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  Estimating player contribution in hockey with 
regularized logistic regression  
   Abstract:   We present a regularized logistic regression 

model for evaluating player contributions in hockey. The 

traditional metric for this purpose is the plus-minus statis-

tic, which allocates a single unit of credit (for or against) 

to each player on the ice for a goal. However, plus-minus 

scores measure only the marginal effect of players, do not 

account for sample size, and provide a very noisy estimate 

of performance. We investigate a related regression prob-

lem: what does each player on the ice contribute, beyond 

aggregate team performance and other factors, to the odds 

that a given goal was scored by  their  team ?  Due to the 

large- p  (number of players) and imbalanced design setting 

of hockey analysis, a major part of our contribution is a 

careful treatment of prior shrinkage in model estimation. 

We showcase two recently developed techniques – for pos-

terior maximization or simulation – that make such analy-

sis feasible. Each approach is accompanied with publicly 

available software and we include the simple commands 

used in our analysis. Our results show that most players do 

not stand out as  measurably  strong (positive or negative) 

contributors. This allows the stars to really shine, reveals 

diamonds in the rough overlooked by earlier analyses, and 

argues that some of the highest paid players in the league 

are not making contributions worth their expense.  
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1        Introduction 
 Player performance in hockey is difficult to quantify due 

to the continuity of play, frequent line changes, and the 

infrequency of goals. Historically, the primary measure 

of individual skater performance has been the  plus-minus  

value: the number of goals scored by a player ’ s team 

minus the number of goals scored by the opposing team 

while that player is on the ice. 

 More complex measures of player performance have 

been proposed to take into account game data beyond 

goal scoring, such as hits or face-offs. Examples include 

the adjusted minus/plus probability approach of Schuck-

ers et al.  (2010)  and indices such as Corsi and DeltaSOT, 

as reviewed by Vollman  (2010) . Unfortunately, analysts 

do not generally agree on the relative importance of the 

added information. While it is possible to statistically  infer  

additional variable effects in a probability model for team 

performance (Thomas et al. , 2012 ) our experience is that, 

in the low-scoring world of hockey, such high-dimen-

sional estimation relies heavily upon model assumptions 

that are difficult to validate. As a result, complex scores 

provide an interesting new source of commentary but 

have yet to be adopted as consensus performance metrics 

or as a basis for decision making. 

 Due to its simplicity, the plus-minus remains the 

most popular measure of player performance. It has been 

logged for the past 50 years and is easy to calculate from 

the current resolution of available game data, which con-

sists of the identities of each player on the ice at any time 

point of the game as well as the times when goals were 

scored. However, a key weakness is that the plus-minus 

for each player does not just depend on their individual 

ability but also on other factors, most obviously the abili-

ties of teammates and opponents. 

In statistical terms, plus-minus is a  marginal effect : it 

is an aggregate measure that averages over the contribu-

tions of opponents and teammates. Since the quality of 

the pool of teammates and opponents that each player is 

matched with on-ice can vary dramatically, the marginal 

plus-minus for individual players are inherently polluted. 

Another disadvantage is that plus-minus does not control 

for sample size, such that players with limited ice-time 

will have high variance scores that soar or sink depending 

on a few chance plays. 

 A better measure of performance would be the  partial 

effect  of each player, having controlled for the contribu-

tions of teammates, opponents and possibly other vari-

ables. To this end, we propose a logistic regression model 

to estimate the credit or blame that should be apportioned 
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to each player when a goal is scored. In keeping with the 

spirit of plus-minus (and using the same publicly available 

data), we focus on the list of players on the ice for each goal 

as our basic unit of analysis. Briefly, denote by  q  
i
  the prob-

ability that a given goal  “  i  ”  was scored by the home team 

[ home  and  away  are just organizational devices; results are 

unchanged upon modeling p( away ) instead]. Then 
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 where   β     =  [   β  
1
    . . .     β   

 np 
 ] ′  is the vector of  partial plus-minus 

effects  for each of  n  
 p 
  players in our sample, with { h  

 i 1
  ...    h  

 i 6
 } 

and { a  
 i 1
   . . .   a  

 i 6
 } being the indices on   β   corresponding to 

home-team ( h ) and away-team ( a ) players on the ice for 

goal  i .  1      The intercept term α
i
 can depend upon additional 

covariates,   e.g. the model we present in Section 2.2 incor-

porates team indicators into α
i
. In almost all regressions, 

one is susceptible to the twin problems of  over-fit , where 

parameters are optimized to statistical noise rather than 

fit to the relationship of interest, and  multicollinearity , 

where groups of covariates are correlated with each other 

making it difficult to identify individual effects. These 

issues are especially prominent in analysis of hockey, with 

a high dimensional covariate set (around 1500 players in 

our sample) and a very imbalanced  experiment design   –  

due to use of player lines, wherein groups of two to three 

players are consistently on ice together at the same time, 

the data contain many clusters of individuals who are 

seldom observed apart. 

A crucial contribution of our paper is a careful treat-

ment of the partial player effects ββ that helps alleviate 

both problems. As outlined in Section 2.2, a prior distribu-

tion with its mode at the origin is placed on each β
j
; this 

adds a penalty – e.g., 2

j jλ β or
j jλ β – on the likelihood 

function and shrinks estimates of this coefficient towards 

zero. We use the term regularization to refer to the shrink-

age of regression coefficients towards zero that is induced 

by our prior distribution. 

 Building on new developments in regularized esti-

mation for regression with binary response (such as our 

home-vs-away outcome), we leverage machinery that has 

only very recently become available for data sets of the size 

encountered in our analysis. In particular, we detail penal-

ized likelihood maximization for fast robust estimates of 

player contribution, as well as Bayesian simulation for 

exploring joint uncertainty in multiple player effects, 

allowing for comparisons between groups of players which 

would not have been possible with earlier methodology. In 

both cases, inference proceeds through simple commands 

to newly developed packages for the open source R analy-

sis software (R Development Core Team , 2010 ). The result-

ing player effects are easy to interpret, and our hope is that 

readers will experiment with our models to feed a discus-

sion on alternative plus-minus metrics. 

 The remainder of the paper is outlined as follows. 

