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Abstract

We consider the problem of dynamically cross-selling products (e.g., books) or services (e.g., travel

reservations) in the e-commerce setting. In particular, we look at a company that faces a stream of stochastic

customer arrivals and may offer each customer a choice between the requested product and a package

containing the requested product as well as another product, what we call a “packaging complement.”

Given consumer preferences and product inventories, we analyze two issues: (1) how to select packaging

complements and (2) how to price product packages to maximize profits.

We formulate the cross-selling problem as a stochastic dynamic program blended with combinatorial

optimization. We demonstrate the state-dependent and dynamic nature of the optimal package selection

problem and derive the structural properties of the dynamic pricing problem. In particular, we focus on

two practical business settings: with (the Emergency Replenishment model) and without (the Lost Sales

model) the possibility of inventory replenishment in the case of a product stockout. For the Emergency

Replenishment model, we establish that the problem is separable in the initial inventory of all products and

hence the dimensionality of the dynamic program can be significantly reduced. For both models we suggest

several packaging/pricing heuristics and test their effectiveness numerically.
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1 Introduction

The development of the Internet allowed retailers to make in real time many decisions that were traditionally

done statically. For example, Internet retailers can change prices and make promotional decisions (discounts,

rebates, etc.) dynamically while observing immediate customer response. Another practice that has recently

been widely adopted on the Internet is dynamic cross-selling. For example, an attempt to buy most books

on Amazon.com will generate a suggestion to buy a package of two or more books1. We screened the top 100

books from Amazon.com’s best-seller list for September 17, 2003, to identify configurations of cross-selling

suggestions (see Table 1 for results). As is evident from this sample, only a small fraction of books (7%)

were not offered in a package with any other book. Further evidence from a recent survey by the E-tailing

Group Inc. [10] suggests that 62% of the top 100 Internet retailers utilize various forms of cross-selling. Other

prominent examples of cross-selling are found among travel-related Internet companies that term this practice

“dynamic packaging” [2]. All these observations underscore the importance of understanding the trade-offs

involved in dynamic cross-selling decisions and the need to quantify the benefits from making these decisions

optimally.

The implementation of dynamic cross-selling on the Internet poses several challenges. For example, the

choice of products to cross-sell must be made by the software on the basis of information about product

inventories and customer preferences rather than by a sales associate who can ask additional questions. That

is, dynamic cross-selling must be performed in response to every customer’s purchase attempt rather than

using preset static rules. To see the challenges associated with implementing dynamic cross-selling, note that

cross-selling packages are often offered at a discount so that a package of products would generate lower profit

margins. Hence, if inventory for one of the products in the package is low, it might be more profitable for

a company to sell products individually because there is a good chance that the product will be sold later

at full price2. As a result, the current inventory situation must be incorporated into cross-selling decisions.

The obvious complexity of the decisions involved in dynamic cross-selling on the Internet has resulted in the

need for specialized software packages. Some examples of companies offering such software are Netperceptions

(which focuses on physical goods) and PROS (which focuses on travel-related services). At the same time,

academic research on dynamic cross-selling is essentially nonexistent. This paper aims to fill this void by

building a framework for the analysis of the dynamic cross-selling problem, outlining the trade-offs involved,

obtaining structural results and deriving efficient solution methods.

We begin by proposing a novel modeling framework for the dynamic cross-selling problem in which combi-

natorial optimization (package selection) is blended with stochastic dynamic programming (package pricing)

over a finite time horizon. The time horizon is subdivided into smaller decision epochs corresponding to

packaging and pricing decisions that are made more often than inventory replenishments. Customer arrivals

are modeled as a stochastic, discrete-time process. Each customer attempting to buy one product (which

1At the time of this writing, Amazon.com did not offer discounts on book packages.
2In this respect, the choice to sell a product as part of a package at a discount now or to sell it individually later is similar to

the standard yield management problem that is common for airlines.
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we call his first choice) is offered a package of this product with another one (which we call the packaging

complement) and can (with some probability that depends on the price of the package) choose to buy a pack-

age. We demonstrate the dynamic and state-dependent nature of the optimal package selection problem and

concentrate on obtaining structural properties for the dynamic pricing problem. The combinatorial problem

of optimal package selection is later revisited using heuristic approaches.

