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Suppose we observe X ; Nm~Ab,s2I ! and would like to estimate the predictive
density p~ y6b! of a future Y;Nn~Bb,s2I !+ Evaluating predictive estimates [p~ y 6x!
by Kullback–Leibler loss, we develop and evaluate Bayes procedures for this prob-
lem+ We obtain general sufficient conditions for minimaxity and dominance of
the “noninformative” uniform prior Bayes procedure+ We extend these results to
situations where only a subset of the predictors in A is thought to be potentially
irrelevant+We then consider the more realistic situation where there is model uncer-
tainty and this subset is unknown+ For this situation we develop multiple shrink-
age predictive estimators and obtain general minimaxity and dominance conditions+
Finally, we provide an explicit example of a minimax multiple shrinkage predic-
tive estimator based on scaled harmonic priors+

1. INTRODUCTION

We begin with the canonical normal linear model setup

X ; Nm~Ab,s 2I !, (1)

where X is an m � 1 vector of m observations, A is a full rank, fixed m � p
matrix of p potential predictors where m � p, and b is a p �1 vector of unknown
regression coefficients+ Based on observing X � x, we consider the problem of
estimating the predictive density p~ y 6b! of a future n � 1 vector Y where

Y ; Nn~Bb,s 2I !+ (2)

Here B is a fixed n � p matrix of the same p potential predictors in A, although
with possibly different values+ We also assume that X and Y are conditionally
independent given b+ Finally, we assume that s 2 is known and without loss of
generality set s 2 � 1 throughout+
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For each value of x, we evaluate a predictive estimate [p~ y 6x! of p~ y 6b! by
the well-known Kullback–Leibler ~KL! loss

L~b, [p~ y 6x!! ��p~ y 6b! log
p~ y 6b!

[p~ y 6x!
dy+ (3)

The overall quality of the procedure [p � [p~ y 6x! for each b is then conve-
niently summarized by the KL risk

RKL~b, [p! ��p~x 6b!L~b, [p~ y 6x!! dx+ (4)

Letting Zbx � ~A'A!�1A'x be the traditional least squares estimate of b based
on x, it is tempting to consider the plug-in predictive estimate [pplug-in~ y 6 Zbx !,
which simply substitutes Zbx for b in p~ y 6b!+ However, as we show in Sec-
tion 2 by extending the arguments of Aitchison ~1975!, the formal Bayes pre-
dictive estimate

[pU ~ y 6x! �
�p~x 6b!p~ y 6b! db

�p~x 6b! db

(5)

has smaller KL risk than [pplug-in~ y 6 Zbx ! for every b+ Thus, [pplug-in~ y 6 Zbx ! should
be ruled out, and we turn our focus to Bayes procedures+

For a prior p on b, the Bayes predictive estimator [pp~ y 6x! is given by

[pp~ y 6x! �
�p~x 6b!p~ y 6b!p~b! db

�p~x 6b!p~b! db

+ (6)

It also follows from the arguments of Aitchison ~1975! that for proper p, [pp
minimizes the average risk rp~ [p!� �RKL~b, [p!p~b! db+ Note that [pU in ~5! is
the formal Bayes estimate under the improper uniform “noninformative” den-
sity pU~b! [ 1 and would seem to be a good default procedure+ Indeed, [pU has
constant risk and is minimax under KL loss; see Liang ~2002! and Liang and
Barron ~2004!+ But surprisingly, as we will show, in many cases [pU itself can
be uniformly dominated in terms of KL risk by other Bayes predictive estimators+

In Section 2, we develop general conditions under which [pp will be mini-
max and uniformly dominate [pU in terms of the KL risk ~4! for the multiple
regression prediction problem+ Our results can be seen as a substantial gener-
alization of the work of George, Liang, and Xu ~2006!, who considered the
special case of this problem when X ; Nm~m,sx

2 I ! and Y ; Nm~m,sy
2 I !,

where m is the common unknown multivariate normal mean+ Moving further
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away from this common mean setup, we proceed in Section 3 to extend these
results to the setting where only a subset of the p predictors is considered to
be potentially irrelevant+ In Section 4, we consider the more realistic model
uncertainty setting where such a subset is unknown, and we develop minimax
multiple shrinkage predictive densities that adaptively shrink toward the model
most favored by the data+ In Section 5, we conclude by showing how our
results can be extended for minimax shrinkage prediction toward any linear
subspaces+ Although we do not consider the issue of admissibility in this paper,
it may be of interest to note that for the preceding multivariate normal predic-
tion problem Brown, George, and Xu ~2007! recently established that all admis-
sible predictive densities are Bayes procedures+

