)Fk0 + pkFk1. Denote for group k the mixture density by fk, the null and

non-null densities by fk0 and fk1, respectively. Then fk = (1− pk)fk0 + pkfk1.

We first consider the problem in an ideal setting where all distributional information is

assumed to be known. Pooled and separate analyses are discussed in Section 2.3 and 2.4,

respectively.

2.3 Pooled FDR analysis

A natural and naive approach to testing grouped hypotheses is to simply ignore the group

labels and combine all cases into a pooled sample. Denote by f the mixture density,

f =
∑

k

πk[(1− pk)fk0 + pkfk1] = (1− p)f∗0 + pf∗1 ,

where p =
∑

k πkpk is the non-null proportion of the pooled sample, and f∗0 =
∑

k[(πk −
πkpk)/(1−p)]fk0 and f∗1 =

∑
k(πkpk/p)fk1 are the pooled or global null and non-null densities,

respectively. Denote the pooled null distribution by F ∗
0 =

∑
k[(πk − πkpk)/(1− p)]Fk0.

In a pooled analysis, the group labels are ignored and one tests against the common pooled

null distribution F ∗
0 in all individual tests. Define the pooled Lfdr statistic (PLfdr) by

PLfdr(xi) =
(1− p)f∗0 (xi)

f(xi)
, i = 1, · · · ,m. (2.5)

The results in Sun and Cai (2007) imply that among all testing procedures that adopt the

pooled-analysis strategy, the optimal one is

δδδ(PLfdr, cOR(α)111) = [I{PLfdr(xi) < cOR(α)} : i = 1, · · · ,m], (2.6)
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where cOR(α) is the largest cutoff for the PLfdr statistic that controls the overall FDR at level

α. Let PLfdr(1), · · · , PLfdr(m) be the ranked PLfdr values and H(1), · · · ,H(m) the correspond-

ing hypotheses. An asymptotically equivalent version of (2.6) is the PLfdr procedure:

Reject all H(i), i = 1, · · · , l, where l = max



i : (1/i)

i∑

j=1

PLfdr(j) ≤ α



. (2.7)

The following theorem shows that the PLfdr procedure is valid for FDR control when testing

against the pooled null distribution F ∗
0 .

Theorem 1 Consider the mixture model (2.4). Let PLfdr(i), i = 1, · · · ,m, be the ranked

PLfdr values defined in (2.5). Then the PLfdr procedure (2.7) controls the FDR at level α

when testing against the pooled null distribution F ∗
0 .

Remark 1 We should emphasize here that a pooled analysis makes sense only when the null

distributions Fk0 are the same for all groups, in which case F ∗
0 coincides with the common

group null. When Fk0 are different across groups, in general the pooled null distribution F ∗
0

differs from any of the group null Fk0. In this case a pooled analysis is not appropriate at all

because for each individual case a rejection against F ∗
0 does not imply rejection against the

null distribution Fk0 for a given group. To further illustrate this important point, let us take

the most extreme case. Consider two groups where the null distribution of the first group

is the alternative distribution of the second, and vice versa. It is then impossible to decide

whether a case is a null or non-null without knowing the grouping information. In this case

F ∗
0 is not the right null distribution to test against for any individual tests and therefore it is

entirely inappropriate to perform a pooled analysis.

2.4 Separate FDR analysis

Another natural approach to testing grouped hypotheses is the separate analysis where each

group is analyzed separately at the same FDR level α. Define the conditional Lfdr for group

k as

CLfdrk(xki) =
(1− pk)fk0(xki)

fk(xki)
, i = 1, · · · ,mk; k = 1, · · · ,K. (2.8)
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Again implied by the results in Sun and Cai (2007), the optimal procedure for testing hy-

potheses from group k is of the form

δδδk(CLfdrk, ck
OR(α)111) = [I{CLfdrk(xki) < ck

OR(α)} : i = 1, · · · ,mk], k = 1, · · · ,K, (2.9)

where ck
OR(α) is the largest cutoff for CLfdr statistic that controls the FDR of group k at level

α. By combining testing results from separate groups together, we have δδδ = (δδδ1, · · · , δδδK).

Similarly we can propose the separated Lfdr (SLfdr) procedure that is asymptotically equiv-

alent to (2.9). Denote by CLfdrk(1), · · · ,CLfdrk
(mk) the ranked CLfdr values in group k and

Hk
(1), · · · ,Hk

(mk) the corresponding hypotheses. The testing procedure for group k is:

Reject all Hk
(i), i = 1, · · · , lk, where lk = max



i : (1/i)

i∑

j=1

CLfdrk
(j) ≤ α



. (2.10)

The final rejection set of the SLfdr procedure is obtained by combining the K rejection sets

from all separate analyses: RSLfdr = ∪K
k=1{Hk

(i) : i = 1, · · · , lk}. The next theorem shows

that the SLfdr procedure is also valid for global FDR control.

Theorem 2 Consider the random mixture model (2.4). Let CLfdrk
(i), i = 1, · · · ,mk, k =

1, · · · , K, be the ranked CLfdr values defined by (2.8) for group k. Then the SLfdr procedure

(2.10) controls the global FDR at level α.

3 Optimal FDR Procedures for Testing Grouped Hypotheses

In Section 2 we discussed two natural approaches to testing grouped hypotheses: the pooled

analysis and the separate analysis. Although both procedures are valid, they are inefficient

in reducing the overall FNR. In this section, we begin by considering an ideal setting where

all distributional information is known and propose an optimal (oracle) FDR procedure that

uniformly outperforms both the pooled and separate procedures. We then turn to the sit-

uation where the distributions are unknown and introduce a data-driven procedure that is

asymptotically valid and optimal.
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3.1 Oracle procedure

In Section 4, we will show that the optimal testing procedure that minimizes the overall FNR

subject to a constraint on the overall FDR level is the following oracle procedure:

δδδ[CLfdr, cOR(α)111] = [I{CLfdrk(xki) < cOR(α)} : i = 1, · · · ,mk, k = 1, · · · ,K], (3.1)

where cOR(α) = sup{c ∈ (0, 1) : FDR(c) ≤ α} is the optimal cutoff for the CLfdr statistic

that controls the overall FDR at a given level α. Note that different from (2.9), the oracle

procedure (3.1) suggests using a universal cutoff for all CLfdr statistics regardless of their

group identities.

However, for a given FDR level, it is difficult to calculate the optimal cutoff cOR(α) directly.

An asymptotically equivalent procedure to (3.1) is the CLfdr procedure derived in Section 4.3.

The CLfdr procedure involves the following three steps:

1. Calculate the CLfdr values for separate groups based on (2.8).

2. Combine and rank the CLfdr values from all groups. Denote by CLfdr(1), · · · , CLfdr(m)

the ranked CLfdr values and H(1), · · · ,H(m) the corresponding hypotheses.

3. Reject all H(i), i = 1, · · · , l, where l = max
{

i : (1/i)
∑i

j=1 CLfdr(j) ≤ α
}

.

