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Ranking and selection procedures are standard methods for selecting the best of a finite number of simulated design

alternatives, based on a desired level of statistical evidence for correct selection. But the link between statistical significance

and financial significance is indirect and poorly understood. This paper presents a new approach to the simulation selection

problem, one that maximizes the expected net present value (NPV) of decisions made when using stochastic simulation. We

provide a framework for answering these managerial questions: When does a proposed system design, whose performance

is unknown, merit the time and money needed to develop a simulation to infer its performance? For how long should

the simulation analysis continue before a design is approved or rejected? We frame the simulation selection problem as

a “stoppable” version of a Bayesian bandit problem that treats the ability to simulate as a real option prior to project

implementation. For a single proposed system, we solve a free boundary problem for a heat equation that approximates

the solution to a dynamic program that finds optimal simulation project stopping times and that answers the managerial

questions. For multiple proposed systems, we extend previous Bayesian selection procedures to account for discounting

and simulation-tool development costs.
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Managers must decide the operating characteristics of their companies’ manufacturing, supply chain, or

service delivery systems. Often the decision reflects the choice of one among a number of competing designs.

To aid their decision-making, managers may use stochastic or discrete event simulation. For a fixed, finite

set of alternative designs, one must decide how long to simulate each alternative and, given the simulation

results, which design to implement.

A common approach for selecting the best of a finite set of simulated systems uses ranking and selection

procedures, which seek to provide a desired level of statistical evidence that the system with the best

performance is ultimately selected. A typical measure of statistical evidence is the probability of correct

selection (PCS). Good ranking and selection procedures attempt to minimize the mean number of replications
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that are needed to reach a desired level of statistical evidence for correct selection. This is a flexible approach

that allows one to assess a wide variety of operational and other measures of system performance.

But statistical significance is not the same as financial significance, and when system performance and

simulation results are themselves financial measures, the maximization of expected net present value (NPV)

may be a more appropriate objective (Brealey and Myers 2001). That is, if a manager’s goal is to maximize

the expected NPV of high-level system design choices, then she is faced with two countervailing costs.

On the one hand, uncertainty about the expected NPV of each alternative compels her to simulate more to

reduce the opportunity cost associated with an incorrect selection. On the other, a simulation analysis itself

may incur direct costs, and simulation-driven delays in project implementation may reduce the NPV of the

system that is ultimately implemented, due to discounting. Discounting and NPV are relevant in both the

private and public public sectors. In health technology assessments, for example, one typically discounts

technology costs and health benefits through time (Gold et al. 1996).

Further, standard practice for sound simulation studies (e.g., Law and Kelton 2000, §1.7) does not provide

formal guidance via economic principles about whether or not an alternative should be simulated at all.

In this paper, we formulate and solve a simulation selection problem in which the manager seeks to

maximize the expected NPV of the system eventually selected, less discounting and analysis costs. Our

formulation of the problem is Bayesian: we assume that the manager has prior beliefs concerning the

distribution of the NPV of each of the alternatives and that she uses simulation output to update these beliefs.

The system which the manager ultimately chooses to implement maximizes expected NPV with respect to

the posterior distributions of her beliefs (rather than the actual, but unknown, NPV). Section 1 defines the

problem and identifies our assumptions, and §2 compares the formulation with more traditional approaches

found in the simulation literature.

Section 3 shows that, among procedures that sequentially select systems to simulate and then stop to

implement a system, there exists a deterministic, stationary policy that is optimal. Section 4 then provides

asymptotic approximations for the optimal expected discounted reward of the simulation selection problem

when there is exactly one simulated alternative. The analysis indicates how long one must simulate before

choosing to implement or reject the alternative, given simulation output that is normally distributed with a
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known variance. The asymptotic regime is reasonable given typical discount rates and simulation run times.

The approximation is determined by the solution of a free boundary problem for a heat equation that shares

characteristics with financial and real options. That theory is applied to illustrative simulation selection

scenarios in §5 to demonstrate the economic value of our approach, and to show how a manager can use our

results to decide whether or not a design proposal warrants the time and money that is required to develop

simulation tools.

Section 6 extends the scope of our analysis to problems with more than one simulated alternative. It begins

by noting that well-known sufficient conditions for the existence of an optimal “allocation” index, which

could simplify the characterization of the optimal simulation selection policy, do not appear to hold. The

characterization of an optimal selection procedure policy for multiple systems therefore remains an open

question. Nevertheless, §6 extends previous work for Bayesian selection procedures that account for the

expected value of information, but not for discounting, to the present context with discounting. In numerical

examples, the new policies are shown to be close to optimal.

In summary, this paper presents a new approach to the simulation selection problem, one that maximizes

the expected net present value (NPV) of decisions made when using stochastic simulation. The framework

is designed to help answer these managerial questions: When does a proposed system design, whose per-

formance is unknown, merit the time and money needed to develop a simulation to infer its performance?

For how long should the simulation analysis continue before a design is approved or rejected? The contri-

butions include: the framing the simulation selection problem as a “stoppable” version of a Bayesian bandit

problem, one that treats the ability to simulate as a real option prior to project implementation; the solution

to a free boundary problem for a heat equation that approximates the solution to a dynamic program that

finds optimal simulation project stopping times; and extending previous Bayesian selection procedures to

account for discounting and simulation tool development costs.

The Appendices in the Online Companion provide mathematical proofs and specify the numerical methods

used in the paper. They also describe how to handle simulation output from one-parameter members of the

exponential family of distributions (e.g., Bernoulli, exponential), autocorrelated output from steady-state

simulations that are amenable to analysis with batch means, simulation run times that differ from one system
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to the next, and a trick to parallelize the algorithm for multiple CPUs. It also develops a framework for future

work by linking the simulation selection problem to variations of the well-known bandit problem.

1. Simulation Selection Problem Description

A manager seeks to develop one of k projects, labeled i = 1, . . . , k. The net present value (NPV) of each

of the i projects is not known with certainty, however. The manager wishes to develop the project which

maximizes her expected NPV, or to do nothing if the expected present value of all projects is negative. We

represent the “do nothing” option as i = 0 with a sure NPV of zero.

1.1. Uncertain Project NPV’s

Let Xi be the random variable representing the NPV of project i, where X0 ≡ 0. If the manager is risk neutral

and the distributions of all Xi’s are known to her, then she will select the project with the largest expected

NPV, i∗ = argmaxi{E[Xi]}.

We note that, although we model NPVs as simple random variables, the systems that generate them may

be quite complex. For example, a particular project’s sequence of cash flows may involve the composition

of several interrelated random processes describing the evolution of investments, I(v), revenues, R(v), and

operating costs,O(v), over time,v. Nevertheless, given a continuous-time discount rate δ > 0, each realization

of these processes, ωi, yields a sample X(ωi) =
∫∞

v=0
[R(v,ωi)−O(v,ωi)− I(v,ωi)]e−δvdv. Here, v is the

time elapsed from the moment a system is selected. (The letter t is used differently below.)

Fox and Glynn (1989) and Appendix C.2 suggest techniques for sampling the X(ωi) if the time horizon

is truly infinite. Projects that are to be used for only a finite time (e.g., a 5-year usable time horizon) can be

implemented with terminating simulations, which effectively set R(v,ωi)−O(v,ωi)− I(v,ωi) to 0 during

all but a finite interval. Fixed or random duration delays from the time a project is selected to the time of

implementation (due to the need for project approval or startup delays) can similarly be implemented by

setting R(v,ωi), O(v,ωi) or I(v,ωi) to 0 during an initial interval.

This approach to modeling delays is valid whenever they are statistically independent of the duration of the

simulation analysis that led to the selection. This precludes fixed, pre-scheduled implementation dates, which

can occur in practice. Nevertheless, the analysis below suggests that such pre-scheduled implementation
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dates may themselves be suboptimal, given that they ignore a manager’s option to implement earlier or to

pursue additional analysis, depending on simulation results obtained up to that fixed date.

In this paper, we assume that the distributions of the Xi’s are not known with certainty by the manager.

Rather, she believes that a given Xi comes from one of a family of probability distributions, PXi|θi
, indexed

by parameter θi from a parameter space ΩΘi
. We model her belief with a probability distribution on θi, which

we call PΘi
. For example, the manager may believe that Xi is normally distributed with a known variance,

σ2
i , but unknown mean. Then PΘi

represents a probability distribution for the mean. To ease notation, we

sometimes refer to the distribution as Θi. The expected NPV of project i > 0 is then E[Xi] = E[X(Θi)]
∆=

∫∫
X(θi)dPXi|θi

dPΘi
. We denote the vector of distributions for the projects by Θ = (Θ1, . . . ,Θk).

1.2. Using Simulation to Select the Best Project

If the distributions of the Xi’s are not known, then the manager may be able to use simulation as a tool

to reduce distributional uncertainty, before having to decide which project to develop. She may decide to

simulate the outcome of project i a number of times, and she views the result of each run as a sample of Xi.

We model the running of simulations as occurring at a sequence of discrete stages t = 0,1,2, . . .. Let Xt

be the set of all outputs seen through stage t. We represent Bayesian updating of prior beliefs and sample

outcomes through time, {(Θt,Xt) | t = 0,1, . . .} as follows. If project i > 0 is simulated at stage t with

sample outcome xi,t, then Xi,t = xi,t and Bayes’ rule determines the posterior distribution Θi,t+1, which is

a function of the parameter θi:

dPΘi,t+1
(θi |xi,t,Θi,t) =

dPXi |θi
(xi,t |θi)dPΘi,t

(θi)∫
θi

dPXi |θi
(xi,t |θi)dPΘi,t

(θi)
∀ θi ∈ ΩΘi

, (1)

while Θj,t+1 = Θj,t, and Xj,t need not be defined for all j 6= i. Thus, the evolution of the manager’s beliefs

regarding the distribution of outcomes of each project, Θi,t, is Markovian. We also assume that simulation

results, hence the evolution of the manager’s beliefs, are independent from one project to the next.

If, in theory, simulation runs could be performed at zero cost and in no time, then the manager might

simulate each of the k systems infinitely, until all uncertainty regarding the θi’s was resolved. At this point

the problem would revert to the original case in which the distributions and means of the Xi are known.
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But the simulation runs do take time and do cost money. We assume that the marginal cost of each run of

system i is $ci and takes ηi units of time to complete. Thus, given a continuous-time discount rate of δ > 0,

the decision to simulate system i once costs the manager ci plus a reduction of ∆i =
∫ ηi

0
e−δsds < 1 times

the expected NPV of the (unknown) project that is eventually chosen.

There may also be associated up-front costs associated with the development of the simulation tool, itself.

It may require time and money to develop an underlying simulation platform, independent of which projects

end up being evaluated. Additional costs may be required to be able to simulate particular projects.

This paper initially makes two assumptions regarding the costs of simulation that simplify the analysis.

First, we assume that the up-front costs and delays to develop the simulation tools are sunk for all k projects.

This is an implicit assumption of all other research on selection procedures. Second, we assume that ηi ≡ η

for all k projects. This allows us to define a common ∆≡∆i for the projects as well. Section 4.4 relaxes the

first assumption. Appendix C relaxes the second.

Even with these simplifications, the availability of a simulation tool to sample project outcomes makes the

manager’s problem much more complex. Rather than simply choosing the project that maximizes expected

NPV, she must choose a sequence of simulation runs and ultimately select a project, so that the discounted

stream of costs and terminal expected value, together, maximize expected NPV.

To track the manager’s choices as they proceed, we define a number of indices. We let T ∈ {t = 0,1,2, . . .}

be the stage at which the manager selects a system to implement. For t < T , we define i(t) ∈ {1, . . . , k} to

be the index of the project simulated at time t. We set I(T )∈ {0, . . . , k} to be the ultimate choice of project.

Then a selection policy is the choice of a sequence of simulation runs, a stopping time, and a final project.

We define Π to be the set of all non-anticipating selection policies, whose choice at time t = 0,1, . . . depends

only on the history up to t: {Θ0,X0, . . . ,Θt−1,Xt−1,Θt}. Given prior distributions Θ = (Θ1, . . . ,Θk) and

policy π ∈Π, the expected discounted value of the future stream of rewards is

V π(Θ) = Eπ

[
T−1∑
t=0

−∆tci(t) + ∆T XI(T ),T |Θ0 = Θ

]
. (2)

Formally, we define the manager’s simulation selection problem to be the choice of a selection policy π∗ ∈Π

that maximizes this expected discounted value: V π∗(Θ) = supπ∈Π V π(Θ).
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2. Literature Review

Two broad classes of research are related to this paper. One is the ranking and selection literature, the other

is the bandit and optimal stopping literature. Both have substreams.

Branke et al. (2007) review several statistical approaches to ranking and selection. See also Nelson and

Goldsman (2001) and Butler et al. (2001). To date, none of the approaches explicitly accounts for discounting

costs due to delays in implementation as a result of simulation times, and only two papers explicitly account

for the cost of sampling.

Chick and Inoue (2001) provide two-stage procedures whose second stage allocation trades off the cost

of sampling with an approximation to the Bayesian expected value of information (EVI) of those samples.

Sampling costs may differ for each system as may the unknown sample variances. Their work builds upon

earlier results of Gupta and Miescke (1996), who examined the case of known sampling variances, and a

fixed number of samples to be allocated. The EVI is measured with respect to one of two loss functions, the

posterior probability of incorrect selection (PICS), or the posterior expected opportunity cost (EOC) of a

potentially incorrect selection. The EOC is a first step for modeling financial value in selection procedures.

The indifference-zone (IZ) approach provides a frequentist guarantee of selection procedure effectiveness

(Kim and Nelson 2006). Almost all IZ procedures focus on probability of correct selection (PCS) guarantees

for each problem instance within a given class, and most IZ work ignores the sampling costs of replications.

An exception is Hong and Nelson (2005), who account for the cost of switching from one system to another,

and a common sampling cost for each system. In separate work that is related to this paper, Kim and Nelson

(2006) use diffusion approximations for sequential IZ screening procedures to reduce the simulation time

required to guarantee a desired PCS.

Branke et al. (2007) show that specific Bayesian procedures that allocate samples with an EOC criterion,

and new adaptive stopping rules, perform very effectively for several classes of selection problems.

In another stream of literature, Gittins (1979) offers an early account of optimal dynamic allocation indices

(later called Gittins indices) for infinite-horizon, discounted multi-armed bandit problems. Glazebrook (1979)

provides sufficient conditions under which these index results apply to reward streams derived from stoppable

arms. Gittins (1989) shows that Glazebrook’s results hold under a slightly weaker set of assumptions.
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In general, Gittins indices are difficult to compute exactly. Chang and Lai (1987) derive approximations

for the Gittins index for the infinite-horizon discounted “Bayesian bandit” problem. Brezzi and Lai (2002)

use a diffusion approximation for the Gittins index of a Bayesian bandit that is motivated by work of Chernoff

(1961) on composite hypothesis testing (also see Breakwell and Chernoff 1964, Chernoff 1965).

