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Abstract

An honest confidence interval for the error variance in a stepwise regression is a

one-sided interval that adjusts for the effects of variable selection. The endpoint of this

interval may be many times larger than the usual endpoint. Such adjustments are most

important when selecting variables from a large number of available predictors, partic-

ularly in situations with more available predictors than observations. An illustration

using a regression model of stock market returns illustrates the calculations.
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1 Introduction

Stepwise regression is known for its ability to overfit data. Suppose that we wish to

build a regression model based on n independent observations of a response variable Y

and a large set of p potentially useful predictors X1, X2, . . . , Xp. Virtually any statistics

package will allow us to fit a sequence of approximating models of the form

Ŷk = β̂0 + β̂1Xj1 + · · ·+ β̂kXjk
.

For each choice of k, the chosen model ideally minimizes the sum of squared residuals,

Residual SSk =
∑

i

(Yi − Ŷi,k)2 ,

among all models with k predictors. Computational demands, however, limit the use of

such best-subset regression models to small values of p, and generally simpler stepwise

alternatives are used. These simpler algorithms (e.g., forward or backward stepwise

regression) obtain comparable residual sums of squares unless the data possess certain

forms of collinearity that are hard for greedy algorithms to recognize [1,10]. Whichever

algorithm is used, the fitted model typically identifies numerous, apparently significant

effects even when there is no association between the response and predictors. The

optimism of the fitted model contrasts with poor out-of-sample prediction; models

obtained by stepwise selection can fit quite well in-sample yet predict poorly when

applied to new data.

This tendency of stepwise regression to overfit grows with the number of available

predictors, particularly once p > n. Situations with more predictors than observations

are common in financial modeling as illustrated below, but also occur in the physical

sciences. For example, the expense of direct measurements has led to the use of near

infrared spectroscopy (NIR) to assess the chemical composition of, for example, foods

and waste products. In these analyses, the absorption of light at many (infrared)

frequencies predicts the concentration of, say, protein in wheat or dioxin in smoke

[9]. Miller [10] notes an application of NIR spectroscopy with 757 such predictors but

only 42 observations. Another context rich in predictors is the analysis of weather

patterns; a host of factors is available for predicting the chance of rainfall on a given

day. Attempts to capture nonlinearities with interactions and polynomial terms further

increase the number of predictors.
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Figure 1: The scatterplot of the monthly returns on McDonald’s stock versus returns on the

S&P 500 index during 2002–2005.
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For a financial illustration, we offer a regression model for the sequence of monthly

returns on McDonald’s stock from January, 2002 through December, 2005. Financial

theory suggests that returns on McDonald’s stock ought to be associated with con-

temporaneous returns on the stock market, and indeed this is the case. Figure 1 plots

the monthly returns of McDonald’s stock on the returns on the S&P500 index; the

correlation is about 0.68. This is a well-known relationship, we are going to need to

look elsewhere to “beat the market.” The lure of discovering special features of the

market is so powerful that some are tempted to try virtually any predictor that might

lead to a money-making scheme. Table 1 summarizes the fitted coefficients of one

such model; the 17 predictors were chosen from a set which includes the return on the

S&P500 and 50 additional factors, labeled X1, . . . , X50. We first performed forward

stepwise regression using the criterion p-to-enter = 0.25, followed by backward stepwise

with p-to-remove = 0.10. This two-step process (fit an initial model and then remove

the insignificant terms) is similar to the approach studied in [7], but there p < n.

The overall significance of the fit is impressive (R2 = 0.910 and F17,30 = 17.806 with

p < 0.0001). Perhaps more impressive (at least for those who have not read Freedman’s

paper), many of the individual p-values are quite significant, with six having p-values

less than 0.0001. These are small p-values, even compared to the traditional Bonferroni

threshold 0.05/51 = 0.001.

We have found examples like this one to be useful in conveying the dangers of
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Table 1: Coefficients of a stepwise regression model for monthly returns of McDonald’s stock.

The overall R2 = 0.910 (F17,30 = 17.806, p < 0.0001) and the residual variance s2
17 = 0.02982.