Remark 2 It is important to note that in Step 1, the external information of group labels is

utilized to calculate the CLfdr statistic; this is the feature from a separate analysis. However, in

Steps 2 and 3, the group labels are dropped and the rankings of all hypotheses are determined

globally; this is the feature from a pooled analysis. Therefore the CLfdr procedure is a hybrid

strategy that enjoys features from both pooled and separate analyses.

Remark 3 Unlike for the separate analysis, the group-wise FDR levels of the CLfdr procedure

are in general different from α. In addition to its validity for a pooled FDR analysis, one

may be interested in knowing the actual group-wise FDR levels FDRk yielded by the CLfdr

procedure; this can be conveniently obtained based on the quantities that we have already

calculated. Specifically, let Rk be the number of rejections in group k. The actual FDRk’s can
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be consistently estimated by

F̂DR
k

=
1

Rk

Rk∑

i=1

CLfdrk
(i). (3.2)

The result is formally stated in Theorem 4.

Theorem 3 shows that the CLfdr is a valid procedure for global FDR control.

Theorem 3 Consider the random mixture model (2.4). Then the CLfdr procedure controls

the global FDR at level α.

The next theorem, together with Theorem 3, shows that the CLfdr procedure is asymptotically

equivalent to the oracle procedure (3.1).

Theorem 4 Consider the random mixture model (2.4) and the CLfdr procedure, then:

(i). The FNR level yielded by the CLfdr procedure at FDR level α is FNROR(α)+o(1), where

FNROR(α) is the mFNR level of the oracle procedure (3.1).

(ii). The group-wise FDR levels of the CLfdr procedure can be consistently estimated by

F̂DR
k

= FDRk
OR + op(1), where F̂DR

k
is defined by (3.2), and FDRk

OR is the group-wise

FDR level of the oracle procedure (3.1).

3.2 Data-driven procedure

The CLfdr oracle procedure requires the distributional information of all individual groups.

However, this information is usually unknown in practice. A commonly used strategy is to

first estimate the unknown distributions and then plug-in the estimates. Estimates of the null

distribution and proportion of non-nulls in a normal mixture model are provided in Efron

(2004) and Jin and Cai (2007). Consider the following normal mixture model

Xi ∼ (1− p)N(µ0, σ
2
0) + pN(µi, σ

2
i ), (3.3)

where (µi, σ
2
i ) follows some bivariate distribution F (µ, σ2). This model can be used to ap-

proximate many mixture distributions and is found in a wide range of applications, see, e.g.,
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Magder and Zeger (1996). Jin and Cai (JC, 2007) developed a procedure for estimating both

the null distribution N(µ0, σ
2
0) and proportion of non-null effects p in model (3.3) based on the

empirical characteristic function and Fourier analysis. JC’s method can be applied to separate

groups directly, and the estimates are uniformly consistent over a wide class of parameters.

Let p̂k, f̂k0 and f̂k be estimates obtained for separate groups, the data-driven procedure is

given as follows:

1. Calculate the plug-in CLfdr statistic ĈLfdr
k
(xki) = (1− p̂k)f̂k0(xki)/f̂k(xki).

2. Combine and rank the plug-in CLfdr values from all groups. Denote by ĈLfdr(1), · · · ,

ĈLfdr(m) the ranked values and H(1), · · · ,H(m) the corresponding hypotheses.

3. Reject all H(i), i = 1, · · · , l, where l = max
{

i : (1/i)
∑i

j=1 ĈLfdr(j) ≤ α
}

.

The actual group-wise FDR levels of the data-driven procedure can be consistently estimated

as F̂DR
k

= (1/Rk)
∑Rk

i=1 ĈLfdr
k

(i), where Rk is the number of rejections in Group k.

The next theorem shows that the data-driven procedure is asymptotically valid and optimal

in the sense that both the FDR and FNR levels of the oracle procedure are asymptotically

achieved by the data-driven procedure.

Theorem 5 Consider the multiple group model (2.4). Let p̂k, f̂k0 and f̂k be consistent esti-

mates of pk, fk0 and fk such that p̂k
p−→ pk, E‖f̂k0−fk0‖2 → 0, E‖f̂k−fk‖2 → 0, k = 1, · · · ,K.

Let ĈLfdr
k
(xki) = (1− p̂)f̂0(xki)/f̂(xki), i = 1, · · · ,mk, k = 1, · · · ,K. Combine all test statis-

tics from separate groups and let ˆCLfdr(1), · · · , ˆCLfdr(m) be the ranked values. Then

(i). The mFDR and mFNR levels of the data-driven procedure are respectively α + o(1) and

mFNROR + o(1), where mFNROR is the mFNR level of the oracle procedure (3.1).

(ii). The mFDR level of the data driven procedure in group k can be consistently estimated as

F̂DR
k

= (1/Rk)
∑Rk

i=1 ĈLfdr
k

(i). In addition, F̂DR
k

= mFDRk
OR+o(1), where mFDRk

OR+

o(1) is the mFDR level of the oracle procedure (3.1) in group k.
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4 Compound Decision Theory for Simultaneous Testing of Grouped

Hypotheses

In this section, we develop a compound decision theoretic framework for testing hypotheses

arising from the multiple group model (2.4), and derive the optimal (oracle) testing procedure.

We then show that the CLfdr procedure is an asymptotically equivalent version of the optimal

procedure, hence the superiority of the CLfdr procedure is justified.

4.1 Compound decision problem

Consider an inference problem for the multiple group model (2.4) where the goal is to select

interesting cases from each group with the overall FDR level controlled at α and the overall

FNR level minimized. A solution to this problem can be represented by a general decision

rule δδδ = (δki) ∈ {0, 1}m, where δki = 1 indicates that we claim case i in group k is a non-null

and δki = 0 otherwise. In an FDR analysis, the m decisions are combined and evaluated as a

whole; this is referred to as a compound decision problem (Robbins 1951).

Since hypotheses within each group are exchangeable, we consider a decision rule defined

in terms of statistic TTT = {Tk(xki) : k = 1, · · · ,K; i = 1, · · · ,mk} and threshold t such that

δδδ(TTT , t) = (δki) = (I{Tk(xki) < t} : k = 1, · · · , K; i = 1, · · · , mk), where the function Tk is

the same for all observations in group k but may be different across groups. We allow Tk to

depend on unknown quantities, such as the non-null proportion and null, non-null distributions

in group k. In addition, Tk are standardized so that the threshold t is universal for all tests.

The multiple testing problem is closely connected to a weighted classification problem.

Suppose the relative cost of a false positive (type I error) to a false negative (type II error)

is known to be λ. Let δδδ = (δki : k = 1, · · · ,K; i = 1, · · · ,mk) ∈ {0, 1}m be a classification

rule, where δki = 1 indicates that we classify case i of the kth group as a non-null and δki = 0

otherwise. Define the loss function

L(θθθ, δδδ) = (1/m)
K∑

k=1

mk∑

i=1

λ(1− θki)δki + θki(1− δki). (4.1)
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The goal in a weighted classification problem is to find δδδ ∈ {0, 1}m that minimizes the classifica-

tion risk E[Lλ(θθθ,δδδ)]. We will show that the optimal procedure for testing grouped hypotheses

can be conveniently derived by studying the optimal classification rule for the multiple group

model (2.4).