This paper uses Chernoff-like diffusion approximations to solve the simulation selection problem (with

k = 1 system) in an asymptotically optimal way. That asymptotically-optimal solution is shown to provide an

improved approximation to the Gittins index of Brezzi and Lai’s Bayesian bandit problem (see Appendix D).

We will show that the simulation selection problem, with k≥ 1 systems, is an example of what Glazebrook

called a stoppable family of alternative bandit processes. We indicate that Glazebrook’s sufficient conditions

for a Gittins index to exist for “stoppable bandits” do not appear to be satisfied, so the existence of an Gittins

index for the simulation selection problem is an open question. Still, we show that EOC-based sampling

allocations like those in Chick and Inoue (2001), together with new stopping rules, are effective solutions

for the simulation selection problem.

3. Preliminaries

This section shows that, given mild technical conditions, a simple class of stationary and deterministic poli-

cies, which we call “reasonable,” is optimal for the simulation selection problem. It then further characterizes

the simulation selection problem with k = 1 system, to prepare for our approximation results in §4.

We begin by noting that a policy is stationary if the action it prescribes, given state Θt = (Θ1,t, . . . ,Θk,t),

is independent of the time index, t. A policy is deterministic if the action it prescribes is never randomized.

Blackwell (1965) has shown that, in infinite-horizon problems with discounted rewards, the following con-

ditions ensure that there exists a deterministic, stationary policy that is optimal: 1) given any state and action,

expected one-period rewards are finite; 2) the same, finite set of actions is available in all states.

The proof of Lemma 1 shows how the original problem formulation can meet these conditions. The

potentially finite stopping time of the simulation selection problem is converted to an infinite horizon by

converting the one-time reward E[X(ΘI(T ),T )] at the simulation problem stopping time T into a perpetuity

(1−∆)E[X(ΘI(T ),T )] that is received at each period t≥ T . Without loss of generality, then, we can restrict

our attention to the class of stationary, deterministic selection policies for the infinite-horizon problem.
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LEMMA 1. Suppose expected one-period rewards are uniformly bounded for the simulation selection

problem in (2). Then there exists a deterministic, stationary policy π∗ ∈Π that is optimal.

See Appendix B in the Online Companion for proofs of all claims.

Now consider the infinite-horizon version of the simulation selection problem with a single project, i, and

no outside alternative. For this problem we call the stopping time Ti, let i(t) = i for t < Ti and let I(t) = i

for t≥ Ti. Thus, πi determines a stopping time, Ti, and an associated expected value,

V πi
i (Θi) = Eπi

[ ∞∑
t=0

∆t Rπi
t |Θi,0 = Θi

]
= Eπi

[
Ti−1∑
t=0

−∆tci + ∆TiE[X(Θi,Ti
)] |Θi,0 = Θi

]
. (3)

We denote the optimal stopping policy and stopping time for project i as π∗i and T ∗i . If expected one-period

rewards are uniformly bounded, then there exists a stationary, deterministic policy that is optimal. Further,

the optimal value function satisfies the so-called Bellman equation (Bertsekas and Shreve 1996, Prop. 9.8):

V
π∗i

i (Θi,t) = max
{
−ci +∆E[V πi

i (Θi,t+1) |Θi,t, t 6= Ti], (1−∆)E[X(Θi,t)]+∆E[V π∗i
i (Θi,t)]

}

= max{−ci +∆E[V πi
i (Θi,t+1) |Θi,t, t 6= Ti], E[X(Θi,t)]} . (4)

We call V
π∗i

i (Θi,t) the optimal expected discounted reward (OEDR) for the option to simulate alternative i

before deciding whether to implement it or not.

Since setting Ti = ∞ is a feasible (though not necessarily optimal) stationary policy, we know that

V πi
i (Θi,t) ≥ −ci/(1−∆). In turn, from (4) it follows that an optimal policy will never choose the right

maximand, and stop simulating, if (1−∆)E[X(Θi,t)] <−ci.

More generally, we call any stationary, deterministic stopping policy, πi, reasonable if Ti = t <∞ implies

(1−∆)E[X(Θi,t)]≥−ci. Thus a reasonable policy never stops when the one-period expected revenue from

a project falls below the cost of sampling. Similarly, a reasonable policy for the entire simulation selection

problem has T = t and I(t) = i only if (1−∆)E[X(ΘI(t),t)]≥−cI(t).

LEMMA 2. Anoptimal deterministic, stationarypolicy for the simulationselectionproblem is reasonable,

almost surely.

Thus, without loss of generality, we can restrict our attention to the analysis of reasonable policies.
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4. A Value Function Approximation for One Alternative

A normative solution to the analysis of single simulated alternative requires the evaluation of the OEDR,

V
π∗i

i (Θi,t). In this section we develop diffusion approximations that provide structural insight into the form

of the OEDR and allow for its efficient computation. Our approach follows in the spirit of Chernoff (1961).

This section assumes k = 1, so to simplify notation we drop the system index, i. It also assumes that the

simulation output Xj is i.i.d. Normal (θ,σ2) for replication j = 1,2, . . ., with a known finite variance σ2

and unknown mean θ. We suppose that θ has a Normal (µ0, σ
2
0) prior distribution. While this assumption

may not satisfy the uniform boundedness condition in Lemma 1, the analysis below results in a well-defined

finite OEDR when σ2
0 is finite.

The diffusion approximations are asymptotically appropriate when the discounting over the duration of a

simulation replication is small, as is usually the case in simulation. Repeated sampling leads to realizations

of a scaled Brownian motion with drift.

The calculation of the OEDR involves the solution of a so-called free boundary problem for a heat equation

that is obtained from the diffusion approximation. The boundary is “free” since it is determined by equating

the two maximands in the value function, rather than on a known, pre-specified boundary. A comparison of

the maximands in the continuous-time analogue of (4) determines the free boundary between a continuation

set, C, in which it is optimal to continue simulating a project, and a stopping set, in which it is optimal to

stop simulating and implement the project.

We motivate the diffusion approximation, present a standardized free boundary problem for that diffusion,

and solve for the special case of c = 0. The solution when c > 0 is proven to be a function of the solution

when c = 0. We then derive the solution to the optimal stopping problem when comparing k = 1 simulated

alternative with an alternative that has a known deterministic NPV. This section concludes by showing

whether or not a simulation tool for the k = 1 alternative should be implemented in the first place.

4.1. Diffusion Approximation for the Output of One System

Define n0 = σ2/σ2
0 , and redefine t = n0 + n, where n is the number of simulation observations seen so far

for the single system in question. Set Yt = n0µ0 +
∑n

j=1 Xj . This transformation conveniently makes the
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posterior distribution of θ a Normal (Yt/t,σ2/t) distribution, and will help to find an optimal stopping time

for (3) when there is k = 1 system.

Proceeding informally at first, suppose that observations are obtained continuously rather than at discrete

intervals, so that Yt is a Brownian motion with unknown drift θ and variance σ2 per unit time. The analog

of (4) with an infinitesimal number (h) of replications observed is then

B(yt, t) = max{lim
h→0

−ch+ e−δh×E[B(Yt+h, t+h) | yt, t], yt/t}, (5)

where B is the continuous-time analog of the value function, V .

Set D(yt, t) = yt/t and U = Yt+h−yt. In the continuation set, C = {(yt, t) : B(yt, t) > D(yt, t)}, the first

maximand is selected and simulation sampling continues. Note that B(Yt+h, t+h) = B(yt, t)+UBy(yt, t)+

hBt(yt, t) + U 2Byy(yt, t)/2 + o(h), where the subscripts on B indicate partial derivatives, and e−δh =

1− δh+o(h). The distribution of U , given θ, is Normal (θh,σ2h), and the posterior distribution of θ at time

t is Normal (yt/t,σ2/t). So the marginal distribution of U is Normal (hyt/t,σ2(h+h2/t)), and

B(yt, t) = max{lim
h→0

−ch+ e−δh×EU [B +UBy +hBt +
1
2
U2Byy] + o(h), yt/t}

= max{lim
h→0

−ch+(1−hδ)× (B +h
yt

t
By +hBt +h

σ2

2
Byy)+ o(h), yt/t}, (6)

where B, By, Bt and Byy in the first maximand are all evaluated at (yt, t).

Therefore the following PDE describes the evolution of the value function in the continuation set C:

0 =−c− δB +
y

t
By +Bt +

σ2

2
Byy. (7)

The boundary, ∂C, of C will be determined by equating the two maximands in (5), as well as a smooth pasting

condition (Chernoff 1961),

B(y, t) = D(y, t), on ∂C (8)

By(y, t) = Dy(y, t), on ∂C (smooth pasting).

The basic problem is to solve for the value function, B, and the free boundary, ∂C, determined by (7-

8). When c = 0, (7-8) represent what might be called a perpetual American call option on regular (rather
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than geometric) Brownian motion, with unknown drift. Equation (7) is related to the PDE considered by

Breakwell and Chernoff (1964, p. 164, 0 = 1+ y
t
By +Bt + 1

2
Byy). It differs from Breakwell and Chernoff’s

PDE in a few respects, including that paper’s lack of discounting, a different terminal value function, D, and

minimization of losses rather than maximization of gains.

Insights and numerical solutions will be facilitated by rewriting (7) in reverse time, via the change of

variables ws = yt/σt, s = 1/t. (If σ = 1, then w is the posterior mean of θ and s is its posterior variance.)

Set t0 = n0 and s0 = 1/t0. Then ws is a Brownian motion in the −s time scale, going backwards from s0 to

0, with initial point (s0,ws0
) (Chernoff 1961), and (7) becomes

0 =−c+ δB

s2
−Bs +

1
2
Bww. (9)

The boundary condition becomes B = D, with D(w,s) = max{−c/δ,σw} in (w,s) coordinates for s≥ 0,

where only the second maximand can be chosen if s > 0. The first maximand represents simulating forever,

and can only be selected, upon stopping, if s = 0. (This follows the idea of a reasonable policy.) The analysis

below uses a similar (slightly different) normalization to approximate the expected reward, B(yt, t).

4.2. Standardized Free Boundary Problem for Optimal Stopping

The general free boundary problem that is determined by (7-8) depends on many parameters. In the spirit in

which problems with normal distributions are analyzed using z-statistics, we can rescale specific instances

of the diffusion process to obtain a standardized free boundary problem for optimal stopping. To do this we

define a new time scale, τ = γt. Set τ0 = γt0. Let Zτ = αYt be a scaled motion with zτ0 = z0 = αYt0 .

This transformation means that, as replications are observed, the scaled times τ ∈ {γt0, γ(t0 +1), γ(t0 +

2), . . .} become dense on [0,∞) as γ→ 0. The transformation leads to a diffusion limit as in (6) and (7) that

is asymptotically appropriate as h = γ→ 0 (e.g. Billingsley 1986, Section 37).

Let µ = βθ be a rescaled drift parameter. So E[Zτ ] = µτ = E[αYt] = αθt = αµ
βγ

τ . If α/βγ = 1 then the

drift of Zτ is µ. Also, Var[Zτ ] = α2Var[Yt] = α2σ2t = α2σ2

γ
τ , so Zτ has unit variance per time unit if

α2σ2 = γ. Those two moment relations constrain the set of suitable choices of γ,α,β. The third constraint,

which is needed to identify the three parameters, is chosen after examining whether or not c equals 0.
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4.2.1. Discounting Costs Only (c = 0, δ > 0) Suppose the marginal cost of additional replications is

essentially nil (c = 0), e.g. if analyst and computer time are considered to be sunk costs, but simulation

delays discount a project’s value (δ > 0). In standardized coordinates, the reward function is

R(yt, t) = e−δ(t−t0)D(yt, t) = e−(τ−τ0)δ/γ γ

α

zτ

τ
= R(z, τ).

When T =∞ the reward is 0, the NPV of simulating forever without implementing.

The expectation in (3) is approximated asymptotically by Eτ̃∗ [R(Zτ̃∗ , τ̃
∗)|τ0, z0] for some suitable, mea-

surable continuous-time policy π̃ with optimal stopping time τ̃ ∗ ≥ τ0. That stopping time also maximizes

α
γ
Eτ̃≥τ0 [R(Zτ̃ , τ̃)|τ0, z0] = Eτ̃≥τ0

[
e−(τ̃−τ0)δ/γZτ̃/τ̃ |τ0, z0

]
.

We choose the parameters to standardize the loss function (δ/γ = 1) and match the diffusion parameters

(α/βγ = 1 and α2σ2 = γ). This parametrization requires

α = δ1/2σ−1, β = δ−1/2σ−1 and γ = δ, (10)

and allows us to solve a standardized problem,

B(z0, τ0) = Eτ̃∗≥τ0

[
e−(τ̃∗−τ0) Zτ̃∗

τ̃ ∗

∣∣∣∣τ0, z0

]
= sup

τ̃≥τ0

Eτ̃

[
e−(τ̃−τ0) Zτ̃

τ̃

∣∣∣∣τ0, z0

]
, (11)

for stopping times τ̃ of the Wiener process Z. Given c = 0, along with a standardized discount rate of

1, the diffusion equation for Problem (11) becomes 0 = −B + z
τ
Bz + Bτ + 1

2
Bzz, for (z, τ) ∈ C, with

D(z, τ) = z/τ and B(z, τ) = D(z, τ) on ∂C.

Finally, it is useful to rewrite these equations in the coordinates

s = 1/τ and ws = zτ/τ,

with s0 = 1/τ0, and W (s0) = w0 = zτ0/τ0. Then W is a Brownian motion in the−s scale starting at (s0,w0).

Each distribution for the unknown mean maps to a point in the (s,w) plane. Problem (11) becomes

B(w0, s0) = sup
0≤S≤s0

Eτ̃

[
e−(1/S−1/s0)WS |w0, s0

]
. (12)

In summary, Problem (12) determines the OEDR B1(w,s) and free boundary b1(s) of a standardized

simulation selection problem. The subscript “1” refers to this first case, c = 0. The free boundary is the
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curve where the value function’s maximands are equal, B1 = D. The solution can be approached with the

following free boundary problem (obtained from the PDE above with the chain rule).

0 = −B1

s2
−B1,s +

1
2
B1,ww (13)

D(w,s) = max{0,w}

B1 = D and B1,w = Dw, on the free boundary ∂C.

Let V1 denote the diffusion approximation for the OEDR in (y, t) coordinates. It equals the supremum of

expected rewards over all stopping rules for the diffusion approximation of the simulation stopping problem.

THEOREM 1. The free boundary ∂C of the continuation set for the standardized problem in (13) is a

function b1(s)≥ 0. The OEDR B1(w0, s0) can be converted to (y, t) coordinates to obtain the OEDR for the

unscaled diffusion process, V1(yt0 , t0) = σ
√

δB1(w0, s0)≥max{0, yt0/t0}, for points in the continuation

set C = {(w,s) : w < b1(s)}= {(y, t) : y/t < σ
√

δb1(1/δt)}.