2. PRIORS FOR MINIMAX PREDICTIVE ESTIMATION

In this section, we develop general conditions on p for [pp in ~6! to uniformly
dominate [pU in ~5! under KL risk ~4!+ The minimaxity of such [pp will then
follow immediately from the minimaxity of [pU +

We begin by establishing some convenient notation+ As indicated previously,
we use Zbx � ~A'A!�1A'x to denote the least squares estimate of b based on x+
Although y is not observed, it will be useful to use

Zbx, y � ~C 'C!�1C '�x

y
� where C � �A

B
� (7)

to denote the least squares estimate of b based on x and y+ Note that Zbx ;
Np~b,SA! and Zbx, y ; Np~b,SC !, where for notational convenience throughout
we let SA � ~A'A!�1 and SC � ~C 'C!�1 + It will also be useful to let RSSx �
7x � A Zbx72 and

RSSx, y � ���x

y
�� C Zbx, y��

2

denote the corresponding residual sums of squares ~RSS!+ In terms of this nota-
tion, we have the following result+

LEMMA 1+ The uniform prior predictive estimate [pU in (5) can be ex-
pressed as

[pU ~ y 6x! �
1

~2p!n02
6C 'C 6�102

6A'A6�102 exp��
RSSx, y � RSSx

2
�

�
1

~2p! p02 6C6
exp� ~ y � B Zbx !

'C�1~ y � B Zbx !

2
� , (8)
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where C � I � BSA B '. Moreover, the KL risk of [pU is uniformly smaller than
that of the plug-in estimator [pplug-in~ y 6 Zbx ! .

Proof+ Because Zbx 6b ; Np~b,SA!, the posterior of b under the uniform
prior is b 6 Zbx ; Np~ Zbx ,SA!+ It follows that the posterior of Bb is Bb 6 Zbx ;
Np~B Zbx ,BSA B '!, and thus the predictive estimator is

Y 6 Zbx ; Np~B Zbx , I � BSA B ' !+

To calculate the risk of [pU , let ZHA � A~A'A!�1A' denote the hat matrix based
on x and ZHC � C~C 'C!�1C ' denote the hat matrix based on both x and y+ It is
easy to see that

RKL~b, [pU ! ���p~x 6b!p~ y 6b! log
p~ y 6b!

[pU ~ y 6x!
dxdy

�
1

2
log
6C 'C 6

6A'A6
�

n

2
�

1

2
��p~x 6b!p~ y 6b!@RSSx, y � RSSx # dxdy

�
1

2
log
6C 'C 6

6A'A6
�

n

2
�

1

2
@trace~Im�n � ZHC !� trace~Im � ZHA !#

�
1

2
log
6C 'C 6

6A'A6
�

n

2
�

n

2

�
1

2 �
i�1

p

log~ei � 1!,

where e1, + + + , ep are the eigenvalues of ~A'A!�1B 'B+ Moreover,

RKL~b, [pplug-in~ y 6 Zbx !! ���p~x 6b!p~ y 6b! log
p~ y 6b!

[pplug-in~ y 6 Zbx !
dxdy

�
1

2
��p~x 6b!p~ y 6b!@7y � B Zux72 � 7y � Bu72 # dxdy

�
1

2
�p~x 6b!7B Zux � Bu72 dx

�
1

2
trace~B~A'A!�1B ' !

�
1

2 �
i�1

p

ei +
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That [pU dominates [pplug-in~ y 6 Zbx ! follows from the fact that log~x � 1! � x for
any x � 0+ �

Risk comparisons of a Bayes predictive density [pp with [pU are greatly facil-
itated by the following representation of [pp in terms of [pU + An analogous rep-
resentation of the posterior mean in terms of the maximum likelihood estimator
~MLE!, which simplifies multivariate normal mean estimation under quadratic
risk, was proposed by Brown ~1971!+ For our representation, it will be useful to
denote the marginal distribution of Z 6b ; Np~b,S! under p by

mp~z;S! ��p~z 6b!p~b! db+ (9)

Thus, the marginal distributions of Zbx and Zbx, y under p are denoted by
mp~ Zbx ,SA! and mp~ Zbx, y,SC !, respectively+

LEMMA 2+ If mp~z;S! is finite for all z and S, then [pp~ y 6x! is a proper
probability distribution. Furthermore, it can be expressed as

[pp~ y 6x! �
mp~ Zbx, y ,SC !

mp~ Zbx ,SA !
[pU ~ y 6x! , (10)

where [pU is defined by (8).