Section 1.1 provides an overview of previous attempts at a 

partial player affect. These avoid full-scale logistic regres-

sion which, until very recently, would not have been com-

putationally feasible. Section 2 details our data and general 

regression model. Section 3 presents point estimates of 

player effects, comparing results both with and without 

controlling for teams and under a range of levels of prior 

regularization. These regularized point estimates can be 

used for variable selection, since only a subset of effects 

will be non-zero. Section 4 then describes a full Bayesian 

analysis of the joint uncertainty about players, and illus-

trates how such information can be used by coaches and 

general managers to make important personnel decisions. 

The paper concludes in Section 5 with a discussion, and 

an appendix which contains details of our estimation algo-

rithms and the entertainment of a full interaction model. 

1.1    Background on adjusted plus-minus 

 The strategy of conditional estimation for player ability 

is not new to sports analysis. For example, Awad  (2009)  

advocates a simple adjustment to hockey plus-minus that 

controls for team strength by subtracting team-average 

plus-minus. Basketball analysts have been active with 

conditional performance models, including the linear 

regressions employed by Rosenbaum  (2004)  and Ilardi 

and Barzilai  (2004) . Due to frequent scoring and variabil-

ity in the combination of players on the floor, estimation 

of partial effects is generally easier in basketball than in 

the low scoring and imbalanced design setting of hockey. 

 For hockey, Macdonald  (2010)  proposes analysis 

of the relationship between players and goals through 

regression models similar to those used in basketball. He 

tracks the length of time on ice and goals scored in each 

of around 8  ×  10 5   “ shifts ”   –  unique combinations of players 

 –  to build a goals-per-hour response that is regressed onto 

player effect variables analogous to our   β   in (1). While 

Macdonald ’ s work is related to ours, as both are regress-

ing scoring onto player presence, we outline several dis-

tinctions between the approaches which are helpful in 

understanding the motivation behind our modeling. 

 The use of shift-time (regardless of whether a goal 

was scored) introduces extra information but also leads  1     Note that we include goalies in our analysis. 
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to questions on data quality and model specification. For 

example, we find a median actual shift length of eight 

seconds, such that the recorded total time-on-ice for 

unique player combinations is built from pieces that may 

be too small for play to develop or be assessed. The average 

goals-per-shift is around 0.02 such that   <  2 %  of the sampled 

response is nonzero. This calls into doubt the assumption 

of approximate normality upon which Macdonald ’ s stand-

ard error estimates are based. Moreover, although there are 

more observations in the sample than there are covariates, 

a vast majority of scoreless shifts implies that least-squares 

estimation is dominated by a few scoring shifts. Even with 

a more balanced sample, estimation on this dimension is 

likely overfit without regularization. Indeed, Macdonald 

reports only top skaters among those with at least 700 min 

on ice; we suspect that players with very little ice time 

dominate the full list of effects.   

2    Data and model 
 This section details our data, the full regression model, 

and prior specification. 

2.1    Data 

 The data, downloaded from www.nhl.com, comprise of 

information about the teams playing (with home/away 

indicators), and the players on ice (including goalies) for 

every even strength goal during the four regular seasons 

of 2007 – 2008 through 2010 – 2011. There were  n  
 p 
   =  1467 

players involved in  n  
 g 
   =  18,154 goals. In keeping with the 

canonical definition of plus-minus, we do not consider 

power-play/shorthanded or overtime goals; however, our 

framework is easily extended to handle such data. 

This article focuses on the 4-season data aggregate 

and treats player ability as constant over this range. The 

larger data window allows for better effect measurement, 

especially due to the increased variation in on-ice config-

uration and player movement between teams. However, 

different aggregations will be desirable for different situa-

tions and one can apply our methods to any subset. Given 

a data window that is too short for measurement of indi-

vidual ability, our sparse estimation methods will simply 

set all player effects to zero.

 The data are arranged into a response vector  Y  and a 

design matrix  X  comprising of two parts,  X  
 T 
  and  X  

 P  
 , for indi-

cator variables corresponding to team and player identities 

respectively. For each goal  i  the response vector contains 

 y  
 i 
    =  1 for goals scored by the home team and  y  

 i 
   =   – 1 for away 

team goals. The corresponding  i  th  row of  X  indicates the 

teams playing and the players on the ice when that goal was 

scored, with  x  
 Tij 

  equal to 1 for the home team and  x  
 Pij 

  equal to 

1 for each home player on the ice, and  x  
 Tij 

  equal to  – 1 for the 

away team and  x  
 Pij 

  equal to −1 for each away player on the 

ice. All other  x  
 Tij 

  and  x  
 Pij 

  indicators are equal to zero. Figure  1   

illustrates this data structure with two example rows. 

 Note that the design matrix is extremely sparse: 

overall dimensions are  n  
 g 
   ×  ( n  

 p 
  + 30)  =  18,154  ×  1497, but every 

row has 1485 zeros for more than 99 %  sparsity. As already 

noted, the design is also highly imbalanced: only about 

27 K of the greater than one million possible player pairs 

are actually observed on the ice for a goal.  

 Figure 1    A diagram of the design matrix and two example rows. Two goals are shown under the same configuration of teams and players, 

except that the home team has scored in the first case and the visiting team in the second (so that the two rows have opposite parity). 

Exactly two teams have nonzero entries and exactly 12 players (six home, six away) are nonzero in each row.    
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2.2    Logistic likelihood model 

 From the data definition of 2.1, we can reformulate our 

logistic regression equation of (1) as 

    

log =
1

i
Ti Pi

i

q

q

⎛ ⎞
+′ ′⎜ ⎟−⎝ ⎠

x xα β

 

 (2) 

 where q
i
  =   p ( y  

 i 
   =  1),   

1=[ ]Pi Pi Pinp
x x ′x �  is the vector corre-

sponding to the  i  th  row of  X  
 P 
 , x 

 Ti 
  is similarly the  i  th  row 

of  X  
 T 
 ,   α   is the length-30 vector of team effects and   β   is the 

length- n  
 p 
  vector of player effects. 

 The likelihood model in (2) is easily extended to incor-

porate additional conditioning information or more flex-

ible player-effect specifications. For example, x 
 Ti 

  and   α   

could be lengthened to account for special teams effects 

(e.g., including variables to indicate penalties or other 

non-five-on-five situations) or potential sources of bias 

(e.g., referee indicators). Moreover, x 
 Pi 

  and   β   could be 

doubled in length to include distinct offensive and defen-

sive player effects, as in Ilardi and Barzilai  (2004) . We 

focus on the current formulation to stay true to the spirit 

of the standard plus-minus metric, although we do inves-

tigate a model with pairwise interactions between players 

in Appendix B.  