Two important business settings are further analyzed. In the first setting, the firm has an opportunity

to procure an out-of-stock product at an extra cost (the Emergency Replenishment model, hereafter the ER

model). For this model we show that, under any static packaging scheme, the value function is separable in

the initial inventory levels of all products such that the dimensionality of the dynamic program (hereafter

the DP) can be greatly reduced. We refer to this result as a decomposition property. We also show that the

value function is nondecreasing concave in the initial inventory levels of all products and that the optimal

price of the package is a nonincreasing function of time and of the inventory of the packaging complement.

Interestingly, the optimal package price in this case is independent of the inventory of the first-choice product.

In the second setting (the Lost Sales model, hereafter the LS model), product inventory cannot be replenished

and the customer’s request is simply denied if the product is out of stock. We show (through counterexamples)

that few of the properties of the ER model continue to hold in this case. Most important, the value function is

no longer separable in product inventories; in fact, for the two-product case, we show that the value function

is supermodular. Moreover, the value function is generally not concave in product inventories. Under the

arbitrary static product packaging rule, upper and lower bounds for the value function are derived and used

to identify settings in which the revenue function is relatively insensitive to the choice of a particular static

packaging scheme. Finally, for both the ER and the LS models we suggest several heuristic approaches and

test them numerically. We comment on the comparative advantages and robustness of different heuristics.

To summarize, this paper makes three main contributions. First, we identify dynamic cross-selling as

an application of revenue management/dynamic pricing but one that involves an additional combinatorial

optimization to select the packaging complement. We also propose a novel modeling framework to analyze

the cross-selling (packaging/pricing) problem. Second, we derive the structural properties of the dynamic

pricing problem under any static packaging scheme, most notably the decomposition property of the objective

function in the ER model. Third, we explore the structural properties of these models to obtain efficient

dynamic packaging and pricing heuristics. Two of the proposed heuristics, the so-called “two-stage” approach

and the “depletion rate” heuristic, are shown numerically to have a near-optimal performance over a wide

range of problem parameters. The rest of the paper is organized as follows. In the remainder of this section

we survey related literature. In Section 2 we state modeling assumptions and formulate the problem. Sections

3 and 4 analyze of the ER and LS models, respectively. Section 5 concludes with a discussion of our results.

1.1 Related literature

In recent years the practice of cross-selling and the related practice of up-selling have received coverage in

trade publications (see, for example, Feldman [13] and Peters [26]), whereas academic research on cross-
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selling is very sparse; the only scholars to address this issue are Nash and Sterna-Karwat [23] who describe

the application of DEA methodology to cross-sell financial services, and Kamakura et al. [18] who utilize

customer databases to identify opportunities for cross-selling. To the best of our knowledge, there are no

papers that either model or analyze dynamic cross-selling that involves the dynamic pricing of packages and

dynamic package selection.

The seller’s decision to use dynamic package pricing is closely related to the large stream of operations

literature on dynamic pricing and revenue management (see McGill and van Ryzin [20], Bitran and Caldentey

[7] and Talluri and van Ryzin [32] for extensive surveys). In another recent survey, Elmaghraby and Keskinocak

[8] provide a thorough discussion of the need to incorporate customized pricing considerations (of which cross-

selling is one example) into dynamic pricing models; they cite many applications and notice that there are no

papers in the extant literature addressing this problem. Other publications in this stream typically consider

the dynamic pricing of a single product and hence do not address cross-selling issues (see, for example, Gallego

and van Ryzin [15] and Aviv and Pazgal [5]). Monahan et al. [22] study the problem of pricing a single product

over multiple time periods after a single inventory decision. Their setting is similar to ours in that the product

is sold over multiple periods without further replenishments. However, they utilize a specific form of demand

function: random shock is multiplicative and price dependence is iso-elastic, which allows them to find optimal

prices and inventory in a closed form. An alternative setting is the one in which demand from several types

of customers can be satisfied with the same capacity (see Maglaras and Meissner [19]). In our paper, demand

from a customer may have to be satisfied by several types of inventory simultaneously. In this respect, we

believe that the papers most relevant to our work are those analyzing the dynamic revenue management of

multiple products, a rather sparsely populated area of literature (see Gallego and van Ryzin [16] and Zhang

and Cooper [35]).