Proof+ When mp~z;S! is finite for all z and S, that [pp~ y 6x! is a proper prob-
ability distribution follows from integrating with respect to y and switching the
order of integration+

Next, straightforward calculation yields

�p~x 6b!p~b! db

�� 1

~2p!m02
exp��

7x � Ab72

2
�p~b! db

�� 1

~2p!m02
exp��

7x � A Zbx72 � 7A Zbx � Ab72

2
�p~b! db

�
1

~2p!~m�p!02 exp��
7x � A Zbx72

2
�

� � 1

~2p! p02 exp��
7A Zbx � Ab72

2
�p~b! db

�
6A'A6�102

~2p!~m�p!02 exp��
RSSx

2
�mp~ Zbx ,SA !+ (11)
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Similarly, we obtain

�p~x 6b!p~ y 6b!p~b! db �
6C 'C 6�102

~2p!~m�n�p!02 exp��
RSSx, y

2
�mp~ Zbx, y ,SC !+

(12)

The representation ~10! follows immediately from ~6!, ~11!, and ~12!+ �

The next result provides a representation of the difference between the KL
risks of [pU and [pp in terms of the marginal distributions of Zbx and Zbx, y+

LEMMA 3+ The difference between the KL risks of [pU and [pp is given by

RKL~b, [pU !� RKL~b, [pp! � Eb,SC
log mp~ Zbx, y ;SC !� Eb,SA

log mp~ Zbx ;SA ! ,

(13)

where Eb,S~{! stands for expectation with respect to the Np~b,S! distribution.

Proof+ The KL risk difference between [pU and [pp can be expressed as

RKL~b, [pU !� RKL~b, [pp! ���p~x 6b!p~ y 6b! log
[pp~ y 6x!

[pU ~ y 6x!
dxdy

���p~x 6b!p~ y 6b! log
mp~ Zbx, y ,SC !

mp~ Zbx ,SA !
dxdy,

where the last equality follows from Lemma 2+ The result then follows from
the change of variable theorem+ �

To exploit the representation ~13!, we proceed to transform the distributions
to canonical form+ Because SA and SC are both symmetric and positive defi-
nite, there exists an invertible p � p matrix W such that

SA � WW ' and SC � WSDW ', (14)

where

SD � diag~d1, + + + ,dp !+ (15)

Because SC � ~C 'C!�1 � ~A'A � B 'B!�1 and B 'B is nonnegative definite, di �
~0,1# for all 1 � i � p with at least one di � 1+ Finally, let m � W �1b, [mx �
W �1 Zbx , and [mx, y � W �1 Zbx, y, so that

[mx ; Np~m, I ! and [mx, y; Np~m,SD !+ (16)
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LEMMA 4+ Let pW~m!�p~Wm! . Then, the difference between the KL risks
of [pU and [pp is given by

RKL~b, [pU !� RKL~b, [pp! � Em,SD
log mpW

~ [mx, y ;SD !� Em, I log mpW
~ [mx ; I ! ,

(17)

where Em,S~{! stands for expectation with respect to the Np~m,S! distribution.

Proof+ The result follows by transforming the expressions in Lemma 3:

Eb,SA
log mp~ Zbx ;SA ! ��p~ Zbx 6b! log�p~ Zbx 6b!p~b! dbd Zbx

��p~ [mx 6m! log�p~ [mx 6m!pW ~m! dmd [mx

� Em, I log mpW
~ [mx ; I !+

Similarly,

Eb,SC
log mp~ Zbx, y ;SC ! � Em,SD

log mpW
~ [mx, y ;SD !+

Thus, ~17! equals ~13!+ �

We now proceed to find conditions on mp for which the risk difference ~17!
is nonnegative for all m+ Because [pU is minimax, this will then imply that [pp is
minimax under the prior p corresponding to pW + Now for w � @0,1# , let

Vw � wI � ~1 � w!SD , (18)

where SD is defined as in ~15!+ Next, for Z ; Np~m,Vw!, let

hm~Vw ! � Em,Vw
log mpW

~Z;Vw !+ (19)