2.3     Bayesian approach and prior 
regularization 

 We impose shrinkage on our regression  coefficients by 

taking a Bayesian approach that combines our logistic like-

lihood model  (2) with a prior distribution centered at zero. 

The general Bayesian approach consists  of a likelihood 

p(y|θ) model that specifies the observed data as a function 

of unknown parameters θ and a prior distribution p(θ) for 

them. In this particular application, the  unknown parame-

ters θ are the team partial effects α α and player partial effects 

β. Inference in the Bayesian approach is based the posterior 

distribution p(θ|y) ∝ p(y|θ) × p(θ). In a full Bayesian analy-

sis, the entire posterior distribution is estimated, usually 

via simulation-based methods such as Markov chain 

Monte Carlo. Alternatively, we can restrict ourselves to the 

maximum a posteriori (MAP) estimates of the unknown 

parameters.

Imposing a prior distribution on the regression coef-

ficients of our logistic model (2) is necessary to guard from 

overfit and provide stable estimates of individual player 

effects. To emphasize this point, consider an attempt at 

maximum likelihood estimation for the simplest non-

team-effect model (  Ti′x αα  replaced by shared  α ).   Fitting the 

standard logistic regression model2 yields a half hour wait 

and several numerical errors. Forward step-wise regres-

sion3 is not a solution: it takes hours to converge on a 

model with only three significant players. 

 Using prior distributions  π ( α  
 j 
 ) and  π (   β   

 j 
 ) for each model 

parameter adds stability to the fitted model by shrinking 

each coefficient towards a central value of zero. From the 

perspective of point estimation, placing a prior distribution 

on   β   
 j 
  (or α

j
 equivalently) centered at zero is equivalent to 

adding a penalty term for   β   
 j 
  ≠ 0 in the objective function that 

is being optimized to give us point estimates for each   β   
 j 
 . 

Different types of prior distributions correspond to dif-

ferent penalty functions on β
j
≠0. One common strategy 

uses a normal prior distribution (centered at zero) on each 

  β   
 j 
  which corresponds to a L2 penalty (  2

j jλ β ) in the objective 

function. Thus, the MAP estimates from a Bayesian  regres-

sion model witha normal prior distribution are equivalent 

to the estimates from ridge regression (Hoerl and Kennard, 

1970). A normal prior distribution (L2 penalization) is used 

under an assumption that every covariate has a limited effect 

on the response, i.e. elements of   β   are non-zero but small. 

Another popular strategy uses a Laplace prior distri-

bution on each β
j
 which corresponds to a L1 penalty (λ

j
 | β

j
 |) 

in the objective function. Thus, the MAP estimates from a 

Bayesian regression model with a Laplace prior distribu-

tion are equivalent to the estimates from lasso regression 

(Tibshirani, 1996). A Laplace prior distribution yields a 

penalized point estimate of exactly β
j
 = 0 in the absence 

of strong evidence, and non-zero   β   
 j 
  for only a subset of 

significant variables. In this way, using an L1 penalty 

naturally permits variable selection where only a subset 

of covariates are selected as having substantive predictive 

effects on the outcome variable. 

 We favor an L1 penalty/Laplace prior for player effects  

ββ because it permits variable selection: the identification of 

players that stand out as having truly substantive effect. We 

also employ a L2 penalty/normal prior for coefficients on 

 “ nuisance ”  variables, such as the team effects   α  . L1 and L2 

penalties are fairly standard choices for sparse and dense 

models respectively: L2 has a long history in Tikhonov 

regularization and ridge regression, while L1 has a shorter 

history but wide usage in Lasso estimation. The focus on 

influential players yielded by coefficient sparsity is key to 

our analysis and exposition, while dense estimation is a 

more conservative choice for the controlling variables since 

it does not assume their effect can be represented in a lower 

2 Fitted in R using the command fit>-glm(goals~XP, family=

“binomial”).

3  We used forward step-wise regression with  the Bayes information  

criterion  (BIC).
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dimensional subspace (results are practically unchanged if 

one uses L1 regularization for the team effects). 

For completeness, we summarize here that this com-

bination of L1 and L2 penalty terms is built into our Bayes-

ian model by imposing the following prior densities on 

our regression coefficients, 

    

30
2

=1 =1

( , )= N( ;0, ) Laplace( ; ).

np

t t j j

t j

π α σ β λ∏ ∏αα β
 

 (3) 

 We begin our analysis by investigating the maximum 

a posteriori (MAP) estimates of   α   and   β   in Section 3. We 

then explore the full posterior distribution of our regular-

ized logistic regression model in Section 4. Specification 

of prior parameters  σ  
 t 
  and  λ  

 j 
  dictates the amount of penal-

ization imposed on estimates, and each analysis section 

outlines its approach and sensitivity to this choice. In par-

ticular, our MAP estimation jointly optimizes over both 

the coefficients and their penalty, while the fully Bayes-

ian analysis averages player effects over possible values 

of a single shared penalty. Full estimation algorithms and 

software description are in Appendix A.   

3     Point estimates of player 
contribution 

 This section presents MAP point estimates for   β  , the player 

contribution partial effects, under the regression in (2) 

with priors in (3). Team-effect prior variances are fixed 

at  σ  
 t 
   =  1, giving a standard normal prior specification. Due 

to the large amount of likelihood information on team 

effects, our results are largely insensitive to the value of  σ  
 t 
 . 

 The Laplace prior parameters  λ  
 j 
  for our player effects 

require more care. We place an additional  hyperprior  dis-

tribution on the  λ  
 j 
  parameters so that the data can help 

us infer these penalty parameters along with their coeffi-

cients. The term hyperprior is used for parameters such as 

λ
j
 that are themselves involved in the prior distributions of 

our main parameters of interest (player effects β). A model 

with several levels of unknown parameters (and prior dis-

tributions) is often called a Bayesian hierarchical model. 

Following Taddy  (2012a) , independent conjugate 

gamma prior distributions are assumed for each  λ  
 j 
  with 

var[ λ  
 j 
 ]  =  2  ×  E[ λ  

 j 
 ]. Throughout Section 3.1 we use E[ λ  

 j 
 ]  =  15 which 

was smallest penalty we could manage while eliminating 

large nonzero  β  
 j 
  for players with very little ice time.    Note also 

that posterior samples for a  shared  L1 penalty  λ  are obtained 

as a byproduct of the full Bayesian analysis in Section 4. The 

inferred posterior mean E[λ] is again around 15, further justi-

fying a MAP estimation centered on this value. 