Term Estimate Std Error t Ratio p-value

Constant 0.0166 0.0061 2.72 0.0107

S&P 500 0.6863 0.1390 4.94 0.0000

X4 -0.0147 0.0060 -2.45 0.0204

X8 0.0129 0.0054 2.40 0.0230

X11 -0.0185 0.0061 -3.04 0.0049

X19 -0.0133 0.0050 -2.68 0.0119

X22 0.0215 0.0058 3.69 0.0009

X28 -0.0141 0.0059 -2.41 0.0223

X31 -0.0155 0.0060 -2.57 0.0155

X33 -0.0118 0.0050 -2.39 0.0233

X34 0.0339 0.0058 5.83 0.0000

X35 -0.0150 0.0045 -3.31 0.0024

X36 0.0272 0.0055 4.99 0.0000

X37 -0.0416 0.0053 -7.79 0.0000

X39 0.0317 0.0051 6.26 0.0000

X44 0.0293 0.0071 4.15 0.0003

X46 -0.0352 0.0055 -6.46 0.0000

X48 -0.0193 0.0059 -3.28 0.0026
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overfitting to MBA students [6]. The example is compelling because, despite the great

fit, each of the 50 additional predictors aside from returns on the S&P500 consists of

independent Gaussian random noise. Each Xj is a sample of 48 observations from a

standard normal distribution, simulated independently of one another and the response.

To cope with the problems brought on by variable selection, we focus on the familiar

residual variance estimator

s2
k =

Residual SSk

n− k − 1
.

Because of the selection process, s2
k is biased and can grossly overstate the fit of the

model. Berk [1] simulated this bias in problems with relatively few (between 4 and 15)

predictors and p < n/2. Even in these problems, the bias of s2
k is as large as 25%, and

the problem becomes much more severe as p/n increases. Simple adjustments to s2
k

derived here conservatively allow for the effects of model selection and yield a one-sided

confidence interval that compensates for overfitting.

Concerns about overfitting in stepwise regression are not new and have been studied

virtually since the introduction of this algorithm. For example, Draper and Smith [4,

Chapter 6] followed their overview of stepwise methods with a discussion of overfitting

that includes informal graphical methods for deciding when enough variables have

been added. They suggested a “scree test” procedure (see their Figure 6.2) which

identifies the appropriate choice for k by noting where the graph of s2
k on k flattens.

They cautioned, though, that this procedure is suitable only when one has many more

observations than included predictors. In our example with p > n, s2
k decreases steadily

as k grows as shown in Figure 2.

More formal procedures for guarding against overfitting have considered the null

distribution of R2 under stepwise selection. Extending the results of Diehr and Hoflin

[2], Rencher and Pun [11] simulated stepwise regression in a few models with p slightly

larger than n (e.g., choosing k = 4 out of p = 40 with n = 10). Rencher and Pun also

approximated the distribution of R2 treating the m =
(p
k

)
possible R2 statistics for a

given k as a sample from a beta distribution. This approach leads to the approximate

1− α upper critical value

R̃2
α = B−1

(
1 +

log α

m

)
, (1)

where B denotes the beta distribution with parameters k/2 and (n − k − 1)/2. They
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Figure 2: The estimated error variance s2
k decreases steadily as the number of variables k in

the stepwise model increases.
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improved this approximation by using their simulation results to adjust for dependence

among the collection of m R2 values, obtaining

R2
α = B−1

(
1 +

log α

(log m)1.8m0.04

)
. (2)

The adjustment in effect reduces the number of possible models from m in (1) down

to (log m)amb
, with a and b determined empirically. For the stock market example

(k = 17, p = 51), this expression gives the critical value R2
0.05 = 0.906, indicating that

this model has not explained significant variation. Alternatively, others have proposed

stopping rules for halting the selection process [3,5]. Neither these rules nor measures

of the inflated size of R2 appear in the output of standard stepwise software.