Thus, we may rewrite ~17! as

RKL~b, [pU !� RKL~b, [pp! � hm~V0 !� hm~V1!+ (20)

Because hm~w! is continuous in w, it suffices to derive conditions on mp such
that ~]0]w!hm~w! � 0 for all m and w � @0,1# + Letting vi be the ith diagonal
element of Vw, we have by the chain rule

]

]w
hm � �

1

p ]hm

]vi

]vi
]w

� �
1

p

~1 � di !
]hm

]vi
+ (21)

The following result provides unbiased estimates of the components of ~21!
that, when combined with ~17!, will be seen to play a key role in establishing
sufficient conditions on mp for [pp to be minimax and to dominate [pU + As noted
by George et al+ ~2006!, these estimates are very similar to the unbiased esti-
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mates of risk for the estimation of a multivariate mean under squared error
loss; see Stein ~1974, 1981!+

LEMMA 5+ If mpW
~z; I ! is finite for all z, then for any 0 � w � 1,

mpW
~z;Vw ! is finite. Moreover,

]

]vi
hm � Em,Vw �

]2

]zi
2

mpW
~Z;Vw !

mpW
~Z;Vw !

�
1

2
� ]
]zi

log mpW
~Z;Vw !�2 � (22)

� Em,Vw �2

]2

]zi
2MmpW

~Z;Vw !

MmpW
~Z;Vw !

� . (23)

Proof+ When mpW
~z; I ! is finite for all z, it is easy to check that for any

fixed z and any 0 � w � 1,

mpW
~z;Vw ! � �	

i�1

k

di
�102�mpW

~z; I ! � `+

Next, letting Z * � Vw
�102~Z � m! ; N~0, I !, we have

]

]vi
hm �

]

]vi
E log mpW

~Vw
102 Z * �m;Vw !

� E

]

]vi
mpW
~Vw

102 Z * �m;Vw !

mpW
~Vw

102 Z * �m;Vw !
, (24)

where

]

]vi
mpW
~Vw

102 z * �m;Vw !

�
]

]vi
� 1

~2p! p02Mv1+ + + vp
exp���

i�1

p ~Mvi zi
*�m i �m i

'!2

2vi
�pW ~m

' ! dm'

����
1

2vi
�
~zi �m i

'!2

2vi
2

�
zi
*2

2vi
�

zi
*~m i �m i

'!

2vi
302 �p~z 6m' !pW ~m

' ! dm'

�
]

]vi
mpW
~z;Vw !�� ~zi �m i !~zi �m i

'!

2vi
2

p~z 6m' !pW ~m
' ! dm'+
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Making use of the well-known univariate heat equation

]

]vi
mpW
~z;Vw ! �

1

2

]2

]zi
2

mpW
~z;Vw ! (25)

~see, e+g+, Steele, 2001, and the Brown, 1971, representation Ep~m i
' 6zi !� zi �

vi ~]0]zi ! log mpW
~z!!, ~22! and ~23! can be verified via the same steps as in the

proof of Lemma 3 in George et al+ ~2006!+ �

Now we can obtain sufficient conditions for a Bayes procedure [pp to be mini-
max by combining ~20!, ~21!, and Lemma 5+ The following result provides a
substantial generalization of Theorem 1 of George et al+ ~2006!+

THEOREM 1+ Suppose that mp~z;WW '! is finite for all z with the invertible
matrix W defined as in (14). Let H~ f ~z1, + + + , zp!! be the Hessian matrix of f.

(i) If trace$H~mp~z;WVwW '!!@SA � SC #% � 0 for all w � @0,1# , then [pp is
minimax under RKL. Furthermore, [pp dominates [pU unless p � pU.

(ii) If trace$H~Mmp~z;WVwW ' !!@SA � SC #% � 0 for all w � @0,1# , then [pp
is minimax under RKL. Furthermore, [pp dominates [pU if for all w � @0,1# ,
this inequality is strict on a set of positive Lebesgue measure.

Proof+ To prove the minimaxity of [pp under RKL, it suffices to show that
~22! or ~23! is nonpositive because by ~21! that would imply the nonnegativity
of ~20!+ Dominance would further follow by showing that ~22! or ~23! is also
strictly negative on a set of positive Lebesgue measure+

Noting that mpW
~z;Vw ! � mp~Wz;WVwW '!, and letting Wz � Iz, we obtain

�
i�1

k

~1 � di !
]2

]zi
2

mpW
~z;Vw ! � �

i�1

k

~1 � di !
]2

]zi
2

mp~ Iz;WVwW ' !