Details of our model implementation are given in 

Appendix A. Section 3.2 offers a comparison to traditional 

plus-minus, and a sensitivity analysis for the prior para-

metrization is given in Section 3.3. We conclude by aug-

menting with salary information in Section 3.4 in order to 

comment on player value-for-money. 

3.1    MAP estimation of partial player effects 

 We consider two models for conditional player effect esti-

mation: the full team-player model of (2) and a player-only 

model, where   Ti′x αα  is replaced by a single shared param-

eter  α . Figure  2   shows the main effects obtained for the 
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 Figure 2    Comparing main effects for players in the team-augmented model (dots), to the player-only model. The lines point to the uncon-

ditional (player-only) estimates. The coefficients have been ordered by the dots. Players discussed in the text have their names colored in  

red. Players with coefficients estimated as zero under both models are not shown.    
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team-player model under MAP estimation (dots), and 

compares to those from a player-only model (connecting 

lines). Only players with non-zero effects in either model 

are shown. The  x -axis orders the players by their estimates 

in the team-player model, expressing a marginal ordering 

on player ability. 

 Observe that incorporating team effects causes many 

more player effects to be zeroed out, with many players ’  

stand-out performance being absorbed by their respective 

teams (red lines tracking to zero). Note that ability esti-

mates for players who frequently share the ice will gener-

ally be negatively correlated: if players are always on the ice 

together when a goal is scored, an increase in the estimated 

effect of one player must be accompanied by a decrease in 

the effect of the other player. In MAP estimation under a 

sparsity-inducing L1 penalty, this will often manifest itself 

by forcing one players effect being estimated at zero. 

Perhaps the most surprising result is that Sidney 

Crosby, considered by many to be the best player in the 

NHL, has a contribution that drops after accounting for 

his team (although he still stands out). Jonathan Toews ’  

and Zdeno Chara ’ s effects show similar behavior, the 

latter having no player-team effect. As all three players 

captain their respective (consistently competitive) teams, 

we should perhaps not be surprised that team success is 

so tightly coupled to player success in these cases. 

 An exception is Pavel Datsyuk, who stands out as the 

leagues very best, having a coefficient that is unmoved 

even after considering the strong team effect of his Red 

Wings. There are also a few players, such as Dwayne 

Roloson, who shine despite their team. Roloson has a 

strong positive effect in the player-team model but a null 

one in the player-only model. We will revisit this particu-

lar result in Section 3.2. 

 On the negative side, Colton Orr and Stephane Veil-

leux seem to shoulder undue blame for their team ’ s poor 

performance. Orr, recognized as an enforcer when on the 

ice, may not have been used effectively by his coaching 

staff. Veilleux played alongside Gaborik on the Wild in the 

late 2000s, and both players get a positive bump in the 

player-team model. Finally, Craig Adams and Radek Bonk 

stand out as poor performers in both models.  

3.2    Comparison to traditional plus-minus 

 Our variable selection approach provides a rich but 

compact summary of player performance. In our team-

player model with an L1 penalty, the vast majority of players 

obtain a  “ mediocre ”    ˆ =0jβ  and our focus can be narrowed 

to those who have a significant partial effect on scoring. In 

contrast, plus-minus assigns a non-zero number for most 

players without any reference to statistical significance. 

Thus the most obvious departure from traditional plus-

minus is that far fewer players are distinguishable from 

their team-average under our performance metric. 

 From the model equation in (1), nonzero partial player 

estimates are an additive effect on the log odds that,  given 

a goal has been scored , it is a goal for that player ’ s team 

(controlling for team and the other players). In other words, 

  je
β

 is a multiplier on the for-vs-against odds for every goal 

where player  j  is on the ice, so that our para meters   β   relate 

multiplicatively to the  ratio  of for-vs-against, while tradi-

tional plus-minus is calculated as the  difference  between 

for-vs-against goals. Moreover, our partial effects measure 

deviations in performance from the team average so that 

a player on a very good team needs to be even better than 

his teammates to gain a positive   β  , while an average player 

on a good team has an impressive plus-minus measure 

just by keeping up. 

 Despite these differences, both metrics are an attempt 

to quantify player contribution. Figure  3   compares our 

MAP estimates of player partial effects from the team-

player model to the traditional plus-minus aggregated 

over our four seasons of data. The left-hand plot shows 

the player estimates, labeled by positional information.  

 Discrepancies between the two metrics in Figure 3 

are informative. One player, Dwayne Roloson, has a plus-

minus whose sign disagrees with that on his   ̂ .jβ  We also 

noted earlier that Roloson has a partial player effect that 

is pulled up in the team-player model compared to the 

player-only model. For an explanation, we can examine 

the   ˆ jα  coefficients of the teams which appear in the table 

on the right-panel of Figure 3. Each of the four teams 

Roloson played for (TB, NYI, EDM, and MIN) all have sig-

nificantly negative   ˆ jα  values. Apparently Roloson was a 

quantifiable star on a string of poorly performing teams. 

Our model reasonably attributes many of the goals count-

ing against him in his traditional plus-minus as counting 

against his team as a whole. 

 Another observation from Figure 3 is that our model 

estimates disagree with traditional plus-minus about 

who is the best player in hockey. Alex Ovechkin is the 

player with the largest plus-minus value, although there 

are nearly a dozen other players with plus-minus values 

are within ten percent of his. In contrast, Pavel Datsyuk 

is the best player according to our partial player effects 

by a huge margin: his posterior odds of contributing to a 

goal for his team are nearly 50 %  larger than the next best 

players (Ovechkin and Gaborik). 

 The second best player in hockey by traditional plus-

minus is Roberto Luongo. However, from Figure 2, we see 
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 Figure 4    Coefficient estimates for a subset of players (chosen from all players with nonzero coefficients at E[ λ  
 j  ]  =  15, our specification 

in  Sections 3.1–3.2). The expected L1 penalty is shown along the bottom, with corresponding  %  of estimated   β   
 j   ≠  0 along the top and 

 coefficient value on the right.    

that Luongo ’ s partial player estimate is   ̂ =0.jβ  In the context 

of a goalie, the implication is that his play is not signifi-

cantly different from that of his back-ups on the Vancouver 

Canucks. This suggests that undue blame and credit may 

have been placed on Luongo for both regular season suc-

cesses and postseason collapses. At the other end, observe 

that the best ranked player with a negative partial player esti-

mate (Michael Del Zotto) has a nearly-zero plus-minus value.  