Note that {Xki : i = 1, · · · ,mk} are i.i.d. random variables, we assume that Tk(Xki) ∼
Gk = (1− pk)Gk0 + pkGk1, where Gk0 and Gk1 are the conditional cdf’s of Tk(Xki) under the

null distribution Fk0 and alternative distribution Fk1, respectively. The pdf of Tk(Xki) is gk =

(1−pk)gk0+pkgk1, with gk0 and gk1 the corresponding conditional pdf’s. Let G̃k(t) = 1−Gk(t),

G̃k1(t) = 1−Gk1(t), ḡ0(t) =
∑

k[πk(1− pk)/(1− p)]gk0(t), and ḡ1(t) =
∑

k(πkpk/p)gk1(t). For

a given test statistic TTT , the mFDR and mFNR are functions of the threshold t:

mFDR(t) =
∑

k πk(1− pk)Gk0(t)∑
k πkGk(t)

and mFNR(t) =
∑

k πkpkG̃k1(t)∑
k πkG̃k(t)

, (4.2)

We consider a class of test statistics T satisfying the monotone ratio condition (MRC):

ḡ1(t)/ḡ0(t) is decreasing in t. (4.3)

The following shows that the MRC is a desirable condition.

Proposition 1 Consider the random mixture model (2.4). Let TTT = {Tk(xki)} be a statistic

that satisfies the MRC (4.3).

(i) Suppose TTT is used for the multiple testing problem, then the mFDR (mFNR) level of

testing procedure δδδ = I(TTT < t111) increases (decreases) in the threshold t. Therefore the

mFNR is decreasing in the mFDR.

(ii) Suppose TTT is used for the weighted classification problem, then c(λ), the optimal cutoff

for TTT that minimizes the classification risk, is decreasing in λ, where λ is the relative

weight of a false positive to a false negative.

The first part of Proposition 1 implies that in a multiple testing problem, we shall choose

the largest mFDR/cutoff to minimize the mFNR level when the MRC holds. This property
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is useful to determine a cutoff for this constrained minimization problem, and is conceptually

reasonable as a requirement for a multiple testing procedure. In addition, the MRC class T
is fairly general. For example, the condition in Genovese and Wasserman (2002 and 2004)

and Storey (2002) that the non-null cdf of p-value is concave implies that the p-value vector

PPP = (P1, · · · , Pm) belong to the MRC class T . See Sun and Cai (2007) for more discussions

about the MRC condition.

4.2 Multiple testing via weighted classification

We now connect the multiple testing and weighted classification problems by showing that the

two problems are “equivalent” under mild conditions. We then derive the optimal weighted

classification rule and propose the optimal testing procedure. Consider a class of decision rules

D that are of the form δδδ = I(TTT < t111) with TTT ∈ T . The next theorem shows that under mild

conditions, the optimal weighted classification rule is also optimal for multiple testing.

Theorem 6 Consider the random mixture model (2.4). Suppose the classification risk with

the loss function L(θθθ,δδδ) = (1/m)
∑K

k=1

∑mk
i=1 λ(1 − θki)δki + θki(1 − δki) is minimized by

δδδλ(TTT , c(λ)) = I(TTT < c(λ)1), so that TTT is the optimal statistic in the weighted classifica-

tion problem. If TTT belongs to T , then TTT is also the optimal statistic in the multiple-testing

problem in the sense that for each global mFDR level α, there exists a unique c(α) such that

δδδα(TTT , c(α)) = I(TTT < c(α)1) controls the global mFDR at level α with the smallest global mFNR

among all decision rules in D at global mFDR level α.

We consider an ideal setting where an oracle knows pk, fk0 and fk1, k = 1, · · · , K. In this

case, the optimal classification rule is given by the next theorem.

Theorem 7 Consider the random mixture model (2.4). Suppose pk, fk0, fk1 are known. Then

the classification risk with loss function (4.1) is minimized by δδδλ = (δki), where

δki = I

{
Λk(xki) =

(1− pk)fk0(xki)
pkfk1(xki)

<
1
λ

}
. (4.4)
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Note that Λk(x) = CLfdrk(x)/[1 − CLfdrk(x)] is strictly increasing in CLfdrk(x), where

CLfdrk(x) is the conditional local false discovery rate defined in (2.8), an equivalent optimal

test statistic is CLfdr = [CLfdrk(xki) : i = 1, · · · ,mk, k = 1, · · · ,K]. Theorems 6 and 7

together imply that the optimal testing procedure is of the form δδδ[CLfdr < c(α)]. Proposition

1 indicates that the cutoff should be chosen as cOR(α) = sup{c ∈ (0, 1) : mFDR(c) ≤ α}.
Therefore the optimal (oracle) procedure for multiple group hypothesis testing is

δδδ[CLfdr, cOR(α)] = [I{CLfdrk(xki) < cOR(α)} : i = 1, · · · ,mk, k = 1, · · · ,K]. (4.5)

For a given FDR level, it is difficult to calculate the optimal cutoff cOR(α) directly. The

difficulty can be circumvented by using the CLfdr procedure proposed in Section 3.1, where

cOR is estimated consistently based on a simple step-up procedure.

4.3 The derivation of the CLfdr procedure

This section demonstrates that the CLfdr procedure can be used to approximate the oracle

procedure (3.1). The essential idea in the derivation is to first evaluate the distributions of

the CLfdr statistic empirically, then estimate the mFDR for a given cutoff, and finally choose

the largest cutoff c subject to the constraint m̂FDR(c) ≤ α. Let Gk and Gk0 be the marginal

cdf and null cdf of CLfdrk(Xki), then the mFDR of testing rule δδδ(CLfdr, c111) is

mFDR(c) =
∑

k πk(1− pk)Gk0(c)∑
k πkGk(c)

. (4.6)

Note that
∑

k πkGk(c) =
∑

k πk

∫
I[CLfdrk(x) < c]fk(x)dx; hence it can be estimated by

K∑

k=1

πk
1

mk

mk∑

i=1

I[CLfdrk(xki) < c] = (1/m)
K∑

k=1

mk∑

i=1

I[CLfdrk(xki) < c].