� �
i�1

k

~1 � di ! �
j�1

p

�
k�1

p

Wji

]2mp~ Iz;WVwW ' !

] Izj ] Izk

Wki

� trace$~I � SD !W
'H~mp~ Iz;WVwW ' !!W %

� trace$H~mp~ Iz;WVwW ' !!W~I � SD !W
' %

� trace$H~mp~ Iz;WVwW ' !!@SA � SC #%+ (26)

Similarly,

�
i�1

k

~1 � di !
]2

]zi
2MmpW

~z;Vw ! � trace$H~Mmp~ Iz;WVwW ' !!@SA � SC #%+ (27)

Now ~i! and ~ii! follow immediately from ~22!, ~23!, ~26!, and ~27!+ �
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The next result follows using the fact that ~]20]zi
2!mpW

~z;Vw ! � 0 when
~]20]m i

2!pW ~m! � 0+

COROLLARY 1+ Suppose that mp~z;WW '! is finite for all z. Then [pp will
be minimax if

trace$H~p~b!!@SA � SC #% � 0 a.e.

Furthermore, [pp will dominate [pU unless p � pU.

Example (Scaled harmonic prior)

Suppose that A � B+ In this case,

trace$H~p~b!!@SA � SC #% �
1

2
trace$H~p~b!!SA %

�
1

2
trace$H~p~b!!WW ' %

�
1

2
¹2pW ~m!+ (28)

Let pW~m! @ 7m7�~ p�2! when p � 3 and pW~m! @ 1 when p � 3+ Note that
pW is harmonic, i+e+, ¹2pW~m! [ 0, and not equal to pU when p � 3+ For
p � 3, the corresponding prior on b is a “scaled harmonic prior”

p~b! @ 7W �1b7�~ p�2! � 7diag~h1
�102 , + + + ,hp

�102!b7�~ p�2!, (29)

where h1, + + + ,hp � 0 are the eigenvalues of SA and for p � 3, p~b! @ 1+
~The expression ~29! is obtained using the fact that there exists an orthonor-
mal matrix O such that W � O diag~h1

102 , + + + ,hp
102!O ' +! By Corollary 1 and

~28!, the predictive estimator [pp under this prior is minimax and dominates
[pU when p � 3+ It is easy to check that these results hold when A � rB for

any known constant r+

3. PREDICTIVE DENSITY ESTIMATION NEAR SUBSET MODELS

When a prior centered at 0 such as the scaled harmonic prior ~29! is applied to
b, the risk reduction of [pp over [pU is greatest when all the components of b are
close to 0+ Thus, it would be sensible to use this prior if it was felt that all p
predictors in A and B were potentially irrelevant+ However, such a prior would
be ineffectual if only a subset of the p predictors were irrelevant, in other words,
if only a subset of the b components were close to 0+ In this section, we extend
our results for the setting where such a subset is known+ This will set the stage
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for Section 4, where we develop new results for the more realistic model uncer-
tainty setting where such a subset is unknown+

Let S be the subset of $1, + + + , p% corresponding to the indices of the poten-
tially irrelevant predictors and let qS � 6S 6 be the number of elements in S+ Let
bS be the subvector of b corresponding to the columns of A indexed by S+ Sim-
ilarly, let ZbS, x and ZbS, x, y be the subvectors of Zbx and Zbx, y, respectively, corre-
sponding to bS + Finally, for notational convenience, let SA,S and SC,S be the
submatrices of SA and SC , respectively, which are the covariance matrices of
ZbS, x and ZbS, x, y+

When only the elements of bS are thought to be close to zero, it would be
sensible to consider a prior that is uniform on b NS , where NS is the complement
of S+ We denote such a prior by pS and let pS

* be the restriction of pS to bS so
that

pS ~b! � pS
*~bS ! (30)

is a function of bS only+ To exploit the possibility that bS is close to zero, pS
*

would then be centered around 0+

LEMMA 6+ If mpS
~z;S! is finite for all z and S, then [ppS

~ y 6x! is a proper
probability distribution. Furthermore, it can be expressed as

[ppS
~ y 6x! �

mpS
*~ ZbS, x, y ,SC,S !

mpS
*~ ZbS, x ,SA,S !

[pU ~ y 6x! , (31)

where [pU is defined by (8).