3.3    Prior sensitivity analysis 

 MAP estimates for each   β   
 j 
  are sensitive to E[ λ  

 j 
 ], the 

expected L1 penalty for each coefficient. This relationship 

is illustrated in Figure  4  , which shows estimated coeffi-

cients under increasing penalty for some players with large 

effects in Sections 3.1–3.2. We see that as the expected value 

of the penalty term grows, the number of non-zero players 
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(top X-axis of Figure 4) decreases substantially, which 

illustrates the variable selection aspect of our model. The 

magnitudes of the MAP estimates of partial player effects β
j
 

are also shrunk towards zero with larger penalties. 

 The far left values have a very low E[ λ  
 j 
 ]  =  1/10 and 

non-zero   ˆ jβ  for 98 %  of players. At this extreme, there are 

three plotted players with stronger effect than Datsyuk. 

Only Zach Parise is more effective than Datsyuk at E[ λ  
 j 
 ]  =  2, 

which leads to 56 %  of players with non-zero effects. At 

E[ λ  
 j 
 ]  =  4, Datsyuk is the top player and 36 %  of players have 

non-zero effects. Datsyuk remains the best player at very 

high penalization levels, until he is the only measurable 

contributor in the league. 

 More dramatic changes can be found in the (un-

plotted) estimates for players with relatively low ice-

time. As an example, Michel Ouellet is among the top 

estimated performers in the league for E[ λ  
 j 
 ]  <  10, but he 

jumps to a zero   ˆ jβ  under higher penalties. Given this 

sensitivity, it is worth revisiting hyperprior specifica-

tion. Although we have chosen E[ λ  
 j 
 ] with help from 

results of Section 4, this value was also only slightly 

higher than where non-star players (e.g., Ouellet) 

drop out of the top   ˆ jβ  rankings. In the absence of reli-

able out-of-sample testing, one pragmatic option is to 

increase penalty until the results become unrealistic. 

Similarly, one can interpret estimates conditional on 

the number of nonzero coefficients, and consider the 

  ˆ jβ  as performance measured under a given level of 

sparsity. A better approach, however, is to nearly elimi-

nate sensitivity to the prior by averaging over penalty 

uncertainty, as we do in Section 4.  

3.4    Value for money 

 In the left of Figure  5  , we plot MAP   β̂β  estimates from our 

model versus 2010 – 2011 salaries for the non-zero coeffi-

cients. Plus-minus points (rescaled to fall into the same 

range) have also been added to the left plot. 

 The lines overlaid on the left plot are ordinary least 

squares fits for each metric; a hypothesis test for the 

interaction coefficient reveals that indeed the two lines 

differ (at the 5 %  level;  p   =  0.026). Since the  β  
 j 
  relate to 

performance on a log scale, as is typically assumed for 

salary, we are not surprised to see a linear relationship 

between salary and our player effects. The fact that the 

standard errors for the   β̂β fit (0.1226) is less than the plus-

minus fit (0.1605) with the same design inputs suggests 

that our model-based player effects   β̂β  have greater cor-

relation to player salary. Teams appear to be compensat-

ing their players using strategies that are more in line 

with our partial player effects (  β  ) than with traditional 

plus-minus. 

 One reason why our model estimates have a lesser 

slope with salary is that fewer players are estimated to 

have a substantial (non-zero) negative contribution by 

our model compared to traditional plus-minus. Despite 

the decent correlation between our model estimates and 

player salary, it is also clear that there are some mis-

priced players. The best player according to our model, 

Pavel Datsyuk, probably deserves a raise whereas Sidney 

Crosby may be somewhat over-priced. Alex Ovechkin 

seems to be correctly priced in the sense that he is close to 

the fitted line between his model estimate and his salary. 
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 Figure 5    The left plot shows non-zero MAP   β̂β estimates versus 2010 – 2011 salary, augmented with rescaled plus-minus points for compari-

son. Ordinary least squares fits are added to aid in visualization. The right plot shows the histogram of 2010 – 2011 salaries for players with 

  β̂ =0,j  extending to the full set in gray.    
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 In the right of Figure 5, we give the salary distribu-

tion for players that were estimated to have zero player 

effects. Clearly, there are many players with high sala-

ries but which are estimated by our model to not have a 

substantial player effect. Specifically, the top ten salaries 

for players with   ˆ =0jβ  are Chris Pronger ($7.6M), Henrik 

Zetterberg ($7.75M), Brad Richards ($7.8M), Marian Hossa 

($7.9M), Chris Drury ($8M), Scott Gomez ($8M), Duncan 

Keith ($9M), Evgeni Malkin ($10M), and Vincent Lecava-

lier ($10M). 

 The gray extensions to the histogram indicate the full 

salary distribution, including players where   β ≠ˆ 0.j  With 

the exception of the bins containing the largest salaries, 

the absolute tally of   ˆ 0jβ ≠  players is fairly uniform. It is 

somewhat surprising that a relatively large proportion of 

top-dollar players find themselves with player effects of 

zero.   

4     Full posterior estimation and 
decision-making 

 The full posterior distribution from our penalized logistic 

regression model was estimated via Markov Chain Monte 

Carlo simulation, with details given in Appendix A. We 

will first use the full posterior distribution to re-examine 

our player effects  β  
 j 
  while accounting for possible covari-

ance between players. We will then consider additional 

salary information to explore optimal line combinations 

and matchups under budget constraints in Section 4.2. 

Neither of these analyses is possible without samples from 

the full posterior distribution. 

4.1    Posterior analysis of team-player model 

 In contrast with the MAP estimates from Section 3, samples 

from the full posterior distribution do not easily emit a 

variable selection. However, these posterior samples do 

contain much richer information about relative player 

ability via the covariance structure of the   β  . One way of 

analyzing this information is by constructing a matrix with 

the posterior probability that each player is better than 

every other player. Specifically, for each player pair ( i, j ), 

we calculate  the proportion of samples where ( )t

iβ is larger 

than ( )t

jβ  . 