19



Next note that

∑

k

πk(1− pk)Gk0(c) =
K∑

k=1

πk

∫
I[CLfdrk(x) < c](1− pk)fk0(x)dx

=
K∑

k=1

πk

∫
I[CLfdrk(x) < c]CLfdrk(x)fk(x)dx,

which can be estimated by (1/m)
∑K

k=1

∑mk
i=1 I[CLfdrk(xki) < c]CLfdrk(xki). Therefore the

mFDR(c) can be estimated by

m̂FDR(c) =
∑K

k=1

∑mk
i=1 I[CLfdrk(xki) < c]CLfdrk(xki)∑K
k=1

∑mk
i=1 I[CLfdrk(xki) < c]

. (4.7)

Suppose a total of R hypotheses are rejected, then (4.7) reduces to m̂FDR = (1/R)
∑R

j=1 CLfdr(j),

where CLfdr(1), · · · , CLfdr(m) are obtained by the ranking all m CLfdr values (calculated for

separate groups): {CLfdrk(xki) : i = 1, · · · ,mk, k = 1, · · · ,K}. The group labels are no longer

needed and hence dropped. Note m̂FDR(R) = (1/R)
∑R

j=1 CLfdr(j) is strictly increasing in R

(since m̂FDR(R+1)−m̂FDR(R) = [1/(R2 +R)]
∑R

j=1(CLfdr(R+1)−CLfdr(j)) > 0), we choose

the largest R such that the mFDR is controlled at level α. Hence a natural testing procedure

is:

Reject all H(i), i = 1, · · · , l, where l = max
{

i : (1/i)
∑i

j=1 CLfdr(j) ≤ α
}

.

Thus we have derived the CLfdr procedure from the oracle procedure (3.1).

5 Numerical Results

Now we turn to the numerical performance of the PLfdr, SLfdr and CLfdr procedures. Sec-

tion 5.1 compares the three procedures under a two-group model in an oracle setting. More

complicated settings are considered in Section 5.2 where (i) the number of groups is greater

than two, and (ii) the null and non-null distributions are unknown and need to be estimated.

A real data analysis is discussed in Section 6.
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5.1 Comparison of oracle procedures in a two-group model

Consider the following two-group normal mixture model:

Xki ∼ (1− pk)N(µk0, σ
2
k0) + pkN(µk, σ

2
k), k = 1, 2. (5.1)

The numerical performances of the PLfdr, SLfdr and CLfdr procedures are investigated in the

next two simulation studies. The nominal global FDR level is 0.10 for all simulations.

Simulation Study 1 Identical null distributions. The null distributions of both groups are

fixed as N(0, 1). Three simulation settings are considered: (i) The group sizes are m1 = 3000

and m2 = 1500; the group mixture pdf’s are f1 = (1 − p1)N(0, 1) + p1N(−2, 1) and f2 =

0.9N(0, 1)+0.1N(4, 1). We vary p1, the proportion of non-nulls in group 1, and plot the FDR

and FNR levels as functions of p1. (ii) The groups sizes are also m1 = 3000 and m2 = 1500;

the group mixture pdf’s are f1 = 0.8N(0, 1)+0.2N(µ1, 1) and f2 = 0.9N(0, 1)+0.1N(2, 0.52).

The FDR and FNR levels are plotted as functions of µ1. (iii) The marginal pdf’s are f1 =

0.8N(0, 1) + 0.2N(−2, 0.52) and f2 = 0.9N(0, 1) + 0.1N(4, 1). The sample size of group 2 is

fixed at m2 = 1500, the FDR and FNR levels are plotted as functions of m1. The simulation

results with 500 replications are given in Figure 4. The top row compares the actual FDR

levels of the three procedures; the results for setting (i), (ii) and (iii) are shown in Panel (a),

(b) and (c), respectively. The group-wise FDR levels of the CLfdr procedure are also provided

(the dashed line for group 1 and dotted line for group 2). The bottom row compares the FNR

levels of the three procedures; the results for setting (i), (ii) and (iii) are shown in Panel (d),

(e) and (f), respectively.

We can see that all three procedures control the global FDR level at the nominal level

0.10, indicating that all three procedures are valid. It is important to note that the CLfdr

procedure chooses group-wise FDR levels automatically (dashed and dotted lines in Panel (a)-

(c)), and the levels are in general different from the nominal level 0.10. The relative efficiency

of PLfdr versus SLfdr is inconclusive (depends on simulation settings). For example, the SLfdr

procedure yields lower FNR levels in Panel (d), but higher FNR levels in Panel (f). However,
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Figure 4: Results for Simulation Study 1: the top row compares the FDR levels and the bottom
row compares the FNR levels (# , PLfdr; 4, SLfdr; +, CLfdr). The optimal group-wise FDR
levels suggested by the CLfdr procedure are provided together with the global FDR levels
(dashed line, Group1; dotted line, Group2).

all simulations show that both the PLfdr and SLfdr procedures are uniformly dominated by

the CLfdr procedure.

Next we consider the situation where the null distributions of the observations are different.

It was argued by Efron (2008a) that in this case a pooled FDR analysis becomes problematic

since highly significant non-null cases from one group may be hidden among the nulls from

the other group. See Remark 1 in Section 2.3.

Simulation Study 2 Disparate null distributions. We consider three situations where the

null distributions of the two groups may differ: (i) The null means are different. The group sizes

are m1 = 3000 and m2 = 1500; the group mixture pdf’s are f1 = 0.8N(µ10, 1) + 0.2N(−2, 1)

and f2 = 0.9N(0, 1) + 0.1N(2, 0.52). (ii) The null means are the same, but one null is

more dispersed. The group sizes are m1 = 3000 and m2 = 1500; the group mixture pdf’s

are f1 = 0.8N(0, σ2
10) + 0.2N(−4, 1) and f2 = 0.9N(0, 1) + 0.1N(2, 1). (iii) Both the null

means and null variances differ. The group sizes are m1 and 2000; the group pdf’s are

f1 = 0.8N(1.5, 1)+0.2N(−2, 1) and f2 = 0.9N(0, 0.82)+0.1N(2, 0.52). The simulation results
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with 500 replications are shown in Figure 5. The top row compares the actual FDR levels of

the three procedures and the bottom row compares the FNR levels of the three procedures.

Again, the group-wise FDR levels of the CLfdr procedure are provided together with the global

FDR levels. Results for setting (i), (ii) and (iii) are displayed in column 1, 2 and 3, respectively.
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Figure 5: Results for Simulation Study 2: the top row compares the FDR levels and the bottom
row compares the FNR levels (# , PLfdr; 4, SLfdr; +, CLfdr). The optimal group-wise FDR
levels suggested by the CLfdr procedure are provided together with the global FDR levels
(dashed line, Group1; dotted line, Group2).

From Figure 5 it can be similarly seen that (i) all three procedures are valid in terms of

the FDR control, (ii) the group-wise FDR levels of the CLfdr procedure are different from

the nominal level and from each other, and (iii) both the PLfdr and SLfdr procedures are

uniformly dominated by the CLfdr procedure. It is interesting to note that in Panel (d), the

PLfdr procedure is at first more efficient than the SLfdr for small σ10, but becomes less and

less efficient as σ10 increases (since more and more non-null cases from Group 2 are hidden in

the nulls from Group 1). It is imporant to note that in this case the PLfdr procedure and the

SLfdr procedure are testing against different null distributions.
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5.2 Extended comparisons

In practice, the number of groups is often greater than two, and the distributional information

for individual groups may be unknown. This section extends our previous comparisons to

cover these new situations.