Thus, if yt/t < σ
√

δb1(1/δt) then it is optimal to simulate, and after a simulation replication the theorem

can be used to update the OEDR for the posterior distribution, which becomes the prior distribution for

the next stage. If yt/t ≥ σ
√

δb1(1/δt), then discounting costs outweigh the value of gathering additional

information from more simulations, and there is a higher valueV1(yt, t) = yt/t to implementing immediately.

Theorem 2 characterizes the asymptotics of the stopping boundary – its proof shows that b1(s) is related

to the optimal stopping boundary of a different problem that was considered by Brezzi and Lai (2002).

THEOREM 2. b1(s)
.= s/

√
2 as s→ 0 and b1(s)

.= s1/2 (2 log s− log log s− log 16π)1/2 as s→∞.

Appendix D shows how we computed B1 and b1 for the numerical examples below. The computations

make use of the following lemma, which is also used below in the main paper. The lower bound is obtained

by examining one-stage policies where ß replications are observed, and then the system is selected if the

posterior mean exceeds−c/δ (=0 here), and is rejected in favor of infinite simulation replications otherwise.

LEMMA 3. Let Ψ[s] =
∫∞

s
(ξ − s)φ(ξ)dξ = φ(s)− s(1−Φ(s)) be the Newsvendor loss function, φ be

the pdf, and Φ be the cdf of a standard normal distribution. Then

B(y0, t0)≥B(y0, t0)
∆= sup

ß≥0

e−δß
(
− c

δ
+

(
σ2ß

t0(t0 + ß)

)1/2

Ψ

[
−

(
y0

t0
+

c

δ

)/(
σ2ß

t0(t0 + ß)

)1/2
])

. (14)
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4.2.2. Both Sampling and Discounting Costs (c, δ > 0) A similar analysis, with a conversion to stan-

dardized coordinates, can be applied when both sampling and discounting costs are relevant (c > 0, δ > 0).

R(yt, t) = −
∫ t

t0

ce−δ(ξ−t0)dξ +D(yt, t)e−δ(t−t0)

= − c

δ
(1− e−

(τ−τ0)δ
γ )+ e−

(τ−τ0)δ
γ

c

δ

δγ

cα

zτ

τ
= R(zτ , τ). (15)

Set κ = δγ/cα. Then (3) is approximated asymptotically by V(yt0 , t0) = supτ̃≥τ0
Eτ̃ [R(Zτ , τ) | z0, τ0]

for some suitable measurable, continuous-time selection policy π̃ with optimal stopping time τ̃ ∗ ≥ τ0. Since

E[R(YT , T )] = E[R(Zτ̃ , τ̃)] when τ̃ = γT , the stopping time τ̃ ∗ also maximizes

δ

c
Eτ̃≥τ0 [R(Zτ̃ , τ̃)|z0, τ0] = Eτ̃≥τ0

[
−1+ e−

(τ̃−τ0)δ
γ (1+κZτ̃/τ̃)

∣∣z0, τ0

]
. (16)

The problem of finding the optimal τ̃ ∗ ≥ τ0 to maximize (16) over stopping times τ̃ ≥ τ0 of the Wiener

process Zτ can be reduced to a family of standardized problems indexed by κ if δ/γ is chosen to equal 1 to

simplify the exponent, and if the diffusion’s two moment constraints are satisfied (α/βγ = 1 and α2σ2 = γ).

We adopt that parametrization here, namely

α = δ1/2σ−1, β = δ−1/2σ−1, γ = δ and κ = δ3/2σc−1. (17)

Given (16), the general solution is reduced to finding τ̃ ∗ for a standardized problem whose sampling costs,

discount factor and variance are all equal to 1:

δ

c
V(yt0 , t0) =

δ

c
Eτ̃∗≥τ0 [R(Z∗

τ̃ , τ̃ ∗) | z0, τ0] =−1+ sup
τ̃≥τ0

Eτ̃≥τ0

[
(1+κZτ̃/τ̃)e−(τ̃−τ0)

∣∣z0, τ0

]
. (18)

Theorem 3 says that the OEDR when c > 0 is directly related to the OEDR in Theorem 1 (with c = 0),

and that the continuation set for y/t is shifted by −c/δ. This implies that only one free boundary problem

must be solved to handle any values of c≥ 0 and δ > 0.

THEOREM 3. Let b1(s) be the free boundary and B1(w,s) be the OEDR from Theorem 1 for the case

c = 0, δ > 0. Set Ws = Zτ/τ and s = 1/τ as in §4.2.1. Then the optimal stopping time τ̃ ∗ ≥ τ0 for the

standardized problem in (18) with c, δ > 0, derived from the parametrization of (17), is to stop when Ws ≥

b1(s)− 1/κ. Moreover the OEDR when c, δ > 0 is

V2(κ)(yt0 , t0) = β−1

(
B1(w0 +1/κ, s0)− 1

κ

)
= σ

√
δB1

(
1

σ
√

δ
(
yt0

t0
+

c

δ
),

1
δt0

)
− c

δ
, (19)
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for points in the continuation set C = {(w,s) : w < b1(s)− 1/κ}= {(y, t) : y/t < β−1b1(1/δt)− c/δ}.

Note that the formula b(t) = β−1b1(1/δt)−c/δ for the boundary of C is valid for both c = 0 and c > 0. We

define b−1(m) = sup{t : b(t)≥m} for all m >−c/δ. We also note that b(t) is monotone decreasing and con-

tinuous for sufficiently large and sufficiently small t (Theorem 2), and that b(t) is also monotone decreasing

and continuous for all t (and thus invertible for m >−c/δ) in numerical experiments (Appendix D).

4.3. Comparing a Single Simulated System to a Known Alternative

The analysis in §4.2 requires that one either simulate or implement a single system. In this case, given a

simulated system whose E[NPV] is far below −c/δ with high probability, it is optimal to simulate forever,

rather than to implement. Alternatively, one may wish either to simulate, to stop and implement the simulated

system, or to stop and obtain a known deterministic NPV whose value is m. If the known deterministic

alternative is to “do nothing”/maintain the status quo, then m = 0. An arbitrary m 6= 0 allows for comparisons

with a known standard (Nelson and Goldsman 2001) or with the “retirement option” often used to characterize

multi-armed bandit problems (Whittle 1980). We therefore address the following generalization of (4).

V π∗(m,Θt) = max
{
m,−c+∆E[V π(m,Θt+1) |Θt, t 6= T ], (1−∆)E[X(Θt)]+∆E[V π∗(Θt)]

}

= max{m,−c+∆E[V π(m,Θt+1) |Θt, t 6= T ], E[X(Θt)]} . (20)

Several results follow directly from the structure of (20) and the results of the previous subsections. First,

since an optimal policy is reasonable, V π∗(m,Θt) = V π∗(Θt) for all m ≤ −c/δ. We therefore focus on

m >−c/δ. Second, we can develop a diffusion approximation B(m,y0, t0) to V π∗(m,Θt) for the case of

normally distributed outputs with a known variance. By examining policies that run ß replications, and then

select a reward of max{m,−c/δ, y
t0+ß/(t0 + ß)}, we obtain the following analog of Lemma 3:

B(m,y0, t0)≥ sup
ß≥0

e−δß
(

m+
(

σ2ß
t0(t0 + ß)

)1/2

Ψ

[
−

(
y0

t0
−m

)(
σ2ß

t0(t0 + ß)

)−1/2
])

. (21)

Third, a better bound than (21) might be found by noting that the diffusion approximation for (20) is the

same as in (7) in the continuation set Cm. The boundary conditions change from (8) to

B(m,y, t) = D(m,y, t) ∆= max{m,y/t,−c/δ}, and By(m,y, t) = Dy(m,y, t), on ∂Cm. (22)
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The continuation set Cm is indexed by m as it may, in principal, differ from C.

We define the m-diffusion problem to be the free boundary problem that is determined by the heat equation

in (7) and the free boundary condition in (22). The lower bound in Theorem 4 is based upon the following

stopping rule: do not continue sampling if one would stop if the mean were max{y/t,m}. With this rule,

the maximum number of replications that one should be willing to make is db−1(m)e− t0 before one stops

either to implement the simulated alternative or to take m.

THEOREM 4. For a fixed m, let B(m,y, t) be the solution to the m-diffusion problem given by (7) and

(22). Let B(y, t) be the solution to (7-8) in (19), with boundary b(t) = β−1b1(1/δt)− c/δ and continuation

set C = {(y, t) : y < b(t)}, where β, δ, b1 are as above. Set t̃(t) = tb−1(m)/(b−1(m)− t) and t̃0 = t̃(t0).

If m≤−c/δ, then B(m,y0, t0) = B(y0, t0). If m >−c/δ, then b−1(m) is finite and

B(m,y0, t0)≥B(m,y0, t0)
∆=

{
max{y0/t0,m} if t0 ≥ b−1(m)
m+β−1B1

(
β(y0

t0
−m),1/δt̃0

)
if t0 < b−1(m). (23)

The second alternative of (23) depends upon c, as expected, because t̃0 is a function of b−1(m), and

b(t) = β−1b1(1/δt)− c/δ depends upon c. Note that B(m,y, t) is an easily computable function of B1(·, ·).

An interesting question that we leave for future work is whether or not B(m,y, t) = B(m,y, t). This

hypothesis was not rejected by our Monte Carlo tests in §5.

4.4. The Cost of Developing the Simulation Tool?

The analysis of the previous subsections assumes that the cost of the simulation tools is sunk and that the tools

are immediately available for use. Now suppose that the simulation tools have not yet been developed, but

that the manager has good estimates of the time and cost required to develop the simulation tools (scope, data

collection, programming, validation, etc.), and an estimate of the run times of the simulations replications

themselves (e.g., from prior experience with similar projects).

In particular, suppose that u0 ≥ 0 years and $g0 ≥ 0 are required to develop the underlying simulation

platform that enables the k = 1 alternative to be simulated. Then the NPV of having the option to simulate

or implement the alternative is:

V̄(Θ0) = max
{
E[X(Θ0)],−g0 + e−δu0V π∗(Θ0)

}
. (24)
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The first maximand in (24) is the expected reward from implementing the alternative without building the

associated simulation tool, and the second term combines the NPV of developing the simulation tool with

the discounted value of the OEDR of the simulation selection problem in §3. The value of V π∗(Θ0), in turn,

can be approximated by the diffusion results in the far right side of (19), which is valid for c≥ 0 (if there is

no choice but to simulate or to implement the simulated alternative); or by Theorem 4 if there is an option

to stop to implement either the simulated alternative or to select a known deterministic NPV of m.

If V̄(Θ0) < 0, then one would neither invest in developing the simulation tools, nor implement the alterna-

tive under consideration. If V̄(Θ0) > 0 and V̄(Θ0) equals the second maximand of (24), then it is economically

optimal to implement the simulation tool. If V̄(Θ0) > 0 and V̄(Θ0) equals the first maximand of (24), then

it is economically optimal to implement the alternative without developing a tool to simulate it.

5. Sample Simulation Selection Problems

This section applies our results to several illustrative examples with one alternative. Example 1 demonstrates

that optimal stopping rule is more complex than existing stopping rules in ranking and selection. Example 2

shows that positive marginal sampling costs imply a finite amount of time that one should be willing to

simulate. These two examples assume that the development cost of the simulation tool is sunk.

Two other examples illustrate the economic value of the approach. Example 3 analyzes whether or not

it is optimal to invest in simulation tools in the first place. Example 4 demonstrates the economic value of

having a flexible stopping time for simulation, as opposed to a rigid simulation analysis deadline.

Example 1 examines how large the simulation output mean must be before one stops to implement a

system. Assume that a firm uses a discount rate of 10%/year, that the output of replications of a single

simulated alternative has standard deviation σ = $107 and requires η = 20 min to run at no marginal cost

(c = 0), so that the results of §4.2.1 apply. The simulation time makes the discount rate per replication equal

to δ = 20× 0.10/365/24/60, so 1/δ = 2.63× 105 replications are required to get to scaled time τ = 1.

Figure 1 indicates that simulation should stop after t = 14 replications if the sample mean is yt/t = $107

(corresponding to a z-score of z = yt/t

σ/
√

t
= 3.7). If the sample mean never crosses above the stopping boundary

in Figure 1, when c = 0, then one would simulate forever in the absence of additional structure.
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If the simulated system is implemented (with yt/t > 0), then the posterior probability of incorrect selection,

PICS, is the probability that the unknown mean NPV is less than the value of not implementing any system

(NPV = 0). Recall that the posterior probability for the unknown mean is Normal (yt/t,σ2/t), with density

pt(θ) =
√

t√
2πσ2

e−(θ−yt/t)2t/2σ2
. If z = 3.7 when t = 14, then PICS =

∫ 0

−∞ pt(θ)dθ = Φ[−z] = 1×10−4. If the

simulated system is selected as best, but the mean turns out to be θ < 0, then the opportunity cost is 0−θ, and

the posterior expected opportunity cost of potentially incorrect selection is EOC =
∫ 0

−∞(0−θ)pt(θ)dθ = 69.

One stops after 663 replications (9.2 days) if yt/t = $106 (z = 2.57; PICS = 5.0× 10−3; EOC = 615.6),

and after 1973 replications (274 days) if yt/t = $105 (z = 1.4; PICS = 9.6× 10−2; EOC = 2584). In this

example, then, a greater potential upside means that one is willing to “stop simulating and start building”

sooner, but a more stringent level of evidence for correct selection is required (a higher z-score, meaning

a lower PICS). We can compare this with highly effective Bayesian procedures that do not account for

discounting Branke et al. (2007). Those earlier procedures specify a given fixed number of replications, or a

PICS or EOC threshold that determines when stopping should occur. The optimal treatment of discounting

indicates that those approaches are not optimal for E[NPV]. We also note that the optimal stopping boundary

to maximize the E[NPV] of a selection differs from the shapes (e.g., triangular) of stopping regions for

several frequentist IZ procedures.

Example 2 shows that the inclusion of marginal costs for sampling compels the analysis to end. Suppose

that the variable cost per simulation run is $3/hour (e.g. for computer time), and all other parameters are as

in Example 1. The cost per replication c = $3×20/60 = $1. We presume that the alternative to stop and “do

nothing” is available, with m = 0, so that the results of §4.2.2 and §4.3 apply.

Figure 2 shows the original stopping boundary from Figure 1 as a line with long dashes, with the solid

stopping boundary drawn c/δ ≈ $263K below it, to account for the sampling costs (the y-axis is not in

log-scale, to allow for negative values). The lower line means that one is willing to simulate for a shorter time

(6.3 days instead of 9.2 days from Example 1 if yt/t = $106; 44.2 days instead of 274 days if yt/t = $105).

The horizontal dash-dot line corresponds to the “do nothing” option with a deterministic NPV of m = 0.