 As an example, Figure  6   shows three players 

(Datsyuk, Roloson, and Marchant), pitting each of them 

against the 90-odd players with non-zero MAP estimates 

under the team-player model. Comparisons under both 

the team-player and player-only models are provided. 

Note that the  x -axis has been slightly re-ordered by the 

posterior mean in the team-player model to make the cor-

responding curves smoother. 

 Observe how Roloson ’ s curves indicate a large dis-

crepancy under the team-player and player-only models 

(since he played well with poor teams), whereas Datsy-

uk ’ s and Marchant ’ s show negligible differences. We are 

not aware of any other player effect that can be examined 

(pairwise or otherwise) at this resolution, and on such 

readily-interpretable probabilistic terms.  
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 Figure 6    Comparing the ability of Datsyuk (black), Roloson (red), and Marchant (green) to the 90-odd other players with non-zero coeffi-

cients in either the team-player or player-only models. These three players are also indicated in red among the list of players on the X-axis. 

Thicker lines correspond to the team-player model.    
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4.2     Posterior player match-ups and line 
optimization 

 Beyond examining pairwise differences, another way to 

explore our full posterior results is through match-ups 

and line combinations based on the posterior predictive 

distribution that accounts for covariances among our set 

of players. Later, we will also build in external constraints 

in the form of a cap on salaries. 

 Specifically, we will calculate the posterior pro-

bability that one particular configuration of players (line 

A) is more likely to score or be scored upon when facing 

another configuration (line B). This type of calculation 

would allow coaches to explore specific line match-ups 

against opponents. In these match-ups, team informa-

tion will be ignored but position information respected: 

we construct only six-on-six match-ups with one goalie, 

center, left-wing, right-wing, and two defensemen on each 

side. 

 Consider the following four analyses, where we use 

our posterior results to either: 1. pit the best players against 

the worst players, 2. pit the best players against random 

players, 3. pit random players against the worst players, 

and 4. pit random players against other random players. 

When pitting the best against the worst we construct the 

input  x   (t)   for each sample   β   ( t )  as follows. Place 1 ’ s in slots 

for players in each position with the largest   β   ( t )  value, and 

 – 1 ’ s in those with the smallest (largest negative) value. 

Fill the rest of the components with zeros. Then, a sample 

from the probability that the best team (regarded as the 

 “ offense ” ) scores is  calculated by  P ( “ offense ”  scores)   =   
logit( x  ( t )�    β   ( t ) ) .    A comparison of best versus random, 

worst versus random or random versus random would 

proceed similary where the random sampling is without 

replacemnet.

 Figure  7   shows the results of these matchups, where 

the distribution of posterior probabilities that the offense 

scores are smoothed using a kernel density. It is reassur-

ing to see that offense lines consisting of the best players 

have a very high probability of scoring on the worst players 

and with very low variance. This is indicative of a strong 

signal distinguishing good from bad players in the data. 

Likewise, it is not surprising that the random players out-

score their random counterparts about half the time, and 

with high uncertainty. What is interesting is that the  “ best 

v. random ”  and  “ random v. worst ”  densities are not the 

same: there is a small but clear indication in the posterior 

distribution that the worst players hurt more than the best 

players help. 

 An extended analysis incorporating salary infor-

mation paints are more provocative picture. We now 
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 Figure 7    Posterior probability that  “ offense” scores in various line 

matchups (smoothed using a kernel density). Better team (listed 

first) is always considered to be the offense.    

construct our line match-ups subject to a salary budget/

cap  B , by solving the following binary program: 

    

( )

{0,1}

max ,

subject to

=1, =1, =1, = 2,and

t
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x

x s B

x g x x r x d

∈

≤
�

ββ�

�

� � � �

  
(4) 

 where  s  is an  n  
 p 
 -vector of player salaries, and  (g, c, l, r, d)  

are  n  
 p 
 -vectors of binary indicators for goalies, centers, 

wingers and defensemen, respectively, so that player posi-

tions are still respected. The argument of each solution 

 x  ( t )  obtained from the binary program is then mapped to 

a posterior sample of the player effects   β  (t), which gives us 

the posterior probability logit( x   (t) �   β   (t)   )  that the line scores 

against a random opponent. 

 The  left  panel of Figure  8   shows the distribution of the 

probability the offense scores for several values of  B  span-

ning from $2.6 million (0.26  ×   the current maximum salary 

of $10 million)  4    to $15 million. The  right  panel shows the 

posterior means and 90 %  credible intervals for the probabi-

lity that the offense scores as a function of the budget. The 

first observation is that there is tremendous value amongst 

the cheapest players. Lines can be formed among the cheap-

est players which still outscore their (random) opponents 

65 %  of the time, on average. Importantly, the posterior 

probability that this quantity is bigger than 50 %  (i.e., that 

the best low paid players are better than random ones) is 

0.98. A second observation is that lines formed without the 

most expensive players, i.e., with a budget less than ($10M), 

are only marginally worse than those which have these 

 4     This is the lowest possible budget from which lines can be formed 

satisfying (4). 
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most expensive players. This means that the most expensive 

players may not be good value for money, at least as far as 

scoring goals.  5    Having the capacity to have two of the most 

expensive players on the ice at once (e.g., Crosby and Malkin 

for the Penguins) seems to offer no advantage at all. 

 Inspecting the individual players that are involved in 

these optimal lines in each budget category is also reveal-

ing. Brian Boucher, a goalie for the Flyers, is extremely valu-

able for the money, costing just $92.5K. He is the most fre-

quently selected player for each of the four lowest budgets 

($2.6 – 3.5M). Al Montoya ($750K) is in the top five of choices 

in all budgets above the lowest four, representing a cheap 

but solid filler player that allows more budget to be allo-

cated to expensive stars. At very the top end, Pavel Datsyuk 

($6.7M) is unsurprising good value for the top three budgets 

($10 – 15M). Ovechkin comes in at a respectable 20 th  place 

among all players despite his high cost ($9M). Crosby (also 

$9M) comes in the top 25 % . The most expensive players, 

Lecavalier and Luongo, are not selected often at all, sug-

gesting that money is better spent on cheaper (and younger) 

talent.   

5    Discussion 
 In this paper, we use a logistic regression model to estimate 

the effects of individual players on goal scoring in hockey. 