Simulation Study 3 (i) More groups. The number of groups is chosen to be K = 5. We

consider three simulation settings, whose distributional information is summarized in the top

half of Table 2. We apply the PLfdr, SLfdr and CLfdr procedures to the simulated data and

obtain the FDR and FNR levels. (ii). Unknown distributions. The number of groups is chosen

to be K = 5. The non-null proportions and mixture densities are unknown. We first take the

approach in Jin and Cai (2007) to estimate the unknown quantities and then apply the data-

driven procedures. We consider three simulation settings, whose distributional information is

summarized in the bottom half of Table 2. The simulation results are displayed in Figure 6.

Table 2: Settings for simulation study 3: (a)-(e) the sample sizes of all individual groups are
2000; (f) the sample sizes are m1 = m2 = m3 = 2000, m4 = m5 = mk. The number of
replications is 500.
Group Panel (a) Panel (b) Panel (c)

1 0.7N(0, σ2) + 0.3N(−4, 1) 0.9N(0, 0.52) + 0.1N(−4, 1) 0.7N(0, 1) + 0.3N(−4, 1)
2 0.8N(0, σ2) + 0.2N(−2, 1) 0.85N(0, 0.52) + 0.15N(−2, 1) 0.8N(0, 1) + 0.2N(−2, 1)
3 0.8N(0, σ2) + 0.2N(−1, 1) 0.8N(0, 0.52) + 0.2N(−1, 1) 0.8N(0, 1) + 0.2N(1, 1)
4 0.9N(0, 0.52) + 0.1N(1, 1) 0.75N(0, σ2) + 0.25N(1, 1) 0.9N(µ, 0.52) + 0.1N(1, 1)
5 0.7N(0, 0.52) + 0.3N(2, 1) 0.7N(0, σ2) + 0.3N(2, 1) 0.7N(µ, 0.52) + 0.3N(2, 1)

Panel (d) Panel (e) Panel (f)
1 0.7N(0, 1) + 0.3N(−4, 1) 0.7N(0, 1) + 0.3N(−4, σ2) 0.7N(0, 1) + 0.3N(−4, 1)
2 0.8N(0, 1) + 0.2N(−2, 1) 0.8N(0, 1) + 0.2N(−2, σ2) 0.8N(0, 1) + 0.2N(−2, 1)
3 0.8N(0, 1) + 0.2N(−1, 1) 0.8N(0, 1) + 0.1N(−1, σ2) 0.8N(0, 1) + 0.2N(1, 1)
4 0.9N(0, 1) + 0.1N(µ, 1) 0.9N(0, 1) + 0.2N(1, 0.52) 0.9N(0, 1) + 0.1N(1, 0.52)
5 0.7N(0, 1) + 0.3N(µ + 1, 1) 0.7N(0, 1) + 0.3N(2, 0.52) 0.7N(0, 1) + 0.3N(2, 0.52)

Similar to the two-group case, all three procedures control the FDR at the nominal level

0.1 when we have more groups. The FNR levels of the three procedures for the three settings

considered in the first row of Table 2 are displayed in Panel (a), (b) and (c) of Figure 6,

respectively. We can see that both the PLfdr and SLfdr procedures are dominated by the

CLfdr procedure. When the distributions are unknown and data-driven procedures are used,
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Figure 6: Results for Simulation Study 3. The FNR levels of PLfdr, SLfdr and CLfdr pro-
cedures are plotted as functions of model parameters (# , PLfdr; 4, SLfdr; +, CLfdr). The
first row compares oracle procedures and the second row compares data-driven procedures.
Detailed simulation settings are summarized in Table 2.

the FDR levels of the three procedures are approximately 0.10. The FNR levels of the three

procedures for the three settings considered in the second row of Table 2 are displayed in Panel

(d), (e) and (f), respectively. Again we can see that at the same FDR level 0.10, the FNR of

the CLfdr procedure is uniformly smaller than those of the other two procedures.

6 Applications to the Adequate Yearly Progress Study of Cal-

ifornia High Schools

We now return to the adequate yearly progress (AYP) study mentioned in the introduction. In

this section, we analyze the data collected from m = 7867 of California high schools (Rogosa

2003) by using the three multiple testing procedures discussed in detail in earlier sections,

namely the PLfdr, SLfdr and CLfdr procedures.

The association between social-economic status (SES) and academic performance of stu-

dents is an important topic in sociological research (Sparkes 1999; Considine and Zappalà

2002). One goal of the AYP study is to compare the success rates in Math exams of social-

economically advantaged (SEA) versus social-economically disadvantaged (SED) students.

Since the average success rates of the SEA students are in general (7370 out of 7867 schools)
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higher that the SED students, it is of interest to identify a subset of schools in which the

advantaged-disadvantaged performance differences are unusually small or large. Given the lim-

ited financial and educational resources, the correct identification of these “unusual” schools is

important for making policies to reduce social exclusion and promote the overall performance

of all students.

Denote by Xi and Yi the success rates, and ni and n′i the numbers of scores reported

for SEA and SED students in school i, i = 1, · · · , m. Define the centering constant ∆ =

median(Xi)−median(Yi). A z-value for comparing the SEA students versus the SED students

can be computed for each school:

zi =
Xi − Yi −∆√

Xi(1−Xi)/ni + Yi(1− Yi)/n′i
, (6.1)

for i = 1, · · · ,m. We claim school i is “interesting” if the observed |zi| is large.

The AYP data has been analyzed by Efron (2007 and 2008b), where he first estimated

the global null density f̂0, then searched for interesting cases in the tail areas of f̂0. This

pooled-analysis strategy ignores the fact that the hypotheses formed for different schools are

not exchangeable. In particular, the number of scores reported by each school varies from less

than a hundred to more than ten thousands. A pooled analysis tends to over-select too many

large schools, which often express themselves as “very significant” in the tail areas due to small

denominators in (6.1). In contrast, small schools are likely to be hidden in the central area

of f̂0 and appear “uninteresting”. This is not desirable because, in practice, investigators are

interested in identifying significant differences from all schools, not only from large schools. As

we shall see, an important feature of the AYP data is that the empirical null distributions of

the z-values are substantially different for small and large schools, therefore a pooled analysis

is inappropriate and one should perform a separate analysis to take into account the effect of

school size. Based on a preliminary cluster analysis, we divide all schools into three groups

according to the number of scores reported (ni + n′i): small schools (ni + n′i ≤ 120), medium

schools (120 < ni + n′i ≤ 900) and large schools (ni + n′i > 900). The group characteristics are

summarized in Table 3, where the empirical null distributions are estimated using Jin and Cai
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(2007)’s method. Note that the variance of the empirical null distribution for the scores from

the large schools is more than four times than those for the scores from the other two groups.

See also Figure 1 in the introduction.

Table 3: Group characteristics in the AYP data: 7867 schools in total. The global null density
is f̂0 = N(−0.59, 1.592)

Group Group Definition Group Size Proportion Empirical Null
Small ni + n′i ≤ 120 516 6.6% f̂10 = N(−0.51, 1.272)

Medium 120 < ni + n′i ≤ 900 6514 80.6% f̂20 = N(−0.61, 1.542)
Large ni + n′i > 900 837 12.8% f̂30 = N(−0.95, 3.162)

We then apply the PLfdr, SLfdr and CLfdr procedures to the AYP data at different FDR

levels. The results are summarized in Table 4.