It intersects the stopping line at 5120 replications (71.1 days), the longest amount of time that one would
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Figure 1 One stops simulating to implement if

the sample mean exceeds a stopping boundary

(σ = $107; δ = 5.71× 10−6, or 10% per year; c = 0).
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Figure 2 One stops sampling earlier in favor of

implementing when the marginal cost of sampling is

$1/hour (σ = $107; δ = 5.71× 10−6, or 10% per year).
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rationally simulate this system, if the goal were to maximize E[NPV]. Beyond that number of replications,

one would take the zero option of the posterior mean yt/t < 0, and one would implement if yt/t > 0.

The dotted line in Figure 2 represents the contour V2(κ)(y, t) = 0. Below that line, the OEDR V2(κ)(y, t)

from (19) is negative (if the 0 option were not available, one would lose money by being forced to simulate

a poor system). The OEDR B(0, y, t) of (23), when the 0 option is available, is greater than 0 in that region

(there is some potential for an up-side, up to the point where one would stop if the mean were 0).

A larger c means a willingness to run fewer replications. A larger σ pushes the stopping boundary propor-

tionally higher above the base −c/δ. Appendix C.2 further discusses how σ, c and δ interact to determine

the continuation region in the context of stationary simulations.

Example 3 uses §4.4 to assess whether a simulation tool should be developed, assuming that it does not

already exist. A manager is considering a system redesign (k = 1) as an alternative to continuing with an

existing system (the “zero option”, which brings no additional revenue beyond the status quo). A validated

tool that could simulate the new alternative would require 3 months (u0 = 0.25) of time and g0 = $250K

to develop. The output of the tool would be the net improvement of the alternative over the mean NPV of

continued operation of the current system. The marginal cost of simulation runs is assumed to be negligible

(c = 0). The firm uses an annual discount rate of 10%. Based upon past simulation experience, a simulation
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run is predicted to take η = 20 min, and experience with the existing system leads to an estimate σ = $10Mil

for the standard deviation of the simulated NPV of the alternative.

Should the manager invest time and money in developing the simulation platform? An application of

(24) indicates that the answer depends upon the managers a priori assessment of how much better or worse

the alternative might be. Suppose that the manager believes that the unknown E[NPV] has, a priori, a

Normal (µ0, σ
2
0) distribution. For instance, if the manager believes that the alternative has an equal chance

of being better or worse, then µ0 = 0. If the amount of being better or worse is scaled like the random noise

in the NPV of the existing system, then σ2 = σ2
0 and t0 = σ2/σ2

0 = 1. A value of t0 = 4 corresponds to

specifying σ0 = σ/2 = $5Mil in this example.

Figure 3 shows three main policy regions. The boundary of each region depends on the expected value,

−g0 + e−δu0V π∗(Θ0), of building the simulation tool followed by an application of the simulation selection

procedure to learn more before deciding whether to implement. The contours represent the absolute value

of the difference between −g0 + e−δu0V π∗(Θ0) and the expected benefit of second policy, which never

simulates. The policy to never simulate, and to immediately implement the alternative if and only if the

alternative appears favorable, has an expected NPV of max(µ0,0).

Below the lower bold line in Figure 3 with the “◦” characters, which is defined by−g0+e−δu0V π∗(Θ0) = 0,

the zero option is more valuable than both maximands in the right hand side of (24). The manager should

therefore not simulate and continue to operate the existing system, when below that line. The contours in

that policy region show the expected loss of simulating, rather than immediately rejecting the alternative.

Above the upper bold line with the “*” characters, the first maximand of (24), which evaluates to µ0,

exceeds both the second maximand and 0. Therefore, implementing the alternative immediately is preferable

to implementing the simulation tool when the expected performance is sufficiently high (if t0 = 1, this

happens when µ0 > $12Mil; if t0 = 4, this happens when µ0 > $5.1Mil). The contours in that upper policy

region represent the expected improvement in NPV by immediately implementing the alternative rather than

investing in simulation.

In the middle band of Figure 3, where the alternative is believed to be neither a clear winner nor a serious

loser, is worth the time and investment to develop the simulation tools for the analysis. Contours in that band
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Figure 3 If the mean performance of the alternative is believed to be too low, one rejects the alternative; if

the mean performance is believed to be high, one directly implements. In a middle range, one simulates.
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represent the expected benefit of simulating rather than immediately implementing or rejecting the alternative,

depending on the value of µ0. For instance, if the manager represents uncertainty about the expected net

improvement of the alternative with µ0=$4Mil and t0 = 4 (a fair bit of uncertainty), then the improvement

in E[NPV] by assessing the alternative optimally with simulation, relative to blindly implementing the

alternative, is −g0 + e−δu0V π∗(µ0, t0)− µ0 =$250K. If µ0=$0 (may or may not be good) and t0 = 4, the

gain is $1.7Mil. The more certain the manager is about the mean performance of the alternative (larger t0),

the narrower the policy region for building the simulation.

Example 4 presumes that the simulation tool from Example 3 has been fully developed. The manager faces

a second question – how should the simulation analysis be performed? We consider two ways to perform

that analysis. One way is to simulate nonstop until a deadline for a planned decision-making meeting occurs

(after, say, a time td = 2 months = 0.166 years), followed by a decision to implement the alternative if the

estimated E[NPV] is positive, and to reject the alternative otherwise. Since c = 0, the E[NPV] of that plan is

E[NPV with fixed deadline] = e−γr

(
σ2r

t0(t0 + r)

)1/2

Ψ

[
−µ0/

(
σ2r

t0(t0 + r)

)1/2
]

, (25)

where r = td× 24× 60/η is the number of replications that can be run by the deadline (cf. Lemma 3).

Another way to analyze the alternative would be to use the simulation selection procedure that was

developed above – simulate while in the continuation region, stop to implement the alternative if the stopping
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Figure 4 The value of flexible stopping for simulation selection, rather than a rigid completion deadline.
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boundary is reached; or reject the alternative if a deterministic fallback of value m were available – here we

set m = 0. The alternative is assumed to be implementable two weeks (tp = 1/26 years) after the moment

the alternative is selected. This time delay represents coordination time after the flexible-length analysis,

and incurs a discounting factor of e−δtp times the value of the simulation selection option, V (µ0, t0).

Figure 4 shows the value of flexible stopping for simulation selection, rather than deciding after a rigid

completion deadline. For example, if the manager’s prior distribution for the unknown E[NPV] has µ0 = $0

and t0 = 4, then Figure 4 shows a value of $25K for flexible stopping out of $1.7Mil for the value of the

simulation analysis option (as at the end of Example 3), for an expected net benefit of 1.5%. When µ0 =$4Mil

and t0 = 4, that percentage increases to 55K/250K = 22% (cf. Example 3). The value of a simulation analysis

with a flexible stopping time, relative to rigid deadlines, increases both with the belief that the alternative is

better (larger µ0), and with uncertainty about the mean NPV (larger σ2
0 = σ2/t0).

6. Multiple Simulated Alternatives

Many simulation studies consider either a small, finite set of distinct systems, or a combinatorially large

number of alternatives (e.g., that represent different parameter inputs into a system design structure). This

section broadens the scope of our analysis to consider problems with k > 1 simulated alternatives.

We begin by recalling the link between simulation selection problems and the bandit literature and highlight

a difficulty of establishing a so-called Gittins-index result that would greatly simplify the selection problem.

We next present bounds for the optimal expected discounted reward of the simulation selection problem.
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These bounds can be used to extend the analysis of Example 3 in 5, which determined whether or not

simulation tools should be developed, to problems with k > 1 alternatives. We then extend the EOC analysis

of Chick and Inoue (2001) to develop sequential sampling algorithms for the simulation selection problem

and numerically show that these policies can deliver near-optimal expected rewards in a timely manner.

6.1. Simulation Selection and the Multi-Armed Bandit Problem

In the discounted multi-armed bandit problem, a decision-maker chooses repeatedly among a finite set of

mutually-independent Markov chains that are indexed i = 1, . . . , k. A choice of chain i at stage t yields an

expected reward that is specific to the state of chain i, and it initiates a state transition for chain i. The k− 1

chains not chosen at stage t remain in their current states and earn no rewards. The objective is to maximize

the expected sum of discounted rewards over an infinite horizon (Gittins 1989).

For the case in which expected one-period rewards are bounded for each chain, Gittins and co-workers

proved that an index can be computed for each arm, independently of all other arms, such that it is optimal

to select the arm whose index is greatest among all arms. This allocation index has come be known as a

“Gittins index.” Appendix A formalizes this background description.

The simulation selection problem defined in §1 is close to that of the multi-armed bandit. Both have

discrete-time discounting, independent projects, and Markovian state transitions. At the same time, the

simulation selection problem includes a stopping time, T , that is not part of the multi-armed bandit formalism.

If, as in the simulation selection problem, a “zero” arm is included, then the bandit problem has k+1 actions

available for all t = 0,1, . . . . In contrast, for t ≤ T the simulation selection problem has 2k + 1 actions

available – decide t < T and choose arm i(t) ∈ {1, . . . , k} to simulate, or decide t = T and choose an arm

I(t)∈ {0, . . . , k} to implement – and for t > T no actions are available.

The added stopping decision makes the simulation selection problem an example of what Glazebrook

(1979) calls a stoppable family of alternative bandit processes. The fact that the simulation selection problem

is such a “stoppable bandit” problem complicates the question of whether or not an index rule is optimal.

One intuitive solution to the problem with k > 1 systems follows a two-step hierarchical structure. First,

use the results of §4 to identify an optimal stopping policy for each of the k projects. Next observe that, once
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these optimal stopping policies are applied, each of k simulated systems behaves as a Markov chain. Then

given these k Markov chains, obtained via the fixed application of the k optimal stopping rules, apply the

Gittins-index result to sequentially select which system to simulate or implement at a given stage.

Glazebrook (1979, Theorem 3) identified a sufficient condition for such a hierarchical policy to be optimal

for stoppable bandit problems. In the context of this paper, that sufficient condition requires that, when each

of the k alternatives is in its stopping set when considered individually, the optimal policy for the simulation

selection problem with k alternatives, considered together, would also stop. In Appendix A.3, we construct

a simple counter-example to show that Glazebrook’s sufficient condition does not hold. Thus, the question

of whether or not there is an optimal allocation index for the simulation selection problem remains open.

We therefore take a different tack.

6.2. Bounds for Deciding Whether To Develop Simulation Tools

While assessing the OEDR of the simulation selection problem is still an open question when k > 1, bounds

on the OEDR might developed to assess whether or not to develop simulation tools in some settings. In

particular, suppose that, after completing the development of a simulation platform that costs $g0 and takes

u0 time to build, all k systems could be simulated. This corresponds to the different system designs being

specified by different inputs to the simulation platform and precludes problems for which simulation tools

must be developed separately for each project.

The OEDR V π∗(Θ) of the simulation selection problem is at least as large as the expected discounted

reward of any given policy. That includes the so-called one-stage allocation policies. A one-stage allocation

r = (r1 . . . , rk) maps a given sampling budget of ß≥ 0 replications to the k systems, with a total of ri =

ri(ß)≥ 0 replications to be run for alternative i, so that
∑k

i=1 ri = ß. For example, the equal allocation sets

ri = ß/k (relax the integer constraint if needed). After observing those samples, the one-stage allocation

policy selects the alternative with the biggest (posterior) expected reward, if that reward exceeds

µ00
∆= max{m,−ci/δ : i = 1, . . . , k}, (26)

and otherwise selects the alternative that maximizes the right hand side of (26) (with −ci/δ corresponding

to simulating alternative i forever).
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Suppose further that samples are normally distributed with known variance σ2
i , but unknown mean whose

distribution is Normal (µ0i, σ
2
i /t0i), with µ0i = y0i/t0i following the notation in §4. Then the posterior mean

that will be realized after the future sampling is done is a random variable (cf. (25)),

Łi ∼ Normal

(
µ0i,

σ2
i ri

t0i(t0i + ri)

)
. (27)

If we consider the allocation to be a function of ß and vary ß over all possible allocations, we obtain the

following lower bound for the OEDR that generalizes Lemma 3 to k > 1 projects.

LEMMA 4. Let V π∗ (Θ) maximize (2), and let r be a one-stage allocation. Then

V π∗ (Θ)≥OEDR(Θ) ∆= sup
ß≥0

exp−γß E[max{µ00,Ł1,Ł2, . . . ,Łk}]−
k∑

i=1

rici. (28)

The expectation on the right hand size of (28), in turn, has some easy-to-compute bounds. The bound

refers to the order statistics (i) for i = 0,1,2, . . . , k such that µ0(0) ≤ µ0(1) ≤ . . .≤ µ0(k).

LEMMA 5. Let r be a one-stage allocation, σ2
Ł,0

= 0, σ2
Ł,i

= σ2
i ri

t0i(t0i+ri)
, and σ2

Ł,i,(k)
= σ2

Ł,i
+σ2

Ł,(k)
. Then

E[max{µ00,Ł1,Ł2, . . . ,Łk}] ≥ µ0(k) + max
i:i 6=(k)

σŁ,i,(k)Ψ
[
(µ0(k)−µ0i)/σŁ,i,(k)

]
(29)

E[max{µ00,Ł1,Ł2, . . . ,Łk}] ≤ µ0(k) +
∑

i:i 6=(k)

σŁ,i,(k)Ψ
[
(µ0(k)−µ0i)/σŁ,i,(k)

]
. (30)

With perfect information and no discounting or sampling costs, the expected reward of r is

OEDR(Θ) ∆= E[max{µ00,Ł1,Ł2, . . . ,Łk}] . (31)

Observe that if −g0 + e−γu0OEDR(Θ) > µ0(k), then it would be optimal to invest in the simulation tools

that are required to simulate the k alternatives in question and to evaluate those alternatives, before selecting

a project (including the 0 arm). That is because expected reward from developing the simulation tool, and

using the allocation ri(ß) with the choice of ß that determined OEDR(Θ), would exceed 0.

If−g0 + e−γu0OEDR(Θ) < µ0(k), however, it would be better to not implement the simulation tools, and

to implement project (k) (which may include the 0 arm). In that case, even a simulator that incurs no costs

and no discounting penalty could not deliver the required E[NPV] to justify the development of the tools.
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6.3. Fully Sequential Algorithm with k > 1

Section 6.2 provides bounds that can help a manager to decide whether or not to build simulation tools. The

bounds are based upon one-stage policies. The actual expected discounted reward, given that the simulation

platform has been developed, is likely to improve with sequential algorithms. Section 6.1 indicates that a

sequential Gittins-index policy may not be optimal. We therefore turn to other policies that are likely to be

effective: those based upon maximizing the expected (undiscounted) reward over a finite horizon.

Gupta and Miescke (1996) showed that minimizing the expected opportunity cost is equivalent to maxi-

mizing the posterior mean that is realized once a finite total number of samples (with a known variance) is

observed. Chick and Inoue (2001) presented a one-stage sampling allocation that asymptotically maximizes

an upper bound on the expected opportunity cost (EOC) of incorrect selection when the samples are normally

distributed with different and potentially unknown variances. Branke et al. (2007) showed how a sequential

version of that one-stage EOC algorithm can be adapted into a fully sequential algorithm, Procedure LL,

which is highly efficient for a variety of selection problems. Thus, procedure LL seeks to maximize the

expected undiscounted reward over a finite horizon.