Proof+ The first assertion was proved in Lemma 2+ Next, proceeding as in
the derivation of ~11!, we obtain

�p~x 6b!pS ~b! db

�
1

~2p!~m�p!02 exp��
7x � A Zbx72

2
�

� � 1

~2p! p02 exp��
7A Zbx � Ab72

2
�pS

*~bS ! db

�
6A'A6�102

~2p!~m�p!02 exp��
RSSx

2
�mpS

*~ ZbS, x ,SA,S !+ (32)
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Similarly, we obtain

�p~x 6b!p~ y 6b!pS ~b! db

�
6C 'C 6�102

~2p!~m�n�p!02 exp��
RSSx, y

2
�mpS

*~ ZbS, x, y ,SC,S !+ (33)

The representation ~31! follows immediately from ~6!, ~32!, and ~33!+ �

The following results provide sufficient conditions for the minimaxity of [ppS

and for its dominance over [pU + We omit the proofs, which are obtained using
the same arguments leading to Theorem 1 and Corollary 1+ Analogously to our
previous development there, we let WS be an invertible qS � qS matrix such that
SA,S � WS WS

' and SC,S � WSD,SW ' , where SD,S � diag~d1, + + + ,dqS
! as in ~15!+

Finally, let VS,w � wI � ~1 � w!SD as in ~18!+

THEOREM 2+ Suppose that mpS
*~z;WS WS

'! is finite for all z. Let H~ f ~z1,
+ + + , zqS

!! be the Hessian matrix of f.

(i) If trace$H~mpS
*~z;WS VS,wWS

'!!@SA,S � SC,S #% � 0 for all w � @0,1# ,
then [ppS

is minimax under RKL. Furthermore, [ppS
dominates [pU unless

pS � pU.
(ii) If trace$H~MmpS

*~z;WS VS,wWS
'!!@SA,S � SC,S #% � 0 for all w � @0,1# ,

then [ppS
is minimax under RKL. Furthermore, [ppS

dominates [pU if for all
w � @0,1# , this inequality is strict on a set of positive Lebesgue measure.

COROLLARY 2+ Suppose that mpS
*~z;WS WS

'! is finite for all z. Then [ppS

will be minimax if

trace$H~pS
*~bS !!@SA,S � SC,S #% � 0 a.e.

Furthermore, [ppS
will dominate [pU unless pS � pU.

Example (continued) (Scaled harmonic prior)

Suppose that A � B so that as in ~28!,

trace$H~pS
*~bS !!@SA,S � SC,S #% �

1

2
¹2pWS

~mS !, (34)

where mS � WS
�1bS + Here let pWS

~m! @ 7mS7�~qS�2! when qS � 3 and
pW~mS ! @ 1 when qS � 3+ As before, pWS

is harmonic, i+e+, ¹2pWS
~m! [ 0,

and not equal to pU when qS � 3+ For qS � 3, the corresponding scaled har-
monic prior on b is
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pS ~b! � pS
*~bS ! @ 7WS

�1bS7�~qS�2! � 7diag~h1
�102 , + + + ,hqS

�102!bS7�~qS�2!, (35)

where h1, + + + ,hqS
� 0 are the eigenvalues of SA,S and for qS � 3, pS~b! @ 1+

By Corollary 2 and ~34!, [ppS
here is minimax and dominates [pU when qS � 3+

4. MINIMAX MULTIPLE SHRINKAGE PREDICTIVE ESTIMATION

We consider the more realistic model uncertainty setting where there is uncer-
tainty about which subset of the p predictors in A and B should be included in
the model+ For each choice of S, we have obtained general sufficient conditions
for [ppS

to be minimax and to dominate pU + However, such [ppS
will only offer

meaningful risk reduction when b is near the region where pS is largest+ For
example, under the scaled harmonic prior in ~35!, such risk reduction occurs
when bS is close to 0+ The difficulty then is how to proceed when the subset of
irrelevant predictors indexed by S is unknown+ Rather than arbitrarily selecting
S, an attractive alternative is to use a multiple shrinkage predictive estimator
that uses the data to adaptively emulate the most effective [ppS

+
The multiple shrinkage procedure here is obtained by using a finite mixture

of the contemplated priors+A similar multiple shrinkage construction for param-
eter estimation under squared error loss was proposed and developed by George
~1986a, 1986b, 1986c!+ Let V be the set of all the subsets S under consider-
ation, possibly even the set of all possible subsets+ For each S � V, let pS be
the designated prior of the form ~30! on b and assign it probability wS � @0,1#
such that �S�VwS � 1+ Thus we construct the mixture prior

p*~b! � �
S�V

wSpS ~b!+ (36)

This prior yields the multiple shrinkage predictive estimator

[p*~ y 6x! � �
S�V

[p~S 6x! [ppS
~ y 6x!+ (37)

Here each [ppS
is given by ~31! in Lemma 6, and each posterior probability is of

the form

[p~S 6x! �
wS mpS

*~ ZbS, x ,SA,S !