Table 4: Numbers of Interesting Cases Identified by PLfdr, SLfdr and CLfdr Procedures

From Small Group From Medium Group From Large Group Total
FDR PLfdr SLfdr CLfdr PLfdr SLfdr CLfdr PLfdr SLfdr CLfdr PLfdr SLfdr CLfdr

0.01 2 6 6 59 47 51 171 42 39 232 95 96
0.025 6 7 6 89 67 75 203 54 50 298 128 131
0.04 6 9 9 123 89 98 215 64 58 344 162 165
0.055 6 10 10 152 109 122 222 71 64 380 190 196
0.07 7 12 12 176 130 146 233 76 66 416 218 224
0.085 7 13 12 203 150 173 241 80 69 451 243 254
0.10 7 15 15 230 173 195 249 85 72 486 273 282
0.115 8 16 18 253 194 217 259 90 75 520 300 310

The PLfdr procedure claims the most discoveries, followed by the CLfdr and then SLfdr

procedure. It is important to emphasize that the PLfdr procedure is inappropriate here because

the pooled null distribution is not the correct null to test against. See Remark 1 in Section

2.3. The PLfdr procedure is too liberal for the large group yet too conservative for the small

group: around 50%-70% significant schools come from the large group, although its population

proportion is only 13%; in contrast, only around 1% interesting cases come from the small

group, although its population proportion is more than 6%. The SLfdr procedure considers

the groups separately; large schools are no longer over-selected and more small schools are

identified. The CLfdr procedure further improves the SLfdr procedure by efficiently exploiting
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the important grouping information and weighting the numbers of discoveries among groups.

The optimal group-wise FDR levels estimated by the CLfdr procedure at different nominal

FDR levels are plotted in Figure 7, suggesting that we should choose higher FDR levels for

the medium group and lower FDR level for the large group. Note that the SLfdr procedure

uses the same FDR level for all groups, the CLfdr procedure usually identifies more cases from

the medium group, but fewer cases from the large group.
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Figure 7: AYP study. Optimal group-wise FDR levels estimated by the CLfdr procedure.

7 Discussion

We have developed a compound decision theoretic framework for testing grouped hypotheses

arising from the random mixture model (2.4). Both numerical and theoretical results demon-

strate that conventional testing procedures can be substantially improved. In this section, we

discuss how the rankings of hypotheses may be affected when hypotheses are not exchangeable;

this provides additional insights on the efficiency gain of the optimal CLfdr procedure.

The concept of symmetric rules in compound decision theory is closely connected to the

exchangeability assumption in multiple testing. Let δδδ(xxx) be a general decision rule. Then δδδ

is symmetric if δδδ[τ(xxx)] = τ [δδδ(xxx)] for all permutation operator τ (Copas 1974). Most multiple
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testing procedures in the literature are symmetric rules, which implicitly assume that the

hypotheses are exchangeable. However, when the hypotheses are not exchangeable (e.g., groups

are heterogeneous), even the optimal symmetric rule may suffer from severe efficiency loss. To

further illustrate the point, let us consider the following “optimal” procedures in the multiple

testing literature.

Lfdr. The Lfdr, which corresponds to the PLfdr defined in (2.5), was shown to provide

optimal rankings when all hypotheses are independent and exchangeable (Sun and Cai, 2007).

In practical situations such as the AYP study, the exchangeability assumption obviously fails

to hold. However, testing procedures that threshold the PLfdr statistic are symmetric rules,

implying that the hypotheses are ranked only based on observed z-values. This is inappropriate

in the AYP study, where the same observed z-values from small and large schools may indicate

different significance levels (since the null distributions are different). The PLfdr statistic is no

longer optimal because the grouping information can be exploited to construct more efficient

rankings of all hypotheses.

Storey’s ODP. Suppose the null hypotheses are true for tests i = 1, · · · ,m0 and the

alternative is true for tests i = m0 + 1, · · · ,m. The null densities and non-null densities are

denoted respectively by f1, · · · , fm0 and gm0+1, · · · , gm. Storey’s optimal discovery procedure

(ODP, Storey 2008) rejects hypothesis i if SODP (xi) ≥ λ, where

SODP (x) =
gm0+1(x) + · · ·+ gm(x)
f1(x) + · · ·+ fm0(x)

. (7.1)

It was shown by Storey that the ODP maximizes the expected number of true positives (ETP)

for each fixed expected number of false positives (EFP) among all single-thresholding proce-

dures (STPs). It can be shown that all STPs (hence the ODP) are symmetric rules; therefore

the optimality of the ODP is only claimed for a subclass of decision rules (symmetric rules),

and can be outperformed by other asymmetric rules when hypotheses come from heteroge-

neous groups. There are other issues for the ODP procedure, and we briefly point out the

following: (i) One needs to know which hypotheses are true and the densities of the individual

test statistics in (7.1); this assumption is extremely impractical. (ii) The ODP depends on
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unknown quantities that cannot be estimated from the data. The actual ODP procedure is

based on an ad-hoc estimate of the thresholding function, where the optimality is lost at the

estimation step. (iii) The optimal threshold is difficult to determine for a given FDR/ETP

level.

Spjøtvoll’s optimal procedure. Spjøtvoll (1972, Theorem 1) proposed an “optimal”

procedure that maximizes the “ETP” subject to a constraint on the “EFP”. In our setting,

the testing procedure is reduced to the following form

δδδ = (δ1, · · · , δm) = [I{fk0(x) > cfk1(x)} : i = 1, · · · ,m]. (7.2)

Spjøtvoll’s procedure (7.2) is not symmetric, and suggests universal thresholding of the likeli-

hood ratio (LR) statistic. In contrast, the CLfdr procedure suggests thresholding a constant

(1 − pk) times the LR. The two procedures are different when pk varies across groups. As

argued by Storey (2007), the setting considered in Spjøtvoll (1972) is problematic because of

the wrong definitions of “ETP” and “EFP”, which do not represent the underlying reality.

It can be shown that this wrong formulation naturally leads to a procedure that ignores pk,

which provides important information for ranking the hypotheses.

Asymmetric testing rules have been recently proposed under different settings by Genovese

et al. (2006), Efron (2008) and Sun and Cai (2008), among others. These works indicate that

it is beneficial to treat hypotheses differently when some prior or structural information of

the sample are available. The efficiency of a testing procedure can thus be improved by

weighting the conventional test statistics (such as the weighted p-values, Genovese et al. 2006)

or introducing new test statistics to incorporate the prior/structural information (the CLfdr

statistic; the local index of significance, Sun and Cai 2008). This article studies the multiple

testing problem from a compound decision theoretical perspective, which provides additional

insights on the benefit of extending one’s attention to a wider class of decision rules when

hypotheses are grouped.
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Appendix I: Proofs of Main Results

We shall prove here the main results, Theorems 1-5. The proofs of other results are given in

Appendix II.