Appendix E in the Online Companion to this paper shows how ProcedureLL can be adapted and extended

to the current context, where both discounting and sampling costs are included. The procedure assumes that

samples are normally distributed with a known variance that may differ for each alternative.

The general idea of our sequential sampling procedure is simple. At each stage of sampling, the procedure

first tests whether or not to continue sampling. It does this by using the LL allocation to test if there exists

some ß≥ 1 such that allocating ß replications leads to an expected discounted reward that exceeds the value

of stopping immediately. If there is value to continuing, then one replication is run for the alternative that

LL suggests would most warrant an additional replication. After that replication is run, the statistics for that

system are updated, with the posterior distribution from the current stage becoming the prior distribution for

the next stage. If there is no value to continuing for any ß≥ 1, then the procedure stops.

The development of §6.2 immediately suggests a mechanism to assess whether there is value to additional

sampling. One should continue to sample if OEDR(Θ) > µ0(k). This will happen if there is a one-stage

allocation of size ß that leads to value for continuing to simulate. Unfortunately, the sequential recalculation
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of OEDR(Θ) that would be required by such a procedure is computationally burdensome. Fortunately, there

is an easy to compute substitute. Substituting the right hand side of (29) for the expectation in the right hand

side of (28) leads to an easily computable and analytically justifiable bound.

Stopping rule EOCγ
1 (with implicit one-stage allocation ri = ri(ß)≥ 0 such that

∑k

i=1 ri = ß): Continue

sampling if and only if there is a budget ß≥ 1 such that

exp−γß
(

µ0(k) + max
i:i 6=(k)

{
σŁ,i,(k)Ψ

[
(µ0(k)−µ0i)/σŁ,i,(k)

]})
−

k∑
i=1

rici > µ0(k). (32)

In numerical experiments, EOCγ
1 may not be as effective as hoped. The problem is that the expected

discounted reward function drops off more slowly if the budget is somewhat larger than optimal, as compared

to the greater penalty for sampling somewhat less than is optimal, which may happen with EOCγ
1 . The

following stopping rule, which may be somewhat less justifiable analytically, increases sampling slightly by

plugging the right hand side of the upper bound in (30) into the expectation of (28).

Stopping rule EOCγ
k Continue sampling if and only if there is a budget ß≥ 1 such that

exp−γß


µ0(k) +

∑

i:i 6=(k)

σŁ,i,(k)Ψ
[
(µ0(k)−µ0i)/σŁ,i,(k)

]

−

k∑
i=1

rici > µ0(k). (33)

Appendix E fully specifies how these stopping rules are used with theLL allocation to solve the simulation

selection problem. Depending upon the stopping rule, we refer to Procedure LL(EOCγ
1) or LL(EOCγ

k). We

note that the left hand sides of (32) and (33) are not monotonic in ß, so procedures that use these inequalities

must test them for ß≥ 1, and not for ß = 1 alone.

6.4. Numerical Results

We now extend the numerical examples of §5 by allowing for k > 1 alternatives.

Example 5. We extend Examples 1 and 3 by assuming there are k ≥ 1 projects, each with the same

prior distribution for the unknown mean, independent Normal (µ0, σ
2
i /t0) for all i. We assume that the

simulation output for each project is normally distributed with known variance σi = 106, a cpu time of η = 20

min/replication, an annual discount rate of 10%, and no marginal cost for simulations ci = 0.

The top rows of Table 1 give the values of OEDR(Θ) and OEDR(Θ) as functions of the number of

alternatives, when µ0 = 0 and t0 = 4. These values of OEDR(Θ) and OEDR(Θ) can be compared with the
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time and cost of developing a simulation platform, to decide if a platform warrants building or not, as in

§6.2. The data show that the bounds are relatively close for this range of k.

Example 6. Suppose now that the simulation platform has been built, but that the problem is otherwise the

same as in Example 5. Once the tool has been developed, there is no longer a constraint to use a one-stage

algorithm with an equal allocation.

Table 1 also shows the expected NPV of using ProcedureLL(EOCγ
1) or ProcedureLL(EOCγ

k) to identify

the best alternative. Those estimates are based on 6000 replications of each procedure to independently

sampled problem instances, where a problem instance is a configuration of the unknown means that is sampled

from the prior distribution for each unknown mean (except for k = 1, which is based upon 105 replications,

and where the simulation results match the PDE solution with E[NPV]=B(µ0, t0) = 1.99× 106). For these

results, each procedure modified slightly to stop after a maximum of 75 days of observed replications, or if

the stopping rule is satisfied, whichever comes first.

The top portion of Table 1 shows that LL(EOCγ
k) and LL(EOCγ

1) provide expected NPVs that are within

the range from OEDR(Θ) to OEDR(Θ) (within the limits of stochastic noise in their estimates). There is a

slight advantage for LL(EOCγ
k) over LL(EOCγ

1), as expected.

The middle portion of Table 1 shows that, on average, the sequential LL procedures, with either stopping

rule, require much less time than is required by the optimal one-stage procedure that maximizes OEDR(Θ).

The procedure LL(EOCγ
k) tends to sample more than LL(EOCγ

1), as expected by the construction of the

stopping rules. There is no corresponding time duration for OEDR(Θ), since that figure assumes perfect

information instantaneously at no cost.

The bottom portion of Table 1 shows the frequentist probability of correct selection for these procedures,

estimated by the fraction of times the ‘true’ best alternative was selected by the procedure. With respect to

this criterion, LL(EOCγ
k) again beats LL(EOCγ

1), which in turn beats the optimal one-stage allocation.

For the range of k tested, more systems means more opportunity to obtain a good system, which means

better expected performance. We did not study combinatorially large k here.
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E[NPV]×106 k = 3 4 5 6 7 8 9 10
OEDR(Θ) 4.44 5.23 5.85 6.35 6.77 7.12 7.42 7.69
OEDR(Θ) 4.42 5.20 5.81 6.31 6.72 7.06 7.36 7.62
LL(EOCγ

k) 4.43 5.20 5.87 6.39 6.78 7.08 7.41 7.66
LL(EOCγ

1) 4.50 5.18 5.78 6.30 6.75 7.09 7.36 7.60
E[Days]

OEDR(Θ) 17.4 20.0 22.4 24.5 26.4 28.3 30.0 31.6
LL(EOCγ

k) 10.1 8.3 6.6 6.2 6.4 6.3 6.2 6.1
LL(EOCγ

1) 10.2 8.2 6.4 6.1 5.9 5.2 5.4 5.4
PCSiz

OEDR(Θ) 0.945 0.935 0.925 0.917 0.909 0.902 0.895 0.889
LL(EOCγ

k) 0.967 0.955 0.945 0.938 0.930 0.921 0.916 0.914
LL(EOCγ

1) 0.965 0.950 0.943 0.934 0.923 0.905 0.904 0.889
Table 1 The expected discounted reward and average time until selecting a project as a function of the

number of independent projects, k, allocation policy and stopping criterion.

7. Discussion and Conclusions

This paper responds to the question of how to link financial measures (a firm’s discount rate, the marginal

cost of simulations) to the optimal control of simulation experiments that are designed to inform operational

decisions. It provides a theoretical foundation, analytical results, and numerical solutions to answer following

questions: Should a manager invest time and money to develop simulation tools? For how long should

competing systems be simulated before an alternative is selected, or all alternatives are rejected?

This work therefore provides a first link between a managerial perspective on simulation for project

selection and the statistical simulation optimization literature. The approach was that of treating the ability

to develop simulation tools, and the ability to simulate to gather more information about alternatives, as a

real option to gather information before committing resources to a design alternative.

The diffusion model analysis for a simulation option with k = 1 alternative assumes normally distributed

output with a known variance. The Online Companion indicates how the results can be extended to handle

output from one-parameter members of the exponential family of distributions and autocorrelated output that

allows for batch mean analysis. For k≥ 1 alternatives, we extended earlier ranking and selection work, that

minimizes the expected opportunity cost of potentially incorrect selections, to adapt to the current context,

that of maximizing the expected discounted NPV of a decision made with simulation. The Online Companion

also allows for different runtime durations for each system and parallel simulation.

The paper raises several issues for future study. From a business perspective, we do not address the issue
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of first-mover advantage or penalties for late implementation of projects due to project delays. From a

simulation perspective, we did not account for common random numbers (CRN) across systems, a technique

that can help sharpen contrasts between systems. Section 3 accounts for unknown variances, but not §4. We

reserve CRN and unknown variances for future work.

Much current research focuses on probability of correct selection (PCS) guarantees, or asymptotic con-

vergence results in simulation optimization. While these are useful properties, this paper suggests that an

alternative approach may also be useful: maximizing the expected discounted NPV of decisions based on

simulation analysis, even at the expense of potentially incorrect selections. Even with the limitations enumer-

ated above, this new approach to simulation selection accounts for a much fuller accounting of the financial

flows that are important to managers.
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Online Companion For:
Economic Analysis of Simulation Selection Problems

Appendix A provides additional background that describes the multi-armed bandit problem, the relation-

ship of the simulation selection problem to a stoppable version of the multi-armed bandit, and a numerical

example that shows that the few existing results that characterize optimal policies for stoppable bandits does

not apply to the simulation selection problem.

Appendix B provides mathematical proofs of the claims in the main paper.

Appendix C describes several technical extensions to the range of validity of the paper. It relaxes some

assumptions about the distribution of the output, the duration of the replications for each alternative, and the

sequential/parallel nature of sampling.

Appendix D summarizes how the optimal expected discounted reward (OEDR) and stopping boundaries

for the simulation selection problem (with k = 1 alternative) were computed.

Appendix E specifies the simulation selection procedures that are used in §6.3.

Appendix A: Supplement: Multi-Armed Bandits and the Simulation Selection Problem

The simulation selection problem is closely related to a class of sequential decision problem known as the multi-armed

bandit problem. In this section, we review relevant theory, and we apply the theory to demonstrate that simulation

selection problems can be reduced to a variation of multi-armed bandits that is called a stoppable bandit problem. We

then present a numerical example that indicates that well-known sufficient conditions, used to justify the optimality of

indexed-based rules in stoppable-bandit problems, do not hold in our case.

A.1. The Multi-Armed Bandit Problem

This section supplements the discussion in §3 by providing formal definitions of the multi-armed bandit problem and

of optimal allocation index rules.

Formally, we define the multi-armed bandit’s parameters as follows. Markov chain i has state space ΩΘi
, with states

Θi ∈ΩΘi
. The state space has σ-algebra, Fi, of subsets of ΩΘi

, which includes all elements Θi ∈ΩΘi
. We define the

product space of joint outcomes across all k Markov chains as (Ω,F). If chain i is chosen at time t, so that i(t) = i,

then chain i advances according to an Fi– and F–measurable 1-step transition law

Pi(Θi,t+1 |Θi,t) (EC.1)
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and earns chain i’s transition-dependent expected reward, defined by the similarly measurable function

Rt = Ri(Θi,t). (EC.2)

Alternatively, if chain i is not chosen at time t, then Θi,t+1 ≡Θi,t and chain i provides no reward.

An allocation policy is decision rule for making the infinite sequence of choices {i(1), i(2), . . .} and we let Ξ be

the set of all F–measurable non-anticipative allocation policies. Given initial states Θ = (Θ1, . . . ,Θk) and one-period

discount rate 0≤∆ < 1, the choice of allocation policy ξ ∈Ξ yields

V ξ(Θ) = Eξ

[ ∞∑
t=0

∆tRt |Θ0 = Θ

]
, (EC.3)

when the expectation exists. The “Θ0 = Θ” in (EC.3) highlights the expected discounted value’s dependence on the

initial set of prior states. An optimal allocation policy, ξ∗ ∈ Ξ, maximizes the expected discounted value: V ξ∗(Θ) =

supξ∈Ξ (V ξ(Θ)).

For the case in which expected one-period rewards are bounded, so that Ri(Θi) < ∞ for almost all Θi ∈ ΩΘi
,

i = 1, . . . , k, Gittins and co-workers proved two important sets of results which are relevant for our problem. First, Gittins

and Jones (1974) demonstrated that there exists a state-dependent index for each arm, Gi(Θi), which is independent

of all other arms, such that it is optimal to choose at each stage, t, the arm whose index is the greatest among all

arms. Second, Gittins and Glazebrook (1977) and Gittins (1979) demonstrated that this so-called Gittins index has an

appealing form. Let

Gi(Θi, s) =


E

[∑s−1
t=0 ∆tRi(t)(Θi(t),t) |Θi,0 = Θi

]

E
[∑s−1

t=0 ∆t |Θi,0 = Θi

]

 , (EC.4)

for some random stopping time s > 0. Then the Gittins index for an arm in state Θi, Gi(Θi), is the supremum of (EC.4)

among all such stopping times:

Gi(Θi) = sup
s>0

Gi(Θi, s). (EC.5)

In words, the Gittins index is the supremum of the expected discounted value per unit of discounted time over all

stopping times s > 0. Gittins (1979) demonstrates that there exists an optimal stopping time such that the supremum

in (EC.5) is achieved and that, by playing the arm with the highest index at each time t, the decision maker maximizes

the expected discounted value defined in (EC.3).

A.2. “Stoppable Bandit” Problems

The multi-armed bandit problem described in Appendix A.1 can be linked to the simulation selection problem, if the

stopping policies of the later are fixed.
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Observe that the application of any reasonable (or more generally, stationary) stopping policy, πi, to project i induces

it to behave as a simple Markov chain (with Bayes rule for state transitions and a reward of −ci when simulation data

is observed, and no state change and a reward associated with the selected system if not). Therefore, if each of the

k projects’ stopping problems is a priori defined to be operated according to a specific reasonable policy, then the

stoppable bandit effectively behaves as a traditional multi-armed bandit problem, and a Gittins index result is obtained

(Glazebrook 1979, Corollary 1). That is, an allocation index exists, such that at each stage is it optimal to select the

project with the largest index, and then to either simulate it or to implement it, with implementation if the stopping

policy for the project in question indicates that stopping is optimal. That result is true for “stoppable bandits” in general.

Glazebrook (1979, Corollary 1) does not necessarily imply that a Gittins index policy is optimal for a stoppable bandit

problem such as the simulation selection problem however. Because of the stopping problem embedded in the choice

of project i > 0, the calculation of the Gittins index now involves two stopping times: given stationary stopping policy

πi, there exists a simulation-stopping time, Ti, whose distribution is determined a priori, via πi; and given Ti there

exists, in turn, an optimal Gittins-index stopping time, which we will call si. We let Gi(Θi, s |Ti) denote the analogue

of (EC.4), so that Gi(Θi |Ti) = sups>0 Gi(Θi, s |Ti) denotes the analogue of (EC.5), where si is the stopping time

for which Gi(Θi |Ti) is achieved. This complication makes the identification of an optimal policy, whose existence is

guaranteed by Lemma 1, more difficult.