Our approach differs from these in several respects. First, we allow the model to

have significant effects and adjust an interval for s2
k rather than present a critical value

for the null case. Our method allows signal in the fitted model and places an upper

confidence limit on the error variance given the fitted model rather than bound R2 in

the null case. Also, rather than the exception, our interest centers on models with as

many or more predictors than observations. Finally, we offer a very simple approximate

expression for the adjustments to s2
k.
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2 An Honest Confidence Interval for σ2

The goal of this section is to produce a confidence interval for the error variance σ2

that holds up under model selection. We first require a model that defines σ2. We

assume that the response vector Y is normal with arbitrary mean vector η and constant

variance σ2, Y ∼ N(η, σ2In) or

Y = η + ε, εi ∼ N(0, σ2) ,

where the deviations εi are independent. Given that we allow p ≥ n (and indeed focus

on this context), our interval is one-sided. With p ≥ n, a perfect fit is possible so that

the appropriate lower bound is zero. The challenge is to find an upper bound that

implies a guaranteed level of fit. Since the mean η is unlikely to lie in the column span

of k < n chosen predictors, the resulting projection error inflates s2
k. This effect works

in the opposite direction of selection bias which leads to optimistically small estimates

of error variation. Such lack of fit makes the selection-adjusted interval conservative in

that the bounds are only so good as the set of predictors allows.

The usual confidence interval for σ2 ignores the selection process. For the fitted

model in Table 1, the residual standard error (or root mean squared error) is estimated

as

sk =

√
Residual SS
n− k − 1

=
√

0.0266
30

= 0.0298 .

In the usual analysis, (n− k − 1)s2
k/σ2 ∼ χ2

n−k−1 so that

P

{
σ2 ≤ (n− k − 1)s2

k

χ2
n−k−1,0.05

}
= 0.95 , (3)

where χ2
d,α is the α quantile of a chi-squared distribution with d degrees of freedom. It

follows that the 95% upper confidence limit for σ in the example is

σ ≤
√

0.0266
18.49

= 0.038 .

In fact, this endpoint ought to be about three and a half times larger.

To adjust for variable selection, we begin with the assumption that the stepwise

process has found the best fitting model from the set of m =
(p
k

)
possible models with

k regressors. As a result,

(n− k − 1)s2
k

σ2
= min(z2

1 , . . . , z
2
m) ,
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where each z2
i = RSSi/σ2 is the normalized residual sum of squares for the ith model,

with i = 1, . . . ,m. In general, the z2
i are dependent, and each is distributed as a non-

central χ2
n−k−1 random variable. Noncentrality arises since some fits exclude important

predictors (if in fact any are useful).

The Bonferroni inequality provides a critical value that allows for the minimization,

dependence, and noncentrality. We need to replace the usual quantile χ2
n−k−1,α by a

value C such that

1− α ≤ P{(n− k − 1)s2
k

σ2
≥ C}

= P{min(z2
1 , . . . , z

2
m) ≥ C}

= P{z2
1 ≥ C ∩ · · · ∩ z2

m ≥ C}

= 1− P{z2
1 < C ∪ · · · ∪ z2

m < C} (4)

The inequality (4) obtains if we bound

P{z2
1 < C ∪ · · · ∪ z2

m < C} ≤
m∑

i=1

P{z2
i < C} ≤ α , (5)

and simply choose C such that for each marginal probability

P{z2
i < C} ≤ α

m
. (6)

The α/m quantile from the extreme left tail of the χ2
n−k−1 density meets these needs,

and we set

C = χ2
n−k−1,α/m . (7)

This choice also conservatively handles noncentrality. Since this choice for C satis-

fies (6) for a central χ2 variate, this inequality also holds for noncentral χ2’s since

noncentrality increases z2
i . We term the resulting interval,

[0,
(n− k − 1)s2

k

χ2
n−k−1,0.05/m

]

an honest confidence interval for σ2.

The adjusted quantiles that determine the honest interval change dramatically with

k. The quantile χ2
n−k−1,α found in the usual interval is hardly affected by whether we

choose k = 5, 10, or 15 predictors when n = p = 50, ranging from 29.8 down to 21.7.

In contrast, the adjusted critical values with α replaced by α/m fall from 7.7 to 2.1.