Proof of Theorem 1. Denote the group labels by ggg = (g1, · · · , gm), i.e., gi = k if case i

comes from group k. Suppose the group labels are unknown, we have

P (θi|xi) =
∑

k

P (θi|gi = k, xi)P (gi = k|xi)

=
∑

k

(1− pk)fk0(xi)
fk(xi)

πkfk(xi)∑
k πkfk(xi)

=
∑

πk(1− pk)fk0(xi)∑
k πkfk(xi)

≡ PLfdr(xi).

Let R and N10 be the number of rejections and number of false positives of the PLfdr procedure.

Note E(N10|xxx) =
∑m

i=1 I(δi = 1)P (θi = 0|xxx) =
∑R

i=1 PLfdr(i), we have

FDRPLfdr = E (N10/R)P (R > 0) = E [(1/R)E(N10|xxx)]P (R > 0)

= E

[
1
R

R∑

i=1

PLfdr(i)

]
P (R > 0).

The claim follows by noting that the PLfdr procedure guarantees that (1/R)
∑R

i=1 PLfdr(i) ≤ α

for all realizations of xxx.

Proof of Theorem 2. Let Rk and N10k be the number of rejections and the number of false

positives in group k. Note that E(N10k|ggg,xxx) =
∑mk

i=1 I(δki = 1)P (θki = 0|xki) =
∑Rk

i=1 CLfdrk
(i),

and that the SLfdr procedure guarantees (1/Rk)
∑Rk

i=1 CLfdrk
(i) ≤ α for all realizations of xxx,

we have

FDRSLfdr = E

(∑
k N10k∑
k Rk

)
P (

∑

k

Rk > 0)

= E

{
1∑
k Rk

∑

k

E(N10k|ggg,xxx)

}
P (

∑

k

Rk > 0)

≤ E

{
1∑
k Rk

(
∑

k

αRk)

}
P (

∑

k

Rk > 0) ≤ α.
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Proof of Theorem 3. Let R and N10 be the number of rejections and number of false

positives. Then E(N10|ggg,xxx) =
∑m

i=1 I(δi = 1)P (θi = 0|xi, gi) =
∑R

i=1 CLfdr(i). The SLfdr

procedure guarantees that (1/R)
∑R

i=1 CLfdr(i) ≤ α for all realizations of xxx, it follows that

FDRCLfdr = E(N10/R)P (R > 0) = E {E(N10/R|ggg,xxx)}P (R > 0)

≤ E

{
1
R

R∑

i=1

CLfdr(i)

}
P (R > 0) ≤ α.

Proof of Theorem 4. (i) In the CLfdr procedure, the group labels were only used for

calculating the CLfdr statistics and then dropped afterwards. Hence when the interest is to

evaluate global FDR and FNR levels of the CLfdr procedure, the group labels provide no

information, i.e., let Ti = CLfdr(xi), then {Ti : i = 1, · · · ,m} can be viewed as a random

sample from GOR, the cdf of the pooled sample. The null, non-null cdf’s of Ti are denoted by

GOR
0 and GOR

1 , respectively. Let tOR and t̂OR be the thresholds of the oracle procedure and

CLfdr procedure, respectively. Note

mFNROR =
pPH1(Ti > tOR)

P (Ti > tOR)
and mFNRCLfdr =

pPH1(Ti > t̂OR)
P (Ti > t̂OR)

,

It is sufficient to show that t̂OR
p−→ tOR.

Let QOR(t) = (1 − p)G0(t)/G(t) and Q̂OR(t) = {∑i I(Ti < t)Ti}/{
∑

i I(Ti < t)}. Ap-

plying law of large numbers, we have (1/m)
∑

i I(Ti < t)
p−→ E(Ti < t) = GOR(t) and

(1/m)
∑m

i=1 I(Ti < t)Ti
p−→ E{I(Ti < t)Ti} = E[E{I(Ti < t)Ti|gi}] = πk(1 − pk)GOR

k0 (t) =

(1 − p)GOR
0 (t). It follows that Q̂OR(t)

p−→ QOR(t). Subsequent arguments are similar to the

proof of Lemma A.5 in Sun and Cai (2007). Note that Q̂OR(t) is a step function with jump

at T(i). For T(k) < t < T(k+1), we construct an envelope for Q̂OR(t) using two monotone

continuous functions:

Q̂−
OR(t) =

T(k+1) − t

T(k+1) − T(k)
Q̂OR(T(k−1)) +

t− T(k)

T(k+1) − T(k)
Q̂OR(T(k));

Q̂+
OR(t) =

T(k+1) − t

T(k+1) − T(k)
Q̂OR(T(k)) +

t− T(k)

T(k+1) − T(k)
Q̂OR(T(k+1)).

It can be shown that (i) Q̂+
OR(t) ≥ Q̂OR(t) ≥ Q̂−

OR(t), (ii) Q̂+
OR(t) and Q̂−

OR(t) are strictly
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increasing in t, and (iii) |Q̂+
OR(t) − Q̂−

OR(t)| ≤ 1/R(t)
p−→ 0. Note that Q̂OR(t)

p−→ QOR(t), we

have Q̂−
OR(t)

p−→ QOR(t) and Q̂+
OR(t)

p−→ QOR(t).

Now define t̂−OR = sup{t ∈ (0, 1) : Q̂−
OR(t) ≤ α} and t̂+OR = sup{t ∈ (0, 1) : Q̂+

OR(t) ≤ α};
then t̂+OR ≤ t̂OR ≤ t̂−OR. We claim that t̂−OR

p−→ tOR. If not, there exists ε0 and η0 such

that for any M > 0, P (|t̂−OR − tOR| > ε0) ≥ 4η0 holds for some Z+ 3 m ≥ M . Suppose

P (K1
m) = P (t̂−ORtOR > ε0) ≥ 2η0. The MRC implies that QOR(t) is strictly increasing in t

and QOR(tOR) = α. Let 2δ0 = QOR(tOR + ε0) − α. Q̂OR(t)
p−→ QOR(t) implies that there

exists M such that P (K2
m) = P (|Q̂−

OR(tOR + ε0) − QOR(tOR + ε0)| < δ0) ≥ 1 − η0 holds for

all m ≥ M . Consider Km = K1
m ∩ K2

m, then there exists m ∈ Z+ such that P (Km) ≥ η0.

However, note Q̂−
OR(t) is strictly increasing in t, on Km we must have α = Q̂−

OR(t̂−OR) >

Q̂−
OR(tOR + ε0) > QOR(tOR + ε0) − η0 = α + δ0. Hence Km cannot have positive measure.

This is a contradiction. Therefore we must have t̂−OR

p−→ tOR. Similarly we can show that

t̂+OR

p−→ tOR. Note t̂+OR ≤ t̂OR ≤ t̂−OR, it follows that t̂OR
p−→ tOR.