A natural class of policies to consider for potential optimality is that of hierarchical policies. In a hierarchical policy,

ξ(π1, . . . , πk), project i = 1,2, . . . , k is operated according to a reasonable policy, πi. Given a set of fixed πi, the system

is operated as a k + 1 armed bandit with policy ξ (the extra arm corresponding to the “do nothing” option). Given the

use of specific reasonable (or more generally, stationary) policies πi for projects i = 1, . . . , k, the optimal policy for the

resulting k + 1 armed bandit, as in (EC.4) and (EC.5), uses the Gittins-index rule. We denote that optimal policy, for

the given πi, by ξ∗(π1, . . . , πk).

A special example of a hierarchical policy, ξ∗(π∗1, . . . , π
∗
k), uses the stationary stopping policies, π∗i , that are optimal

for each of the k individual projects defined in (3), and then uses the Gittins-index rule for the k + 1 armed bandit

problem that results from the use of the π∗i . After the π∗i are determined, this is implemented at each time t by 1)

calculating each stopping problem’s Gittins index, assuming that policy π∗i is applied to problem i starting in state Θi,t;

and then 2) selecting the arm i, with the highest Gittins index, and operating it according to π∗i for one period (i.e.,

simulate or implement system i).

Glazebrook (1979) provides sufficient conditions under which ξ∗(π∗1, . . . , π
∗
k) is optimal for stoppable bandit prob-

lems. We restate these results for the special case of the simulation selection problem.



e-companion to Chick and Gans: Simulation Selection Options ec5

LEMMA EC.1. (Glazebrook 1979, Theorem 3, adapted to simulation selection context) Suppose, for all initial Θi

and stationary stopping policies πi, R
πi
t is uniformly bounded above for all t. Let Ti be the stopping time induced by πi,

and let Gi(Θi,t |Ti) be the associated Gittins index when project i is in state Θi,t. Let T ∗i be the stopping time associated

with an optimal stationary, deterministic stopping policy, π∗i , for project i. If, for each i, Gi(Θi,t |T ∗i )≥Gi(Θi,t |Ti)

for all stationary πi whenever Θi,t is such that t≥ T ∗i , then ξ∗(π∗1, . . . , π∗k) is an optimal simulation selection policy.

In words, if, in states in which the optimal stopping rule has stopped, the Gittins index for each project cannot be

improved upon through the use of a sub-optimal stopping rule, then ξ∗(π∗1, . . . , π
∗
k) is optimal.

These “stoppable bandits” are, in turn, special cases of what Whittle (1980) calls bandit superprocesses. Whittle

(1980) provided related optimality results for those superprocesses, that were later shown (Glazebrook 1982) to be

equivalent in some sense to the above stoppable bandit result.

A.3. Counterexample for Glazebrook’s Optimality Condition when k > 1

Appendix A.2 specifies sufficient conditions of Glazebrook (1979, Theorem 3) that would guarantee that the hierarchical

policy, ξ∗(π∗1, . . . , π∗k), would be optimal for the simulation selection problem when k > 1. The policy ξ∗(π∗1, . . . , π∗k)

has a natural appeal, since it selects the optimal stopping policy π∗i for each arm i, which converts each arm into a

Markov chain, and then applies the optimal allocation (Gittins) index to the resulting Markov chains.

This section provides a simple simulation selection policy, for a specific simulation selection problem instance, that

can outperform the hierarchical policy ξ∗(π∗1, . . . , π
∗
k). This implies that the optimal policy for the simulation selection

problem, whose existence can be guaranteed by Lemma 1, is not ξ∗(π∗1, . . . , π∗k). This supports the claim in §6.1 that

the existence of a ‘Gittins index’ is still an open question for the simulation selection problem in (2).

Example 7. This example extends Example 5 of §6.4 in the main paper. Using the setup of Example 5, it assesses if

there is value to continuing to simulate if the expectation of the unknown mean, µ0i, of all systems is on or above the

stopping boundary, b(t0i). The theoretical answer is no when k = 1. And for k > 1, one would expect the answer to be

no if the sufficient conditions of Glazebrook (1979, Theorem 3) were true.

Figure EC.1 plots figures that are analogous to the first two rows of Table 1 except that µ0i = 1.015b(t0i), where

b(·) is estimated as in Appendix D. We again chose t0i = 4. The factor of 1.015 was chosen to avoid accidentally being

inside the continuation set, as a result of numerical error. With that value of µ0i, the lower bound from Lemma 3 was

less than µ0i. Further, the maximum estimated discounted reward when k = 1 is also achieved when no sampling is

done (right panel) and the reward is µ0i = 2.035× 107, as expected.
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Figure EC.1 Lower bounds for E[NPV] when samples are allocated equally to each alternative (left panel),

when replications take place for the optimal one-stage duration of time (right panel), when the mean is slightly

above the stopping boundary.
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The most important feature of Figure EC.1 is the large benefit of additional sampling for several values of k, with

k > 1. The figure indicates that, for the simulation selection problem, it is not optimal to use the optimal stopping set

if Theorem 3 (which determines if a given project should be simulated or implemented) for each project individually,

when considering simulation selection with k > 1. Stopping to implement the system should occur later and with a

higher boundary when k > 1. The implication is that the sufficient conditions of Glazebrook (1979) – which would

guarantee the optimality of the hierarchical selection procedure ξ∗(π∗1, . . . , π
∗
k) – do not seem to hold, since the optimal

choice of stopping policy for each project appears to depend upon the state of uncertainty of the other projects.

Appendix B: Mathematical Proofs

Proof of Lemma 1. We can modify the original problem formulation of the simulation selection so that it meets

Blackwell’s conditions. We distinguish the revised problem from the original simulation selection problem through use

of the subscript r.

We let the same 2k +1 actions be available in every state, and we modify the one-period reward. Action jr(t) = 0 at

time t represents the decision to “do nothing” and receive an NPV of 0. Actions jr(t)∈ {1, . . . , k} denote decisions to

simulate project i = jr(t) for one period and pay ci. Actions jr(t)∈ {k+1, . . . ,2k} represent decisions to take expected

one-period reward, (1−∆)E[X(Θi,t)], from project i = jr − k for the current period. Observe that a perpetuity based

on this one-period reward has expected discounted value E[X(Θi,t)]. Thus, for policy πr ∈ Π, expected one-period

rewards become

Rπr
t =





0, if jr(t) = 0
−cj , if jr(t)∈ {1, . . . , k}

(1−∆)E[X(Θjr(t)−k,t)], if jr(t)∈ {k +1, . . . ,2k}.
(EC.6)
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We then modify the definition of state transitions. For action jr(t) ∈ {1, . . . , k} transitions remain as before: the

state of project i = jr(t) changes according to Bayes’ rule, (1), and the states of other projects remain unchanged. For

jr(t) = 0 and jr(t)∈ {k + 1, . . . ,2k}, we define the state of all k projects as unchanging; that is, Θi,t+1 = Θi,t for all

projects i = 1, . . . , k.

We note that any policy, π, in the original problem has a feasible analogue, πr, in the revised problem with the same

expected discounted value. For t < T in the original problem, let jr(t) = i(t) in the revised problem. For t≥ T in the

original problem, let jr(t) = I(T ) + k in the revised version when I(T ) > 0, and jr(t) = I(T ) = 0 otherwise. Then

the application of policy π ∈Π in the original problem yields

V π(Θ) = Eπ

[
T−1∑
t=0

−∆tci(t) + ∆T E[X(ΘI(T ),T )] |Θ0 = Θ

]

= Eπr

[ ∞∑
t=0

∆t Rπr
t |Θ0 = Θ

]
= V πr

r (Θ). (EC.7)

When there exists an Υ < ∞ such that |Rπr
t | < Υ for all t ≥ 0 and every πr ∈ Π, expected one-period rewards

are uniformly bounded, and Blackwell’s conditions are met. In the context of the simulation-selection problem this is

equivalent to the condition that there exists an Υ <∞ such that max{|ci|, |E[X(Θi)]|}< Υ for all Θi, i∈ {1, . . . , k}.

Given these conditions, there exists a stationary, deterministic policy that is optimal for the infinite-horizon version of

the problem.

Just as each policy π ∈ Π has an analog, πr ∈ Π, with the same expected discounted value in the infinite-horizon

problem, every stationary, deterministic policy in the revised problem has a feasible analog in the original problem

that has the same expected discounted value. To see this, suppose that tr = inf{t | jr(t) 6∈ {1, . . . , k}} in the revised

problem. If there is no such time, let tr =∞. By definition, from tr to tr + 1 the system state does not change, so for

any stationary, deterministic policy it must be that jr(t) = jr(tr) all t > tr. Thus, in the original problem we can set

T = tr, i(t) = jr(t) for all t < tr, and I(T ) = max{0, jr(tr)−k}. (EC.7) again shows that the two expected discounted

values are the same.

Using this correspondence, it is not difficult to show that we can map optimal solutions from the infinite-horizon

formulation to the original simulation selection problem. In particular, suppose π∗r is a stationary deterministic policy

that is optimal for the infinite-horizon problem. Then its analog, π∗, is feasible for the original problem statement and

has the same expected discounted value. Now, by contradiction, suppose that π∗ is not optimal in the original problem.

Then there must be another policy, π′, which has a higher expected discounted value. But π′, itself, has a feasible

analogue in the infinite-horizon problem, π′r, with the same expected discounted value. Therefore, π∗r must not have
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been optimal for the revised problem statement, a contradiction. See also Glazebrook (1979, Lemma 1). This concludes

the proof of Lemma 1.

To summarize, we can view the simulation selection problem as a stationary (infinite horizon) problem with 2k +1

actions: simulate or implement each of k “stoppable” arms, or implement the zero arm. This differs from the original

multi-armed bandit problem’s k +1 possible actions available at each time t≥ 0, but matches Glazebrook’s stoppable

family of alternative bandit processes. In addition, given the use of such a stationary, deterministic policy the original

meaning of the stopping time, T , continues to hold – it is the time at which the manager stops simulating and implements

a project – and we will continue to refer to T in the context of the infinite-horizon problem as well.

To ease notation, we abandon the use of the “r” subscript in the paper. ¤

Proof of Lemma 2. Suppose that a deterministic, stationary policy for the simulation selection problem were not

reasonable (almost surely). Then there would be sample paths with T <∞, I(T ) = i, and (1−∆)E[X(Θi,T )] <−ci,

with probability greater than 0. On these sample paths, performance can be strictly improved upon by never stopping

and setting i(t) = i for all t≥ T . A deterministic, stationary policy that is not reasonable, almost surely, is therefore

not optimal. ¤

Proof of Theorem 1. The derivation of the free boundary problem in (13) from the standardized problem in Prob-

lem (11) follows by construction and the parametrization of (10), using standard derivations of Brownian motion and

stopping times for Brownian motion (Billingsley 1986, Section 37).

We note two points that prove that ∂C is defined by a single function b1(s)≥ 0. First, note that (w0, s0) ∈ C for all

negative w0, since implementing has NPV w0 < 0 and simulating forever has a higher NPV, 0. Two, suppose that a > 0

and (w0, s0)∈ C, which means that B1(w0, s0) > D(w0, s0). Then

B1(w0− a, s0) = sup
S∈[0,s0]

E
[
WSe−(1/S−1/s0)|w(s0) = w0− a

]

= sup
S∈[0,s0]

E
[
(WS − a)e−(1/S−1/s0)|w(s0) = w0

]

≥ −a+E
[
WSe−(1/S−1/s0)|w(s0) = w0

]

= −a+ B1(w0, s0)

> −a+ w0 = D(w0− a, s0),

where the last inequality follows because (w0, s0) ∈ C by assumption. Therefore (w0− a, s0) ∈ C, so there is a single

nonnegative b1(s) that defines the boundary of the continuation set, C = {(w,s) : w < b1(s)}.

The scaling of C in (y, t) coordinates follows from the fact that w = βy/t and β−1 = σ
√

δ = δ/α. The fact that

V1 = β−1B1(w0, s0) is the correct scaling follows from recalling that the original problem was multiplied by α/δ to
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obtain the standardized problem. The fact that V1 ≥max{0, yt0/t0} follows because, at worst, one can simulate forever

to get 0, or can stop immediately to get yt0/t0, in expectation. ¤

Before proving Theorem 2, we compare the optimal stopping boundary and OEDR of the above problem to those

of Bayesian bandit problems. In a Bayesian bandit problem, the unknown distribution Θt evolves according to Bayes’

rule as samples Xt are observed, as with the simulation selection problem. But the reward structures, and therefore the

OEDRs, of the two problems differ: The Bayesian bandit generates a reward Xt at each time t, while the simulation

selection problem with c = 0 provides no reward until simulation stops and a project is implemented. Nonetheless, the

optimal stopping boundaries for the two problems are closely related:

THEOREM EC.1. When c = 0 and δ > 0, the optimal stopping boundary for the continuous time standardized free

boundary problem in (13) satisfies b1(s) = bBL(s), where −bBL(s) is the optimal stopping time of the asymptotic

approximation of Brezzi and Lai (2002) for the infinite-horizon discounted Bayesian bandit problem with independent,

normally distributed samples, unknown mean, and known variance.

Proof of Theorem EC.1. Let M = V(yt0 , t0) = supT≥t0
E[R(YT , T ) | yt0 , t0] be the OEDR for the original problem

in (y, t) coordinates. The simulation selection problem technically lets Y be observed at discrete times. Here, we abuse

notation and consider the stopping time T to be in continuous time (for a Wiener process, asymptotically valid as γ→ 0).

This is done to show the relationship of the original problem with the standardized Brownian motion approximation in

(W,S) coordinates.

Let all expectations in the proof be conditional on y0 = yt0 . Then

M = sup
T≥t0

E
[
D(YT , T )e−δ(T−t0)

]

= sup
T≥t0

E
[∫ ∞

T

D(YT , T )δe−δ(ξ−t0)dξ

]
, so

0 = sup
T≥t0

E
[
−

∫ T

t0

δMe−δ(ξ−t0)dξ +
∫ ∞

T

δ(D(YT , T )−M)e−δ(ξ−t0)dξ

]
. (EC.8)

because M =
∫∞

t0
Mδe−δ(ξ−t0)dξ. Apply the change of coordinates W (s) = βYt/t and s = 1/γt, as for the standardized

problem, so that W is a Brownian motion in the −s scale going from s0 = 1/γt0 to 0 (cf. §4.1). Recall that γ = δ.