The contour plot in Figure 3 offers another view of this effect. The usual upper limit of
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Figure 3: Contour plot of the ratio of chi-squared critical values, χ2
n−k−1,α/χ2

n−k−1,α/m, for

varying k and p with α = 0.05 and n = 48. The point locates the stock market example. To

convert the usual one-sided interval for σ2 to an honest interval, multiply the endpoint by

the value shown.
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the confidence interval for σ2 is s2
k times d/χ2

d,α. Adjusting for selection bias increases

the latter factor to d/χ2
d,α/m by changing the tail probability. Figure 3 shows the ratio

of critical values χ2
30,α/χ2

30,α/m for various values of 1 ≤ k ≤ 35 and k ≤ p ≤ 100 with

n = 48 observations. The point in the figure locates the stock market example, and

the diagonal line is a reminder that k ≤ p. For k < 5, there is relatively little selection

bias since the ratio is about 2 or 3. As k grows, however, the selection effect increases

rapidly.

For the illustrative model, the adjustment for selection bias makes the endpoint of

the honest confidence interval for σ about three and a half times larger than that of the

usual interval. Though we did not use best-subsets regression, we will assume that the

best fitting model with 17 predictors is chosen from the collection of m =
(51
17

)
possible
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models. The adjusted critical value (computed with Mathematica) is then

C = χ2
30,α/m ≈ 1.46 ,

compared to the usual critical value 18.49 at the 0.05 quantile. The upper limit for the

resulting 95% confidence interval for σ is

σ ≤
√

0.0266
1.46

= 0.135 ,

compared to the unadjusted endpoint 0.038.

Adjusting for selection as we have anticipates the lack of predictive power of the

model. The addition of so many random predictors to the fit degrades the model’s

ability to predict future returns. For example, conditioning on β̂ at the values in Table

1, the 16 random predictors can be expected to add
∑17

j=2 β̂2 = 0.0962 to the mean

squared error of prediction, much more variation than the usual limit accommodates.

A simple model using a constant alone would be preferable since the observed standard

deviation of McDonalds return during these four years is only 0.079.

3 Simulation Evidence

The proposed interval is conservative, possessing a larger upper endpoint than needed

for the nominal coverage. How conservative? As one might suspect, the size of the

excess coverage depends on the conditions of the model. In terms of the noncentrality,

we believe that stepwise methods are most common (and appropriate) in problems

characterized by substantial noise and relatively few meaningful predictors. In this

setting, most of the z2
i are roughly central χ2 random variables. As to the use of

the Bonferroni inequality in (5), for m independent events with probabilities αi, this

inequality bounds

1−
m∏

i=1

(1− αi) =
∑

i

αi −
∑
i<j

αiαj + · · · ≤
∑

i

αi .

In our case, αi = α/m and the error from using the Bonferroni inequality is on the

order of α2 = 0.0025 and not of great concern. However, the z2
i assess overlapping

subsets of predictors and are dependent. Bounds that ignore this dependence are

conservative since one has not maximized over so many independent events. The
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numerical adjustments of [11] that produce (2) account for some of these effects. With

p > n, however, there is less overlap and less dependence.

We ran a small simulation to see how well the adjusted quantiles track the distri-

bution of s2
k in stepwise regression. We used stepwise regression to select models for

varying choices of k from a set of p = n and p = 4n random predictors. Compari-

son boxplots in Figure 4 summarize the observed distribution of the residual sums of

squares of models fit with n = 50. In addition, the curve in each frame locates the

quantile χ2
n−k−1,.05/m. The gap between the boxplots and χ2

n−k−1,.05/m measure how

conservative the intervals are. Since the boxplots lie above these points for all but the

largest values of k, our procedure is conservative unless one is fitting many predictors.

For example, with k = 40 and n = p = 50 about 1% of the residual sums of squares

are below the χ2
9,.05/m quantile.

Here are the details of the simulation. For each of the 500 trials in the simulation,

the predictors and response are independent standard normal samples. We ran a

simple variation on stepwise regression to obtain the desired number of predictors.

For each choice of k, we ran forward stepwise to identify a model with an excess of

predictors (including about 1.15k predictors), then used backward stepwise to fewer

than k predictors (about 0.9k), and finally ran forward stepwise again to select the

final model. This procedure was followed sequentially as k was increased for each

trial. This little “oscillation” produced smaller residual sums of squares for large k

than were obtained by either forward stepwise or the usual mixed forward/backward

algorithm. For example, the lower quartile of the residual sums of squares obtained by

the oscillating procedure in the simulation with k = 40 and n = p = 50 is 60% of the

quartile obtained by forward stepwise. Although both are near zero, these differences

are quite large on the logarithmic scale of Figure 4.