(ii) Since t̂OR
p−→ tOR, the group-wise FDR level yielded by the CLfdr procedure converges

in probability to the FDR level of the oracle procedure. Next, let 0 < λ < 1 be a threshold and

Rk be the number of rejections in group k. Then (1/Rk)
∑Rk

i=1 CLfdrk
(i) = [

∑mk
i=1 I(CLfdri >

λ)CLfdri]/[
∑mk

i=1 I(CLfdri > λ)]
p−→ E[I(CLfdri < λ)CLfdri]/E[I(CLfdri < λ)]. In Section 4.3

we have shown that (1− pk)Gk0(λ) = E[I(CLfdri < λ)CLfdri] and Gk(λ) = E[I(CLfdri < λ)].

Therefore (1/Rk)
∑Rk

i=1 CLfdrk
(i)

p−→ (1− pk)Gk0(λ)/Gk(λ) = mFDRk
OR = FDRk

OR + o(1).

Proof of Theorem 5. (i). Define the plug-in statistic T̂i = ĈLfdr(xi). Let Q̂PI(t) =

{∑i I(T̂i < t)Ti}/{
∑

i I(T̂i < t)}. The threshold of the data-driven procedure can be defined

as t̂PI = sup{t ∈ (0, 1) : Q̂PI(t) ≤ α}. Lemma A.1 in Sun and Cai (2007) implies that T̂i
p−→ Ti.

We only need to show that t̂PI
p−→ tOR. Similar to Lemma A.4 of Sun and Cai (2007), it can

be shown that Q̂PI(t)
p−→ QOR(t). Then by using the same constructions and arguments as in

Theorem 6, we can obtain that t̂PI
p−→ tOR. (ii) Note that T̂i

p−→ Ti and t̂PI
p−→ tOR, the proof

follows similar lines to the part (ii) of Theorem 4.
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Appendix II: Proof of Other Results

Proof of Proposition 1 (i). Define G0 and G1 as before. Let G = (1 − p)G0 + pG1. It

follows that mFDR(t) = (1− p)G0(t)/G(t) and mFNR(t) = (1− p)G̃0(t)/G̃(t). Note that the

MRC implies that

G0(t)
G1(t)

=

∫ t
0 ḡ0(s)ds∫ t
0 ḡ1(s)ds

=

∫ t
0 ḡ0(s)ds∫ t

0{ḡ1(s)/ḡ0(s)}g0(s)ds
<

∫ t
0 ḡ0(s)ds∫ t

0{ḡ1(t)/ḡ0(t)}g0(s)ds
=

ḡ0(t)
ḡ1(t)

.

Hence ḡ0G1 > ḡ1G0. Likewise, ḡ0G̃1 < ḡ1G̃0. The result follows by taking derivatives:

mFDR′(t) =
p(1− p)(ḡ0G1 − ḡ1G0)

G2(t)
> 0, and mFNR′(t) =

p(1− p)(ḡ0G̃1 − ḡ1G̃0)
G̃2(t)

< 0.

(ii). For classification rule δδδ = {I(Tki < c)}, we have E[(1−θki)δki] = E[(1−θki)E{δki|θki}] =
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(1− pk)Gk0(c). Similarly, E[θki(1− δki)] = pkG̃k1(c). Then the classification risk is

Rλ =
1
m

E

{
K∑

k=1

mk∑

i=1

λ(1− θki)δki + θki(1− δki)

}

= λ
∑

k

πk(1− pk)Gk0(c) +
∑

k

πkpkG̃k1(c)

= λ(1− p)G0(c) + pG1(c),

where G0 = {1/(1 − p)}∑
k πk(1 − pk)Gk0 and G1 = (1/p)

∑
k πkpkGk1. The cutoff c(λ) for

TTT that minimizes Rλ satisfies λ(1 − p)ḡ0(c) = pḡ1(c). Suppose λ1 < λ2, and ci solves the

previous equation when λi is chosen, i = 1, 2. It is sufficient to show that c1 > c2. This

must be true since otherwise we have c1 ≤ c2 and hence λ1 = {p/(1 − p)}{ḡ1(c1)/ḡ0(c1)} ≥
{p/(1− p)}{ḡ1(c2)/ḡ0(c2)} = λ2, which contradicts λ1 < λ2.

Proof of Theorem 6. Proposition 2 implies that for any TTT ∈ T and a given α, there

exists a unique t(α) such that the mFDR level of δδδ(TTT , t(α)111) is α. Let r(α) be the expected

number of rejections of procedure δδδ(TTT , t111). Now consider the optimal classification statistic

ΓΓΓ. Proposition 1 implies that the optimal cutoff γ for ΓΓΓ, and hence the expected number of

rejections r, is decreasing in λ. Therefore for a given r(α), there exists a unique λ(α) that

defines a weighted classification problem whose classification risk is minimized by δδδ{ΓΓΓ, γ(α)111}.
Suppose that δδδ{ΓΓΓ, γ(α)111} is used in the multiple testing problem. Let vΓΓΓ and uΓΓΓ (vTTT and

uTTT ) be the expected number of false and true positives of δδδ{ΓΓΓ, γ(α)111} (δδδ(TTT , t(α)111)). Then for

the weighted classification problem with weight λ(α), the classification risks of δδδ{ΓΓΓ, γ(α)111}
and δδδ(TTT , t(α)111) are RΓΓΓ = p + (1/m){λ(α)vΓΓΓ − uΓΓΓ} and RTTT = p + (1/m){λ(α)vTTT − uTTT },
respectively. Note that by construction, we have r(α) = vΓΓΓ + uΓΓΓ = vTTT + uTTT ; hence vΓΓΓ ≤ vTTT

and uΓΓΓ ≥ uTTT . Therefore mFDRΓΓΓ = vΓΓΓ/r ≤ vTTT /r = α and mFNRΓΓΓ = (m1 − uΓΓΓ)/(m − r) ≤
(m1 − uTTT )/(m− r) = mFNRTTT . Since TTT can be any test statistic satisfying the MRC, we have

shown the optimality of ΓΓΓ in the multiple testing problem.

Proof of Theorem 7. The posterior distribution of θθθ given xxx and ggg is

P (θθθ|xxx,ggg) =
K∏

k=1

mk∏

i=1

Pθki|Xki
(θki|xki),
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where Pθki|Xki
(θki|xki) = {(1−θki)(1−pk)fk0(xki)+θkipkfk1(xki)}/fk(xki). Hence the posterior

risk is

Eθθθ|XXX,gggL(θθθ,δδδ) =
1
m

K∑

k=1

mk∑

i=1

Eθki|Xki
{λ(1− θki)δki + θki(1− δki)}

=
1
m

K∑

k=1

mk∑

i=1

pkfk1(xki)
fk(xki)

+
1
m

K∑

k=1

mk∑

i=1

(1− pk)fk0(xki)− pkfk1(xki)
fk(xki)

δki

It is easy to see that the classification risk is minimized by

δδδ{ΛΛΛ, c(λ)111} = (δki) =
[
I

{
(1− pk)fk0(xki)

pkfk1(xki)
<

1
λ

}
: k = 1, · · · ,K; i = 1, · · · ,mk

]
.
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