(EC.8) implies that

0 = sup
T≥t0

E
[
−

∫ T

t0

δMe−δ(ξ−t0)dξ +
∫ ∞

T

δ(
W (S)

β
−M)e−δ(ξ−t0)dξ

]

= sup
T≥t0

E
[∫ T

t0

Mde−δ(ξ−t0)−
∫ ∞

T

(
W (S)

β
−M)de−δ(ξ−t0)

]

= sup
0≤S≤s0

E
[
Me

−( 1
S
− 1

s0
)−M − (

W (S)
β

−M)e−δ(ξ−t0)

∣∣∣∣
ξ=∞

+(
W (S)

β
−M)e−( 1

S
− 1

s0
)

]
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= sup
0≤S≤s0

E
[
W (S)

β
e
−( 1

S
− 1

s0
)−M

]
. (EC.9)

Formally, we need to worry about the payoff when T =∞ (or S = 0), but the reward when S = 0 is 0 for any finite W

due to infinite discounting and can therefore be safely ignored. Recall that β−1 = σ
√

δ, and make explicit the implicit

condition above, to obtain

M = σ
√

δ sup
0≤S≤s0

E
[
W (S)e−( 1

S
− 1

s0
) |w(s0) = w0

]
. (EC.10)

By Theorem 1, the stopping boundary is w0 = b1(s0), or when yt0/t0 = σ
√

δb1(s0).

Chang and Lai (1987, Eq. (2.6)) show that a standardized problem for the infinite-horizon discounted Bayesian bandit

problem, with normally distributed output with σ = 1, is

w′
0 = sup

0≤S′≤s′0

E
[
W ′(S′)e

−( 1
S′−

1
s′0

) |w′(s′0) = w′
0

]
, (EC.11)

where (W ′, S′) is also a Brownian motion in the −s scale; W ′(s′) = (Yτ/τ − u0)/
√

δ; w′
0 = (M ′ − u0)/

√
δ; and

u0 = Yτ0/τ0 is the mean of the prior distribution for the expected reward from a given bandit arm. Then

M ′−u0 = σ
√

δ sup
0≤S′≤s′0

E
[
W ′(S′)e

−( 1
S′−

1
s′0

) |w′(s′0) = (M ′−u0)/σ
√

δ

]
, (EC.12)

for general σ (cf. Brezzi and Lai 2002, Eq. 6 and 8, which find an inf over stopping rules with w′
0 = (u0−M ′)/

√
δ;

see their Eq. 16 to incorporate σ). Lai and coauthors show that M ′−u0 = σ
√

δbBL(s′0), where−bBL(s′) is the optimal

stopping boundary for the standardized Bayesian bandit problem (one is indifferent between the 0 option and stopping

when u0 =−σ
√

δbBL(s′0), or w′
0 = bBL(s′0)), and bBL(s′)≥ 0.

The random processes in the expectations in (EC.10) and (EC.12) are both Brownian motions in a reverse time

scale with the same support (if s0 = s′0). Only the conditioning statements differ. We can therefore equate w0 and

w′
0 in the conditioning statements where one is indifferent between stopping and continuing at time s0 = s′0. That is,

w0 = b1(s0) = bBL(s0) = w′
0, as claimed. ¤

Proof of Theorem 2. The stated asymptotic approximations are a result from Chang and Lai (1987) and Brezzi and

Lai (2002) for bBL(s). By Theorem EC.1 above, the result therefore holds for b1(s) = bBL(s). ¤

Proof of Lemma 3. Recall that c = 0. Define Tß to be the one-stage stopping rule that says to continue sampling for

exactly ß≥ 0 replications, then implement if y
t0+ß/(t0 + ß)≥−c/δ = 0 (for an expected reward of y

t0+ß/(t0 + ß));

and never stop otherwise (e.g. simulate forever if y
t0+ß/(t0 + ß) <−c/δ = 0, for reward −c/δ = 0).

The predictive distribution of Y
t0+ß/(t0 + ß) given yt0 , t0 is normal with mean yt0/t0 and variance σ2ß/t0(t0 + ß)

(de Groot 1970, Sec. 11.9). The expected reward of the stopping rule Tß is therefore

ETß
[e−δß max{0, Y

t0+ß/(t0 + ß)}|yt0 , t0] = e−δß
(

σ2ß
t0(t0 + ß)

)1/2

Ψ

[
−yt0

y0

(
σ2ß

t0(t0 + ß)

)−1/2
]

.

Inequality (14) is justified because B is defined as a supremum over all stopping rules, including Tß for all ß≥ 0. ¤
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Proof of Theorem 3. Define C1 to be the stopping boundary for the problem when c = 0, and let C2(κ) be the stopping

boundary when c > 0, with all other parameters the same.

Set V(yt0 , t0) = supT≥t0
E[R(YT , T ) | yt0 , t0]. Recall 1/βκ = c/δ and (18).

δ

c
V(yt0 , t0)+ 1 = sup

0≤S≤s0

E
[
(κWs +1)e−(1/S−1/s0) |w0, s0

]

= κ sup
0≤S≤s0

E
[
(Ws +1/κ)e−(1/S−1/s0) |w0, s0

]

= κ sup
0≤S≤s0

E
[
e−(1/S−1/s0)Ws |w0 + 1/κ, s0

]

= κB1(w0 +1/κ, s0)

The OEDR V2(κ) for the simulation selection problem with c, δ > 0 is therefore

V2(κ) =
cκ

δ
B1(w0 +1/κ, s0)− c

δ
= σ

√
δB1

(
1

σ
√

δ
(
y0

t0
+

c

δ
),

1
δt0

)
− c

δ
.

Suppose that (yt, t) is on ∂C1, the boundary of the continuation set when c = 0. For that fixed t, yt is the smallest y

such that β−1B1(βy/t,1/γt) = y/t (Theorem 1). Define ŷ so that ŷ/t = y/t− c/δ, so that

β−1B1(β(ŷ/t + c/δ),1/γt)− c/δ = ŷ/t

has the form V2(κ) = ŷ/t. So (y, t)∈ C1 if and only if (ŷ, t)∈ C2(κ). The continuation set is therefore shifted down by

c/δ as claimed. ¤

Proof of Theorem 4. The proof, for m ≤ −c/δ, comes from noting that m never need be chosen by an optimal

policy, since one can always do at least as well as simulating forever, which has expected NPV of −c/δ. The optimal

reward is therefore the same, whether or not such a retirement option is available at all.

For the balance of the proof, suppose that m > −c/δ, so that the expected value of stopping in (22) simplifies to

D(m,y, t) = max{m,y/t}. We define b−1(m) = sup{t : b(t)≥m} for all m >−c/δ. By Theorem 2, b(t) is continuous

and monotone decreasing for sufficiently small and sufficiently large t, with limt→0 b(t) =∞ and limt→∞ b(t) =−c/δ.

The fact that limt→∞ b(t) = −c/δ means that b−1(m) is finite for m > −c/δ. Furthermore, we note that b(t) is

continuous and monotone decreasing (and hence invertible) in our numerical experiments of Appendix D below and in

the numerical experiments of Brezzi and Lai (2002) (cf. our Theorem 2). Chernoff (1961, p. 89) notes that for a related

(undiscounted) free boundary problem the boundary is decreasing, continuous and differentiable (except for a set of t

of measure 0 where the slope may be −∞). So while we define b−1(m) = sup{t : b(t)≥m}, we hypothesize that b(·)

is in fact invertible for m >−c/δ.
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We first examine the first alternative in (23), which assumes that t0 ≥ b−1(m) and m >−c/δ. This means that the

retirement reward exceeds the stopping boundary of the original problem without the retirement reward, m≥ b(t0).

One can therefore achieve an NPV of max{y0/t0,m} by stopping immediately and selecting the better of those two

options. This justifies the lower bound in the first alternative of (23). For the lower bound not to be tight, in this case,

there would need to be some value to simulating at least once, with the m option, even though one would stop if

y0/t0 = m and the retirement option of value m were not available.

In order to justify the remaining alternative, suppose now that t0 < b−1(m) and m >−c/δ. Consider the following

terminal condition: If one has not stopped before time b−1(m), then when the diffusion hits time b−1(m), retire with a

sure NPV of m if yb−1(m)/b−1(m) < m, and implement the simulated project for an expected NPV of yb−1(m)/b−1(m)

if yb−1(m)/b−1(m) ≥ m. One might stop at some time t < b−1(m) if the m-diffusion suggests that the mean is

sufficiently high as to warrant early stopping. We consider the optimal policy for that subclass, call it Ξ′, of all possible

non-anticipative stopping times (since we consider a subclass of possible stopping times, we will obtain a lower bound

for the second alternative in (23)).

Figure EC.2 gives a conceptual schematic of the continuation region for this stopping policy. In (y, t) coordinates, one

proceeds up to a maximum time of t = b−1(m) and one is forced to take a terminal reward of max{m,yb−1(m)/b−1(m)}.

In particular, the m-diffusion satisfies the same diffusion equation as before (as in (7)), but now has a terminal

condition, at time t = b−1(m), with expected NPVmax{m,yb−1(m)/b−1(m)}. This differs from the ‘terminal condition’

from the original case, which informally is to pick the best alternative of max{−c/δ, limt→∞ yt/t}, as t→∞. More

formally, that terminal condition was to retire with terminal value max{w0,0}when analyzed in the (w,s) reverse-time

coordinates.

Stopping at time t = b−1(m) corresponds to stopping at time sf = 1/δb−1(m) in (w,s) coordinates, and gives a

reward max{βm,w}. The process in (w,s) coordinates is a standard Brownian motion in the −s scale that starts at

time s0 = 1/τ0 = 1/δt0 and with position w0 = βy0/t0. The statistics for that process are equivalent to the statistics of

a process that starts at time s0− sf and that has the same terminal reward at time 0 (shifting time by 1/δb−1(m) does

not change the statistics of a Browning motion).

The solution to the optimal policy in the subclass Ξ′, therefore, is directly equated to the optimal policy in the original

class, but for a modified problem. That modified problem has a time shift of 1/δb−1(m) in the −s scale.

We will use that fact to express the value function of the m-process in terms of the original process by shifting the

m-diffusion process in the −s time scale to run from time s̃0 to time 0, rather than from time s0 to time 1/δb−1(m).
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Figure EC.2 There are two stopping regions when a retirement of m >−c/δ is allowed, one for retirement

(terminal reward m) and the other for implementing a system (terminal expected reward y/t).

t

m

y/t

Retire,

get m

Stop, get y/t

Continue

to simulate

In doing so, we note that m will take the role of −c/δ in (8), and the role of t in that equation will be replaced by the

value of t that corresponds to s̃0. To find that value of t, we set s̃(t) = 1/δt−1/δb−1(m) = (b−1(m)− t)/(δtb−1(m)),

and note that this corresponds to t̃(t) = 1/δs̃(t) = tb−1(m)/(b−1(m)− t) as in the statement of the theorem.

The analogous terminal condition for the m-process is to terminate at time 1/δb−1(m) with terminal reward

D̃(w,1/δb−1(m)) = max{βm,w}. Note that this form for the m-process is the same as for the form of the original

process with c 6= 0, with βm taking the role of −κ, and the diffusion runs in the −s scale from time s0 = 1/δt0 to

1/δb−1(m), for a total time duration in the −s scale of s̃0
∆= 1/δt0− 1/δb−1(m).

By recalling the problem in (7-8) and the solution in (19), then, and noting that m takes the role of −c/δ and that

t̃(t) takes the role of t, we arrive at a justification of (23). The value of B(m,y0, t0) solves the free boundary problem

for the class of non-anticipative stopping policies Ξ′ that require stopping by time b−1(m). ¤

Proof of Lemma 4. The fact that the distribution of the posterior mean Łi to be observed, given that ri

replications will be observed, is as in (27) follows directly from (de Groot 1970, Sec. 11.9). The expectation

E[max{µ00,Ł1,Ł2, . . . ,Łk}] is therefore the expected reward from selecting the alternative with the largest poste-

rior mean, or the known NPV of µ00, after having observed a total of ß =
∑k

i=1 ri samples. (Note that if µ00 =

max{−ci/δ}< 0, this choice corresponds to simulating alternative argmax{−ci/δ} forever). The factor of exp−δß

discounts that reward appropriately.

That specific one-stage sampling policy has a value that is not greater than the policy that is optimal over all non-

anticipative sampling policies. Also, the discounted cost of sampling is not more expensive than the undiscounted cost

of sampling,
∑k

i=1 rici. Because of these two facts, the right hand side of (28) is a lower bound for V π∗ (Θ). ¤
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Proof of Lemma 5. The fact that the expectation E[max{µ00,Ł1,Ł2, . . . ,Łk}] can be decoupled into a sum of

µ0(k) and an expected opportunity cost for a potentially incorrect selection was shown by Gupta and Miescke (1996,

Equation (11)).

Chick et al. (2001, Theorem 1) proved that the expected opportunity cost for a potentially incorrect selection has

lower and upper bounds that justify the lower bound in (29) and the upper bound in (30). Those bounds come from

assessing the expected loss in a pairwise comparison of the current best with any other single alternative (to get the

lower bound), and from the sum of the expected losses when summing over all pairwise comparisons of the current

best with each alternative (for the upper bound). The result was stated (not proven) in (Chick and Inoue 1998). ¤

Appendix C: Extensions

Section 4 assumed jointly independent Gaussian output with known variances, simulations runs for each alternative that

are of the same duration, and sequential simulation sampling, as might be experienced with a single CPU. This section

shows that some of the results appear to hold more generally. It points to references that provide sufficient conditions

for the results to hold. A full analysis is beyond the scope of this paper.

C.1. One-Parameter Members of the Exponential Family of Distributions

Chang and Lai (1987) show that their Gittins-index results for the Bayesian bandit asymptotically apply to independent

samples from one-parameter members of the exponential family of distributions, with pdf f(x | θ) = exp{θx−ϕ(θ)}.

They require several technical conditions, including a conjugate prior distribution, an information number ϕ′′(θ) that

is bounded away from 0 and ∞, and ϕ′′ uniformly continuous on (a1− r, a2 + r) for some r > 0 and some a1 < a2.

Although the reward in their problem differs from ours, the asymptotic convergence issues appear to be the same.

Let Et represent the state of information at time t. Denote the posterior mean by µθ,t = E[θ | Et], the posterior

variance by ς2
t = Var[θ | Et], and the (conditional) variance of a sample by σ2

µθ,t
= Var[X | µθ,t]. Under mild regularity

conditions, the posterior distribution pt(θ) = p(θ | Et) of θ at time t is asymptotically Normal (µθ,t, ς
2
t ) as t→∞. If

the results of Chang and Lai (1987) apply here, the OEDR of the simulation selection problem can be asymptotically

approximated using µθ,t, ς
2
t , σ2

µθ,t
for large t and small δ.