Unlike the traditional plus-minus measure that is commonly 
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 Figure 8    The  left  panel shows kernel density plots of the probability that an optimally chosen line scores against a random line according 

to the full posterior distribution of  β  and under several salary caps; the  right  panel shows the means and 90 %  predictive intervals of the 

same posterior as a function of those caps.    

 5     Sweater sales is another matter. 

used, our player effects account for the match-ups involved 

in each goal as well as overall team contributions. 

We take a Bayesian approach with a prior distribu-

tion that shrinks the coefficients towards zero, which pro-

motes stability in our model and protects against over-fit. 

The Laplace prior distribution placed on the individual 

player coefficients allows us to perform variable selec-

tion on the large scale needed for this data situation. With 

this variable selection, we are able to separate out a small 

subset of players that show substantially above-average 

performance. 

 Our analysis gives some surprising results, such as 

the dominance of Pavel Datsyuk over other star players 

such as Sidney Crosby and Alex Ovechkin. We also find 

that several prominent players, such as Evgeni Malkin, do 

not have significant player effects. 

 The point estimates   ̂ββ  and samples from the full pos-

terior distribution offer insight into relative player ability 

at a resolution not previously available. Such partial 

effects and pairwise comparisons are new metrics derived 

from making better use of the same data source behind 

plus-minus, obtained by leveraging newfound computa-

tional tractability in high dimensional logistic regression 

modeling. We show in our appendix that it is possible to 

entertain player-player interaction effects too, although 

ultimately conclude that these offer little further insight. 

 By introducing outside data sources, such as player 

salary information and constraints thereon (i.e., salary 

budgets), our approach offers unprecedented potential 

for exploratory analysis, tinkering, and ultimately deci-

sion making by coaches, general managers, and fantasy 
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players alike. This analysis of match-ups would only be 

possible with our fully Bayesian approach that accounts 

for the covariance between individual player effects by 

using samples from the joint posterior distribution. 

 A more believable model for the combination of 

shift timings and goals would be to treat every game as 

a Poisson point process, where each goal is a point-event 

and the expected time between goals depends upon who 

is on the ice. However, such an approach requires restric-

tive modeling assumptions and considerably more com-

putation, and we doubt that the value of information 

about when goals  were not  scored is worth the added 

complexity. The popularity of traditional plus-minus 

is informative: player ability  can  be measured from the 

subset of events that actually lead to goals. Thus while not 

completely discounting the potential of time-dependent 

modeling, we present the work herein as a robust analysis 

that is replicable, extensible, and based upon easily avail-

able data. Similarly, we have not used power play or short-

handed goals in our analysis, but extending our model to 

non-even-strength situations is a promising direction for 

future work.  

  Appendix  

A    Estimation details and software 
 Although L1 penalty methods and their Bayesian interpre-

tation have been known for some time, it is only recently 

that joint penalty–coefficient posterior computation and 

simulation methods have become available for datasets of 

the size encountered here. 

 Probably the most well-known publicly available 

library for L1 penalty inference in logistic regression is 

the glmnet package (Friedman, Hastie, and Tibshirani , 

2010 ) for R. Conditional on a single shared value of   λ  , this 

implementation estimates a sparse set of coefficients. A 

convenient wrapper routine called cv.glmnet allows 

one to chose   λ   by cross-validation (CV). Unfortunately, CV 

works poorly in our setting of large, sparse, and imbal-

anced  X  
 P  
 , where each model fit is relatively expensive and 

there is often little overlap between nonzero covariates in 

the training and validation sets. Moreover, when maxi-

mizing (rather than sampling from) the posterior, a single 

shared   λ   penalty leads to over-shrinkage of significant 

  β   
 j 
  as penalty choice is dominated by a large number of 

spurious predictors. But use of CV to choose unique   λ   
 j 
  for 

each covariate would imply an impossibly large search. 

 Instead, we propose two approaches, both accompa-

nied by publicly available software in packages for R: joint 

MAP inference with textir, and posterior simulation 

with reglogit. 

A.1     Fast variable selection and MAP 
inference with textir 

 Taddy  (2012a)  proposes a  gamma-lasso  framework for 

MAP estimation in logistic regression, wherein coeffi-

cients and their independent L1 penalties are inferred 

under a conjugate gamma hyperprior. An efficient coor-

dinate descent algorithm is derived, including conditions 

for global  convergence, and the resulting estimation is 

shown in Taddy  (2012a)  as superior, in both predictive 

performance and computation time, to the more common 

strategy of CV lasso estimation under a single shared   λ   

(as in glmnet). Results in this paper were all obtained 

using the publicly available textir package for R (Taddy 

 2012b ), which uses the slam (Hornik, Meyer, and Buchta , 

2011 ) package ’ s simple-triplet matrices to take advantage 

of design sparsity. 

 Prior specification in the gamma-lasso attaches inde-

pendent gamma G (  λ   
 j 
 ;  s ,  r ) hyperpriors on each L1 penalty, 

with E[  λ   
 j 
 ]   =    s/r  and var[  λ  ]   =    s/r  2 , such that, for  j    =  1 …  p , 

   

( )| |
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j j j j j
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Γ
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 Laplace priors are often motivated through estimation 

 utility  — the prior spike at zero corresponds to a preference 

for eliminating regressors from the model in absence of 

significant evidence. Our hyperprior is motivated by com-

plementary considerations: for strong signals and large 

 |   β   
 j 
  | , expected   λ   

 j 
  shrinks in the joint distribution to reduce 

estimation bias. 

 This leads to the joint negative log posterior  minimiza-

tion  objective 
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 (6) 

 where  s ,  r   >  0. We have set  σ   =  1 and r  =  1/2 throughout Section 

3. In choosing  s   =  E[  λ   
 j 
 ]/2, we focus on the conditional prior 
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standard deviation,   SD( )= 2 / ,j jβ λ  for the coefficients. 

Hence our value of  s   =  7.5, for E[  λ   
 j 
   ]=  15, implies expected 

SD( β  
 j 
 ) ≈ 0.095. To put this in context, exp[3  ×  0.095] ≈ 1.33, 

implying that a single player increasing his team ’ s for-vs-

against odds by 1/3 is three deviations away from the prior 

mean. 