�
S�V

wS mpS
*~ ZbS, x ,SA,S !

, (38)

which follows from ~32!+
The form ~37! reveals [p*~ y 6x! to be an adaptive convex combination of the

individual shrinkage predictive estimates [ppS
+ Note that through [p~S 6x!, [p*

doubly shrinks [pU~ y 6x! by putting more weight on the [ppS
for which mpS

* is
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largest and hence [ppS
is shrinking most+ Thus, we expect [p* to offer meaning-

ful risk reduction whenever bS is near the region where pS is largest for any
S � V+ For example, if every pS in p* is one of the scaled harmonic priors in
~35!, such risk reduction occurs when bS is close to 0 for any S � V for
which qS � 3+ Thus, the potential for risk reduction using [p* is far greater
than the risk reduction using an arbitrarily chosen [ppS

+
We should also note that the allocation of risk reduction by [p* is in part

determined by the wS weights in ~38!+ Because each [p~S6x! is so adaptive through
mpS

* , choosing the weights to be uniform should be adequate+ However, one
may also want to consider some of the more refined suggestions for choosing
such weights for the multiple shrinkage estimators in George ~1986b!+

The potential for a multiple shrinkage [p* to offer meaningful risk reduction
in many different regions of the parameter space is greatly enhanced when it is
minimax and therefore can only improve on the “noninformative” minimax [pU +
The following two results show that such minimaxity and dominance of [pU can
be obtained+ We then conclude with an explicit example of such domination+

THEOREM 3+ Suppose for all S � V, mpS
*~z;WS WS

'! is finite for all z. Let
H~ f ~z1, + + + , zqS

!! be the Hessian matrix of f. If for all S � V,

trace$H~mpS
*~z;WS VS,wWS

'!!@SA,S � SC,S #% � 0 for all w � @0,1# , (39)

then [p* in (37) is minimax under RKL. Furthermore, [p* dominates [pU unless
p* � pU.

Proof+ From ~31!, ~37!, and ~38!, it is straightforward to show that [p* can be
reexpressed as

[p*~ y 6x! �
�

S�V

wS mpS
*~ ZbS, x, y ,SC,S !

�
S�V

wS mpS
*~ ZbS, x ,SA,S !

[pU ~ y 6x!+ (40)

Because p* is of the same form as [ppS
in ~31!, namely, a ratio of marginals

times [pU , we can apply the same arguments leading to the proofs of Theo-
rems 1 and 2+ These steps show that a sufficient condition for the minimaxity
and dominance claims is

� �
S�V

wS H~mpS
*~z;WS VS,wWS

'!!@SA,S � SC,S #� � 0 for all w � @0,1# +

This condition is implied if ~39! holds for all S � V+ �

The next result follows using the same argument leading to Corollaries 1
and 2+
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COROLLARY 3+ Suppose for all S � V, mpS
*~z;WS WS

'! is finite for all z.
Then [p* in (37) will be minimax if for all S � V

trace$H~pS
*~bS !!@SA,S � SC,S #% � 0 a.e.

Furthermore, [p* will dominate [pU unless p � pU.

Example (continued) (Scaled harmonic prior)

For each S � V, let pS~b! be the scaled harmonic prior given by ~35! when
qS � 3 and by pS~b! @ 1 when qS � 3+When A � B, by Corollary 3, [p* under
these priors will be minimax and will dominate [pU if qS � 3 for at least one
S � V+

5. PREDICTIVE DENSITY ESTIMATION NEAR LINEAR SUBSPACES

The harmonic prior predictive estimator [ppS
~ y 6x! described in Section 3 and

incorporated into the multiple shrinkage predictive estimators [p*~ y 6x! in Sec-
tion 4 offers risk reduction in the region of the parameter space where bS is
close to 0+ This can be seen as a special case of the following general construc-
tion of a predictive estimator that obtains risk reduction when b is close to a
linear subspace of R p +