4 Understanding the Honest Interval

The tiny tail probabilities in these calculations obscure how k, n, and p influence the

selection-adjusted endpoint. Indeed, it can be quite hard to compute such an extreme

quantile for the χ2 distribution. The approximation derived in this section for χ2
d,α/m

remedies both problems.
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Figure 4: Simulated residual sums of squares obtained by stepwise regression models, shown

with the χ2
n−k−1,.05/m quantile (line). (a) Boxplots summarize 500 independent trials with

n = 50 and p = 50.
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Figure 4: (b) Summary of 500 trials with n = 50 and p = 200.
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Our approximation arises from a series expansion for the left tail probability of a χ2

random variable. Assume that the degrees of freedom d = n− k− 1 is an even integer

and write h = d/2. Then integration by parts shows that the critical value C = χ2
d,α/m

satisfies

α

m
=

∫ C

0

th−1e−t/2

Γ(h)2h
dt

=
∫ C/2

0

th−1e−t

Γ(h)
dt

= e−C/2

(
(C/2)h

h!
+

(C/2)h+1

(h + 1)!
+ · · ·

)

= e−C/2 (C/2)h

h!

(
1 +

C/2
h + 1

+
(C/2)2

(h + 1)(h + 2)
+ · · ·

)

= e−C/2 (C/2)d/2

(d/2)!

(
1

1− C
d

)θ

, (8)

for some 0 < θ < 1, assuming the ratio C/d < 1 as is the case in the left tail.

Now approximate the log of the left hand side of (8) using Stirling’s formula log n! =

(n + 1
2) log n− n + (1/2) log 2π + O(1/n) to obtain

log α/m = log α− log

(
p

k

)
= log α− 1

2
log

p

k(p− k)
− pH(k/p) + O(1) , (9)

where H denotes the entropy of a Boolean random variable,

H(x) = −x log x− (1− x) log(1− x), 0 < x < 1 ,

and define H(x) = 0 for x = 0, 1. The entropy is roughly quadratic near its maximum

at x = 1/2. Equating (9) to the log of the right hand side of (8) gives (after another

application of Stirling’s formula and simplifying)

log d/C = 1+
2p

d
H(k/p)− 1

d

(
C + 2 log α + log

dk(p− k)
p

+ 2θ log(1− C/d) + O(1)
)

.

(10)

If we drop the parenthesized collection of terms multiplied by 1/d (which includes the

nominal level α), we have an asymptotic upper bound for the multiplier of s2
k in the

upper limit of the confidence interval (3),

d/C ≤ exp
(

1 +
2p

d
H(k/p)

)
. (11)
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This bound is asymptotic in the sense that (11) obtains as d →∞, with k and p fixed

or held fixed proportionally to n.

If we ignore the inequality in (11) and solve for C, we obtain the approximate

quantile

C̃ =
d

exp
(
1 + 2p

d H(k/p)
) . (12)

This approximation is accurate unless k is small. For small values of k, one obtains a

better approximation to the tail quantile by solving

log d/C = 1 +
2p

d
H(k/p)− C

d
(13)

for C. Table 2 compares C̃ and this better approximation to the actual χ2 critical value

for various modeling situations. The first part of the table fixes the ratio k/n = 1/10,

and the second part holds k/n = 1/2. In either case, p = 2n with n = 50, . . . , 250.

Accuracy of C̃ is adequate, about 10% below the chi-square value, when choosing

numerous predictors, but is more than 20% too small when k = n/10. We will discuss

the orthogonal quantiles in Section 5.

5 Discussion

The procedure used to find a one-sided confidence interval also implies a bias-corrected

estimator for σ2. Since the nominal level α does not appear in the expression (12) for

C̃, we are in effect estimating σ2 by

d s2
k

C̃
= s2

ke
1+ 2p

d
H(k/p) . (14)

The exponential term is an adjustment for selection bias. For the stock market example,

the corrected estimate of σ2 is

0.02982e1+ 2×51
30

H(17/51) = 0.02982 × 3.164 = .0532 .