 As an illustration of the implementation, the follow-

ing snippets show commands to run our main team-player 

model (see  ? mnlm for details). With X  =  cbind(XP,XT) as 

defined in Section 2.1, the list of 30 ridge and  n  
 p 
  gamma-

lasso penalties are specified 

 pen   <  -  c(rep(data.frame(c(0,1)),30), 

rep(data.frame(c(7.5,.5)),ncol(XP))) 

 and the model is then fit 

 fit   <  -  mnlm(counts  =  Y, covars  =  X, 

penalty  =  pen, normalize  =  FALSE) 

 where X is not normalized since this would up-weight 

players with little ice-time.  

A.2    Full posterior inference via reglogit 

 Extending a well-known result by Holmes and Held 

 (2006) , Gramacy and Polson  (2012)  showed that three sets 

of latent variables could be employed to obtain sample 

from the full posterior distribution using a standard Gibbs 

strategy (Geman and Geman , 1984 ). The full conditionals 

required for the Gibbs sampler are given below for the L1 

and  λ  
j
   =   λ  case (note that   β   includes   α   here for notational 

convenience). 
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 Note that   
+N  indicates the normal distribution 

truncated to the positive real line,   2 2

1=diag( , , )pDτ τ τ…  

and  Ω   =  diag(  ω   
1
 , …,   ω   

 n 
 ). Holmes and Held  (2006)  give a 

rejection sampling algorithm for   ω   
 i 
  |  z  

 i 
 , however Gramacy 

and Polson  (2012)  argue that it is actually more effi-

cient to draw   ω   
 i 
  |  y  

 i 
 
, 
  λ   (i.e., marginalizing over  z  

 i 
 ) as 

follows. A proposal   1

=1
= 2 ,

K

i k kk
ω ψ ε−′ ∑  and  ε  

k
  ∼Exp(1) 

may be accepted with probability min{1,  A  
 i 
 } where 

  = {( )/ }/ {( )/ }.i i i i i i iA y x y xΦ ω Φ ω− −′β β� �  Larger  K  

imp roves the approximation, although  K   =  100 usually 

suffices. Everything extends to the L2 case upon fixing 

  2 =1.jτ  Extending to separate   λ   
 j 
  is future work. 

 We use the implementation of this Gibbs sampler pro-

vided in the reglogit package (Gramacy , 2012a ) for R. For 

the  λ  prior we use the package defaults of  a   =  2 and  b   =  0.1 

which are shared amongst several other fully Bayesian 

samplers for the ordinary linear regression context [e.g., 

blasso in the monomvn package (Gramacy , 2012b )]. Usage 

is similar to that described for mnlm. To obtain T samples 

from the posterior, simply call: 

 bfit   <  - reglogit(T  =  T, y  =  Y, X  =  X, 

normalize  =  FALSE) 

 Estimating the full posterior distribution for   β   allows 

posterior means to be calculated, as well as component-

wise variances and correlations between   β   
 j 
 ’s. However, 

unlike MAP estimates   ̂ ,ββ  none of the samples or the overall 

mean is sparse. Gramacy and Polson  (2012)  show how their 

algorithm can be extended to calculate the MAP via simula-

tion, but this only provides sparse estimators in the limit. 

 Another option is to use the posterior mean for  λ  

obtained by Gibbs sampling on the entire covariate set, 

and use it as a guide in MAP estimation. Indeed, this is 

what is done in Section 3, where mean of our shared  λ  

from Gibbs sampling was considered when setting priors 

for E [ λ  
 j 
 ].   

B     Extension to player-player 
interactions 

 We explore the possibility of on-ice synergies or mis-

matches between players by adding interaction terms into 

our model. The extension is easy to write down: simply add 

columns to the design matrix that are row-wise products of 

unique pairs of columns in the original  X  
 P 
 . However, this 

implies substantial computational cost: see Gramacy and 

Polson  (2012)  for examples of regularized logistic regres-

sion estimators that work well for estimating main effects 

but break down in the presence of interaction terms. 

 There is a further representational problem in the 

context of our hockey application. There are about 27K 

unique player pairs observed in the data. Combining 

these interaction terms with the original  n  
 p 
  players,  n  

 g 
  

goals and thirty teams, we have a double-precision data 

storage requirement of nearly a gigabyte. While this is 

not a storage issue for modern desktops, it does lead 

to a computational bottleneck since temporary space 

required for the linear algebra routines cannot fit in fast 

memory. Fortunately, our original design matrix has a 
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 Figure 9    Comparing (non-zero) main effects for team-player model to their values in the interaction-expanded team-player model (dots) 

The lines point to the unexpanded estimates, and the  x -axis is ordered by the dots.    
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 Figure 10    Comparing the ability of Datsyuk, Roloson, and Marchant to the 60-odd other players with non-zero coefficients in the 

team-player model, showing coefficients under the interaction-expanded model as well.    

high degree of sparsity, which means that the interac-

tion-expanded design matrix is even more sparse, and 

the sparse capabilities of textir makes computation 

feasible. Inference on the fully interaction-expanded 

design takes about 20 s on an Apple Mac Desktop. All 

other methods we tried, including reglogit, failed in ini-

tialization stages. 

 While the computational feat is impressive, our results 

indicate little evidence of significant player interaction 

effects. Figure  9   shows results for estimation with E [ λ   =  15]: 

only four non-zero interactions are found when augmenting 

the team-player model to include player-player interaction 

terms.  6    Importantly, there is a negligible effect of including 

these interactions on the individual player effect estimates 

 6     We omitted goalie-skater and goalie-goalie interaction terms. 

(which are our primary interest). The only player with a 

visually detectable connecting line is Joe Thornton, and to 

see it you may need a magnifying glass. We guess from the 

neighboring interaction term that his ability is enhanced 

when Patrick Marleau is on the ice. The most interesting 

result from this analysis involves the pairing of David Krejci 

and Dennis Wideman, which has a large nega tive interac-

tion. One could caution Bruins coach Claude Julien against 

having this pair of players on the ice at the same time. 

 Using reglogit to obtain samples from the full pos-

terior distribution of the interaction-expanded model is not 

feasible, but we can still glean some insight by sampling 

from the posterior distribution for the simpler model with 

the original team-player design augmented to include the 

four significant interactions found from our initial MAP 

analysis. Figure  10   compares pairwise abilities for the same 

three players used as examples in Figure 6. We observe 
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minimal changes to the estimates obtained under the origi-

nal team-player design, echoing the results from the MAP 

analysis. In total, we regard the ability to entertain interac-

tions as an attractive feature of our methodology, but it does 

not change how we view the relative abilities of players.   
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