Suppose one would like to obtain a predictive density estimator with great-
est risk reduction in the region where b is close to a linear subspace G � R p +
In the case of [ppS

~ y 6x!, G would be the subspace of all b � R p for which
bS [ 0+ Alternately, if risk reduction was desired, say, when the components
of b were close to equal, then one would consider G � @1# , the subspace
spanned by ~1, + + + ,1!' + Let PGb [ argming�G7b � g7 be the projection of b
onto G and define bG [ ~I � PG !b to be the projection of b onto the orthog-
onal complement of G+ For the construction of [ppS

~ y 6x! in Section 3, bG �
bS + For G � @1# , bG � ~b� Nb! where Nb is the vector of components all equal
to ~10p!�i�1

p bi +
The main idea behind the general construction is to use a prior that leads to

shrinkage of bG toward 0 while leaving the remainder of b untouched+ This
can be obtained by using a prior of the form

pG ~b! � pG
* ~bG !, (41)

which is effectively uniform on ~b � bG !+ This is a special case of the prior
over bS in ~30!+ Note that because bG is qG [ ~ p � dim~G!! dimensional, pG

*

is a function from RqG to R+
Analogous to the construction in Lemma 6, predictive density estimators [ppG

corresponding to priors of the form pG in ~41! can be expressed as

[ppG
~ y 6x! �

mpG
* ~ ZbG, x, y ,SC,G !

mpG
* ~ ZbG, x ,SA,G !

[pU ~ y 6x!, (42)
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where [pU is defined by ~8!, ZbG, x � ~I � PG ! Zbx and ZbG, x, y � ~I � PG ! Zbx, y are
the projections of Zbx and Zbx, y onto the orthogonal complement of G, respec-
tively, and SA,G and SC,G are the covariance matrices of ZbG, x and ZbG, x, y, respec-
tively+ It is straightforward to see that Theorem 2 and Corollary 2 and their
proofs can be extended to obtain conditions on pG

* ~bG ! for such [ppG
to be

minimax and to dominate [pU + ~Simply substitute the symbol G for the symbol
S throughout+!

Example (continued)

Extending ~35!, consider the following scaled harmonic prior on b+ For
qG � 3, let

pG ~b! � pG
* ~bG ! @ 7diag~h1

�102 , + + + ,hqG

�102!bG7�~qG�2!, (43)

where h1, + + + ,hqG
� 0 are the eigenvalues of SA,G , and for qG � 3, let

pG~b! @ 1+ Note that when qG � 3 the resulting [ppG
shrinks [pU toward G,

offering reduced risk when b is close to G+ By the extension of Corollary 2,
such [ppG

will be minimax and dominate [pU when A � B and qG � 3+
Finally, following the development in Section 4 one can easily incorporate

such [ppG
into multiple shrinkage predictor estimators [p*+ Letting V be a set of

subspaces G under consideration, construct the mixture prior

p*~b! � �
G�V

wGpG ~b!, (44)

where for each G � V, pG is the designated prior of the form ~41! and wG �
@0,1# is such that �G�VwG � 1+ This prior yields the multiple shrinkage pre-
dictive estimator

[p*~ y 6x! � �
G�V

[p~G 6x! [ppG
~ y 6x!, (45)

where each [ppG
is given by ~42! and each posterior probability is of the form

[p~G 6x! �
wG mpG

* ~ ZbG, x ,SA,G !

�
G�V

wG mpG
* ~ ZbG, x ,SA,G !

+ (46)

Here, [p*~ y 6x! is an adaptive convex combination of the individual shrinkage pre-
dictive estimates [ppG

and offers risk reduction whenever bG is near the region
where pG is largest for any G � V+ Thus, the potential for risk reduction using
[p* is far greater than the risk reduction using an arbitrarily chosen [ppG

+ It is
straightforward to see that Theorem 3 and Corollary 3 and their proofs can be
extended to get conditions for such [p*~ y 6x! to be minimax and dominate [pU +
~Simply substitute the symbol G for the symbol S throughout+!
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Example (continued) (Scaled harmonic prior)

For each G � V, let pG~b! be the scaled harmonic prior given by ~43! when
qG � 3 and by pG~b! @ 1 when qG � 3+ When A � B, by the extension of
Corollary 3, [p* for these priors will be minimax and will dominate [pU if qG � 3
for at least one G � V+
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