On the Internet, the selection of the packaging complement can be based both on the customer information

acquired during previous transactions and/or on the customer profile. To process the significant amounts

of data necessary for making decisions, companies utilize data mining techniques (see Padmanabhan and

Tuzhilin [25] for a survey of relevant methodologies). This approach is generally termed “personalization” (see

Adomavicius and Tuzhilin [4]). Papers dealing with personalization techniques typically focus on generating a

recommendation that ensures the best match between the customer and the product regardless of the potential

impact on the firm’s profitability. On the contrary, we assume that the company uses data mining to generate

the probability distribution over customers’ purchase preferences, which in turn is used to cross-sell products

to maximize the firm’s profit. Hence, it is quite possible that the package offered to the customer is not the

best possible match from the personalization perspective.

A practice related to cross-selling is product bundling, which also attempts to sell a package of several

products rather than a single product. However, bundling decisions (involving what to bundle and how to

price bundles) are static and made before a customer’s arrival in contrast to cross-selling, which is done

only after a customer declares a desire to buy something. Nevertheless, because dynamic cross-selling can

be loosely interpreted as dynamic bundling, we shall briefly review the related literature. Economists were
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the first to analyze the concept of bundling (see Stigler [30]). The cornerstone for many subsequent papers

on product bundling was the seminal work of Adams and Yellen [3], who formulated a model with a firm

selling two products as well as a bundle of these two products and demonstrated the benefits arising from

bundling. In the operations literature Hanson and Martin [17] were perhaps the first to address the problem of

optimally pricing bundles of products using a mathematical programming approach in a static model. Ernst

and Kouvelis [9] study the issue of how much of each individual product as well as how many bundles to

stock when pricing and bundling decisions are exogenous to the model. A wealth of marketing literature

considers bundling with particular emphasis on static pricing. Rao [28] and Stremersch and Tellis [31] review

this stream of literature. In addition, an extensive collection of papers on this topic can be found in Fuerderer

et al. [14]. In all of these papers, a commitment to sell bundles is made prior to the arrival of demand and

thereafter prices/bundles cannot be altered. Hence, the underlying models are static rather than dynamic.

We are not aware of any papers that analyze dynamic product bundling.

2 Modeling dynamic cross-selling decisions

We consider an environment in which an online retail company sells a group ofm products. We assume that all

products in the group target similar market segments or are complementary and can therefore potentially be

cross-sold with each other (see examples in the introduction). We further assume that the planning horizon is

finite (representing the time between two inventory replenishments) and is separated into N decision epochs.

At the beginning of each decision epoch the company observes the inventory of each product and makes

cross-selling (packaging and pricing) decisions. In the online environment packaging and pricing decisions can

be made as frequently as necessary, so that the length of each decision epoch can be made short compared

to typical customer interarrival time. Consequently, we assume that within each epoch there is at most

one customer arrival3. We denote by λi, i = 1, ...,m, the probability that during any decision epoch class i

customer arrives and requests one unit of i-th product (
Pm
i=1 λi < 1 to reflect the possibility that there is

no customer arrival in a particular decision epoch). Alternatively, one can also define the probability that

arriving customers do not buy a product, but the problem easily can be reformulated to focus on customers

who are willing to make a purchase.4

Upon requesting product i at a fixed price5 pi, a class i customer receives an offer of a “product i-product

j” package (for some j) at a price pij . We assume that only one package of only two products is offered

to the customer, which is consistent with the practice of some companies. For example, our experiment

3Such a model is consistent, for example, with a Poisson arrival process for which the probability of more than one arrival per
period may be made arbitrarily small.