For Bernoulli sampling with probability θ and a Beta(α,β) prior distribution for θ, for some α,β > 1, µθ,t =

α/(α + β); ς2
t = αβ/[(α + β)2(α + β + 1)]; and σ2

µθ,t
= µθ,t(1− µθ,t). With that setup, t = σ2

µθ,t
/ς2

t = α + β + 1

is the effective number of observations, and
√

δσµθ,t
B1(µθ,t/

√
δσµθ,t

,1/δt) is an asymptotically appropriate OEDR

when c = 0, δ > 0, with stopping boundary σµθ,t

√
δb1(1/δt).
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C.2. Autocorrelated Output

The infinite-horizon expected NPV of a simulated system can sometimes be estimated by simulating the mean of a

stationary process and applying a discount factor correction. For example, if the initial state is appropriately modeled

by sampling it from the stationary distribution, and the stationary mean is A, then the mean infinite-horizon NPV is

A/δ. Such processes are typically autocorrelated, however.

Autocorrelated output can often be analyzed using “batches”, so that time averages from consecutive, finite time

periods are treated as if they were statistically uncorrelated. Kim and Nelson (2006) justify this asymptotically in

a diffusion-approximation framework when certain technical conditions, such as those for a functional central limit

theorem, are valid. We presume that such technical conditions hold in this subsection.

One would hope that the boundary (as a function of the time spent simulating) specified by our approach would

be invariant to the batch length if batching were used. Invariance occurs if β were invariant and γ were doubled

whenever the length of a batch is doubled (so the number of batches is halved). That would keep β−1b`(1/τ) constant,

as τ = γt = (2γ)(t/2). Doubling the length of the runs would change parameters to δ′ = 2δ and σ′ = σ/
√

2, so that

β′ = 1/(
√

δ′σ′) =
√

2/(
√

2
√

δσ) = β, and γ′ = δ′ = 2δ = 2γ, as required. The OEDR V1 = β−1B1(βyt/t,1/γt) is

also invariant by the same argument. Shifts in the continuation set are also invariant:−c′/δ′ =−2c/2δ =−c/δ. Factors

other than 2 are handled similarly.

Our approach is therefore compatible with a batch mean analysis, when the asymptotic variance is known. Note that

some non-stationary investments, such as up-front construction costs for an implemented project, can be converted to

the required stationary-process format by treating them as perpetuities.

C.3. Different Durations of Simulation Runs for Each System

The stoppable bandit results that justify the simulation selection analysis in §3-4 are based on discrete-time sampling

with a common discount factor. While this assumption is violated if the time duration of replications for different

systems differs, there exist simple methods for finding a common time scale.

If the simulations are steady-state simulations, then the rescaling technique described in Appendix C.2 can be used

to change the duration of each system to a common value, as required, with the side-effect of changing the variance

of the output of each system. If the replications are independent, rather than from steady-state simulations, batches of

different numbers of replications from each system can be averaged to make the duration of running a batch for each

system about the same. This again changes the output variance, but removes the original restrictive assumption of a

common simulation duration.
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The batching of simulation runs necessarily introduces an element of suboptimality into the sampling algorithm (as

entire batches of runs must be taken, rather than allowing for stopping before the entire batch is observed). Nevertheless,

to the extent that simulation run-times and costs are small, relative to time scales and costs being simulated, the resulting

degradation in overall performance should be minimal.

C.4. Suboptimal Solution for Parallel Simulation

The framework employed here for the simulation selection problem requires sequential sampling, which implicitly

prohibits parallel simulation. When there are k > 1 alternatives, the use of theLL algorithm in Appendix E can be used

to allocate more than one replication per sampling stage. In particular, one can allocate one replication per stage per

parallel CPU that can be used to perform the sampling. At each step, each parallel CPU can be used to run one of the

allocated samples.

Appendix D: Computational Issues

The assessment of a project’s OEDR requires the computation of B1(w,s) and the determination of the stopping

boundary b1(s). An analytical solution for B1 and b1 is challenging to derive.

A numerical solution of (13) requires initial conditions B1(w,sn) for some fixed sn and all w so that recursive

calculations for s > sn can be made. We would like to have initial conditions at sn = 0, but (13) poses numerical

stability problems as s→ 0. We therefore need initial conditions for some time sn > 0 to approximate B1 and b1. In the

absence of a readily-computable analytic form for the exact initial conditions, we can use a lower bound for B1(w,sn)

as an approximation. Lemma 3 from the main paper provides that lower bound.

We next use the ideas of Chernoff and Petkau (1986) to numerically compute (13) in the −s scale from some time

sn > 0 through a series of times sn < sn−1 < sn−2 < · · ·s1 < s0. Chernoff and Petkau (1986) and Brezzi and Lai

(2002) approximate similar diffusions with a binomial grid, working from time si+1 to si with a small increment ∆s.

We started with sn = 5× 10−3.

The differences between our implementation and those of Chernoff and Petkau (1986) and Brezzi and Lai (2002)

are that we: a) use an explicit finite difference method with trinomial trees (rather than binomial trees), with initial

time step ∆s = 24× 10−6 and an equal probability of going to 0 or up or down by ∆w =
√

3∆s/2; b) employ an

undiscounted terminal value function (D(w,s) = max{0,w}) that is then discounted backwards in time, rather than

a discounted terminal value (max{0,w}e−(1/s−1/s0)) that is not discounted backwards in time, so that plotted values

of B(w,s) are valued in currency at time s, rather than being discounted back to time s0; and c) initialize values of

B1(w,sn) using the lower bound in Lemma 3.
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The discrete-time, discrete-space binomial grid does not directly allow for estimates of smooth boundaries, so we

have implemented an effective correction term proposed by Chernoff and Petkau (1986). (See also Brezzi and Lai

2002.) We pass through many orders of magnitude to arrive at s0 = 5×106, and in order to obtain a fully usable range,

after iterating from si+1 to si we quadruple the size of the time step ∆s. We also double the space increment ∆w to

preserve the unit variance of the random walk per time unit. This procedure causes a slight ripple in estimates of the

boundary, so we restart the diffusion at a value slightly smaller than si before iterating to si−1.

Figure EC.3 shows the OEDR B1(w,s) = B1(zτ/τ,1/τ), and the free boundary, b1(s) = b1(1/τ), for one range of

τ . Figure EC.4 and Figure EC.5 cover other ranges of τ . The graphs were generated in 4 min of CPU time in Matlab

on a 1.6Mhz PC with 384Mb RAM.
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Figure EC.3 Contours of the OEDR B1(w,s) = B1(zτ/τ,1/τ), with dashed free boundary, b1(s) = b1(1/τ).

Figure EC.6 plots the free boundary b1(1/τ) over a wide range of values of τ . Theorem EC.1 indicated that b1 = bBL,

where bBL is related to the Gittins index of a Bayesian bandit problem. Brezzi and Lai (2002) approximated bBL(s) by

bBL(s)/
√

s ≈





√
s/2 if s≤ 0.2

0.49− 0.11s−1/2 if 0.2 < s≤ 1
0.63− 0.26s−1/2 if 1 < s≤ 5
0.77− 0.58s−1/2 if 5 < s≤ 15

[2 log s− log log s− log 16π]1/2 if 15 < s.

(EC.13)

For small τ = 1/s, that approximation matches our computation well. That approximation is less accurate for interme-

diate values, and it improves upon our numerical calculations for τ > 5. The most relevant range for τ in the illustrative

examples of §5 makes use of smaller values of τ .
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Figure EC.4 Contours for standardized OEDR, B1(w,s) = B1(zτ/τ,1/τ), with dashed free boundary

b1(s) = b1(1/τ).
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Figure EC.5 Contours for standardized OEDR, B1(w,s) = B1(zτ/τ,1/τ) with dashed free boundary

b1(s) = b1(1/τ).
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We propose and recommend an easy-to-compute alternative to (EC.13) that reduces the difference between the

approximation in (EC.13) and the more accurate free boundary solution for b1(1/τ). To develop the approximation,

we used Matlab to fit a low-order polynomial to the τ, b1(1/τ) in the log-log scale over the range τ ∈ [.01,7]. That

range contains the range of 1/s values in question (from 1/15 to 1/.2). The alternative approximation that conforms

quite closely to b1(1/τ) in Figure EC.6 is:

b̃1(s) ≈




s/
√

2 if s≤ 1/7
exp [−0.02645(log s)2 +0.89106 log s− 0.4873] if 1/7 < s≤ 100√

s [2 log s− log log s− log 16π]1/2 if 100 < s.

(EC.14)

This can be used to provide a quickly computed asymptotic approximation of the Gittins index of the Bayesian bandit

problem of Brezzi and Lai (2002), with normal samples (unknown mean, known variance), namely, yt/t+β−1b̃1(1/γt).
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Figure EC.6 Free boundary b1(s) = b1(1/τ).

Good asymptotic approximations for B1(w,s) as s→ 0, s→∞, and w →−∞ would be helpful for obtaining a

rapidly-computable OEDR over a broader range of values than is presently covered in Figure EC.4 and Figure EC.5.

For extreme values of τ = 1/s outside of the range for which we computed the plots, we used the lower bound of

Theorem 3. We did not have a special bias correction for B1 as we did for b1. Such bias corrections and approximations

for more extreme values of s are left for future work.

Figure EC.6 also plots B1(0,1/τ), the OEDR when the sample mean is 0. The Gittins index of the standardized

Bayesian bandit problem is bBL(1/τ) when the sample mean is 0, and the figure confirms that the Gittins index of the

Bandit problem and the OEDR of the simulation selection problem differ, although the boundaries are related.
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Appendix E: Simulation Selection Procedures with k > 1 Project Alternatives

This section describes how to adapt one-stage LL allocations to the present context. One-stage LL allocations allocate

a finite number of samples to k alternatives in a way that maximizes the expected (undiscounted) reward at the end

of sampling. Because the optimal solution is only known for some special cases (e.g., k = 2), some allocations have

been derived that maximize bounds on the expected opportunity cost of a potentially incorrect selection, when an

asymptotically large number of samples are to be allocated.

Chick et al. (2001, Corollary 2) derives such an one-stage LL allocation. It assumes normally distributed outputs

with unknown means and known sampling variances that may differ for each system. That result is analogous to the

one-stage LL allocation in Chick and Inoue (2001) that handles the case of unknown means and variances that may

differ for each system. Branke et al. (2007) specified how the one-stageLL allocation in Chick and Inoue (2001) can be

converted to a fully sequential algorithm. We use a similar conversion here to adapt the one-stage allocation of Chick

et al. (2001) to a fully sequential algorithm.

With four adaptations, the one-stage allocation of Chick et al. (2001, Corollary 2) can be used to solve the simulation

selection algorithm. First, the specification of prior distributions obviates the need to take a first stage of sampling.

Second, for a small to medium number of samples, some of the allocations can be negative. Techniques such as those used

in the LL of Chick and Inoue (2001, for unknown variances) can be used to remedy any violations of a non-negativity

constraint. Third, the allocation can be made sequential by updating statistics and repeatedly allocating replications

until a stopping rule is satisfied. Fourth, the allocation can be extended to account for discounting by incorporating new

stopping rules, such as EOCγ
1 and EOCγ

k in §6.3, that discount the value of information from additional sampling.

These adaptations, in the notation of the current paper, culminate in the following algorithm. The specification of a

prior distribution replaces the first-stage of sampling that appears in a majority of other ranking and selection procedures.

Procedure LL (known variances).

1. Specify prior distributions for the unknown means Θi, with Θi ∼ Normal (µ0i, σ
2
i /t0i), for each alternative. Set

y0i = µ0it0i for each i, as in §4.1. Include µ00 = 0 as an option so that the “do nothing” option is available (set σ2
0 to

be very small, e.g. 10−6 and t00 to be very large, e.g., 100 years worth of replications, for numerical reasons).

2. Determine the order statistics, so that µ0(0) ≤ µ0(1) ≤ . . .≤ µ0(k).

3. WHILE stopping rule not satisfied DO another stage:

(a) Initialize the set of systems considered for additional replications, S ←{0,1, . . . , k}.
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(b) For each (i) in S\{(k)}: If (k) ∈ S then set λ−1
ik ← σ̂2

(i)/t0,(i) + σ̂2
(k)/t0,(k). If (k) /∈ S then set λik ←

t0,(i)/σ̂2
(i).

(c) Tentatively allocate a total of r replications to systems (i)∈ S (set r(j) ← 0 for (j) /∈ S):

r(i) ←
(r +

∑
j∈S tj)(σ2

(i)γ(i))
1
2

∑
j∈S(σ2

j γj)
1
2

− t(i), where γ(i) ←
{

λ1/2
ik φ(d∗ik) for (i) 6= (k)∑

(j)∈S\{(k)} γ(j) for (i) = (k)

and d∗ik = λ1/2
ik (µ(k)−µ(i)).

(d) If any ri < 0 then fix the nonnegativity constraint violation: remove (i) from S for each (i) such that r(i) ≤ 0,

and go to Step 3b. Otherwise, round the ri so that
∑k

i=1 ri = r and go to Step 3e.

(e) Run ri additional replications for system i, for i = 1, . . . , k. Update the sample statistics, t0,i ← t0,i + ri;

y0i ← y0i+ sum of ri outputs for system i; µ0i ← y0i/t0i; and the order statistics, so that µ0(0) ≤ µ0(1) ≤ . . .≤ µ0(k).

4. Select the system with the best estimated mean, D = (k).

The value of r in Step 3c is taken to be r = 1 replication per stage for a fully sequential algorithm. The value of r

can be increased if more replications per iteration are desired, e.g., if several replications per stage are run, or if several

replications can be run in parallel during each stage. A computational speed-up can be obtained for the allocation, when

r = 1, by ignoring the potential requirement to iterate through Steps 3a-3e, and by directly allocating one replication

to the alternative that maximizes r(i) in the first pass through Step 3c.

The stopping rules EOCγ
1 and EOCγ

k formally test whether or not the sampling budget ß that maximizes an approxi-

mation to the expected discounted value of sampling, assuming that, for any given ß, the allocation for future samples

was calculated to by evaluating Steps 3a-3e (with r← ß). The determination of the optimal value of ß incurs a compu-

tational cost that is associated, for example, with a line-search optimization algorithm for ß. A computational speed-up

can be obtained by simply checking if there exists a ß ≥ 1 such that the expected discounted value of sampling is

positive. If that is the case, then the optimal ß certainly has a positive expected discounted value of sampling. In our

implementation, we initially solve for the optimal ß. If that value exceeds 1, we continue sampling. In the next iteration,

we check if a sampling budget of max{1,ß− 1} leads to a positive expected discounted value of sampling. If this is

so, we continue to sample. If not, we recheck the optimal value of ß≥ 1 with line search again.

Importantly, we note that the left hand sides of the inequalities that determine the stopping rules EOCγ
1 and EOCγ

k

are not monotonic in ß. For example, when comparing k = 1 simulated alternative with a known deterministic NPV

of 0, and when the simulated mean is just below the stopping boundary, the expected reward of a one-step algorithm

with ß = 1 replication might not justify additional sampling, but some values of ß > 1 may justify additional sampling.
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It is therefore not optimal to perform a one-step lookahead allocation by only testing if ß = 1 additional replication is

sufficient to justify continuing.

In the numerical experiments of §6.4, we implemented the above algorithm with r = 1 replication allocated per

stage, and with the preceding computational speedups.
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