One might consider using such a bias corrected estimator to pick the appropriate

value for k. That is, choose the model which minimizes (14). Some simple calculations

show this procedure is related to model selection using a penalized likelihood criterion.

Without a balancing measure of the amount of explained variation, however, choosing

the model which has the smallest selection-adjusted upper confidence limit leads to
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Table 2: Comparison of the approximate quantile C̃ from (8) and the better approximation

from (13) to χ2
n−k−1,.05/m for models with n = p and k = n/10 (top) and k = n/2 (bottom).

Orthogonal quantiles O.05 from a simulation of 2500 samples.

Nominal Selection Adjusted Approximations Percentage Error

k n = p χ2
d,.05/m O.05 χ2

d,.05/m “Better” C̃ “Better” C̃

5 50 29.79 18.8 10.15 9.62 7.73 -5.2 -24

10 100 68.25 42.4 20.60 19.7 15.8 -4.5 -23

15 150 108.3 67.2 30.89 29.7 23.8 -3.8 -23

20 200 149.1 92.3 41.10 39.8 31.8 -3.2 -23

25 250 190.4 118.4 51.28 49.8 39.9 -2.8 -22

25 50 13.85 1.9 0.563 .502 .492 -11 -13

50 100 33.93 4.6 1.185 1.09 1.06 -8.1 -10

75 150 55.19 7.5 1.794 1.68 1.64 -6.5 -8.6

100 200 77.05 10.5 2.396 2.26 2.21 -5.5 -7.6

125 250 99.28 13.5 2.996 2.85 2.79 -4.8 -6.9
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parsimonious models. Continuing with our illustration, the 95% one-sided confidence

limit for σ2 using no predictors (i.e., simply fit a constant) is

(n− 1)s2
0

χ2
n−1,.05

=
47× .07922

32.27
= 0.0962 .

The selection adjusted endpoint for a model with k = 1 predictors (the one predictor

is the return on the S&P 500) gives the interval

(n− 2)s2
1

χ2
n−2,.05/51

=
46× .05862

21.89
= 0.0852 .

Because the upper endpoint is smaller with this predictor, this approach ’prefers’ the

model with one predictor over a model with just an intercept. Continuing, the best

fitting model with one predictor returns s2
2 = 0.05502. The endpoint of the honest

interval for this model is

(n− 3)s2
2

χ2
n−3,2×.05/(51×50)

=
45× .0552

16.76
= 0.0902 .

The endpoints for k = 3, 4, . . . are larger still in spite of the downward trend seen in

Figure 2. Thus, a model selection procedure based on the upper endpoint for σ2 chooses

k = 1 and correctly recognizes the importance of the market return as a predictor.

With fast computing widely available, one can simulate more accurate quantiles

for a given design matrix rather than rely on the conservative estimates given here.

A common situation in which the computing is particularly easy is the special case of

p = n orthogonal predictors, as encountered in a wavelet regression. In this setting,

one is not choosing from among all
(p
k

)
subsets, but rather picks the k predictors with

the largest t statistics. Rather than use C̃ or χ2
d,α/m, a more accurate upper bound for

s2
k bound can be found rapidly by simulation. Ignoring the effect of fitting a constant,

assume that the n orthogonal predictors are the columns of an n× n identity matrix.

In this canonical form, the minimum residual sum of squares obtained by a model with

k predictors is

RSSk =
n−k∑
j=1

Y 2
(j) ,

where Y 2
(1) < Y 2

(2) < · · · < Y 2
(n) are the ordered squares of Yj ∼ N(0, 1). The sampling

distribution of RSSk in this context is hard to express analytically, but very easy

to compute. The column of orthogonal quantiles in Table 2 includes the 5% points
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from 2500 samples for each choice of n. These quantiles are several times larger than

the conservative χ2
d,α/m bounds which allow for any type of dependence among the

covariates.

We note in closing that our procedure is not needed when p << n−1. In this setting,

one can and often should estimate σ2 using the full model and use the resulting estimate

to assess the various models, as recommended in [8]. Evidently, though, common

statistics packages do not make this choice and instead estimate σ2 sequentially when

computing a stepwise regression. Our adjustment for selection bias is again relevant

for such algorithms.
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