4The implicit assumption here is that the probability of purchasing a product is time-invariant while in practice this probability
may be affected by the firm’s decisions. For example, intensive cross-selling of product j may result in fewer customers buying
this product in the future.

5In our analysis, we consider individual product price to be fixed but package price to be dynamic. This approach is often
justified in practice, since some Internet retailers try to avoid dynamically changing prices of individual products for fear of
antagonizing customers (see the example of Amazon.com’s experience [1]). Alternatively, our analysis can complement the
traditional single-product revenue management literature which studies the effects of dynamically changing prices for individual
products (see McGill and van Ryzin [20] for a thorough survey).
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with Amazon.com’s best-seller list (see Table 1) shows that at most one packaging complement is offered for

each available product. We assume that class i customers have a reservation price for ij package distributed

according to a cumulative distribution function Fij (·) with nonnegative support. Consequently, a class i
customer buys the package at a price pij with probability F ij (pij) = 1 − Fij (pij) , and buys only product
i at price pi with probability Fij (pij)

6. We assume that F̄ij(x)(x − y) is a unimodal function of x for any
nonnegative constant y. This assumption holds for a wide class of distribution functions and is also a standard

assumption often made in the pricing literature (see Ziya et al. [38] for discussion and references). While it

may seem natural to restrict the support of the reservation price function Fij(pij) to pi ≤ pij ≤ pi+ pj , we do
not make this explicit assumption because it is not inconceivable that a company would attach a value to the

very offer of a packaging complement, which potentially saves the customer some search time (in fact, in the

authors’ experience, major Web-based travel agents may sometimes sell travel packages at a premium). This

is possible because the customer observes only the individual price of product i but may not be aware of the

individual price for product j. Note that he reservation price function Fij(pij) can always be defined so that

Fij(pij) = 1 for pij = pi + pj .

The issue of estimating Fij (pij) is an important one that merits a separate study. For our purposes,

we simply assume that Fij (pij) is obtained by analyzing customer shopping behavior using data mining

techniques. Two examples of approaches that can potentially be used in this case are found in Moe and Fader

[21] and Bertsimas et al. [6]. Since we do not assume any particular functional form for these probability

functions, our model can accommodate any approach. Note also that we classify customers based on the

product they request, while in practice a company may have additional customer information that would

allow for fine-tuning the probability estimation further. In the extreme, each arriving customer could be

treated as a separate class. Our model can be extended to allow for such a possibility (e.g., let k be the

customer index with each customer having a unique k so that λi =
P
k λ

k
i where λ

k
i represents customer k

arriving to request book i), but at a cost of additional notation that would make exposition less tractable.

Supporting our approach is some evidence that for a cross-selling recommendation, the first-choice product is

more relevant than the customer profile (see Weigend [34]).

In each decision epoch a company needs to decide, for each product i, which product j should be packaged

with it and what price should be established for such a package. Suppose that at the beginning of the n-th

decision epoch (n = 1, ..., N) the inventory levels of products are given by vector I = (I1, ..., Im) and let Vn (I)

be the optimal expected revenue accrued from that moment until the end of the planning horizon. Define

ei, i = 1, ...,m as an m-dimensional vector whose components are (ei)k = 1 if k = i and 0 otherwise. We

are interested in selecting a sequence of packaging and pricing decisions in order to maximize V1 (I) . The

functional form of the Bellman equation for Vn (I) depends on actual inventory levels. If there is at least one

unit of inventory for each product (Ii ≥ 1 for all i = 1, ...,m; the situation with Ii = 0 will be considered

6A more general way to model this problem is to allow the consumer to choose simultaneously among products i, j and a
package ij. In this case the probability of selecting each of these options might depend on pi, pj and pij . However, our approach is
plausible when product j has low value without product i (e.g., a hotel reservation without an airline ticket), and it also matches
practically observed applications of cross-selling relatively well.
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shortly), the Bellman equation can be expressed as

Vn (I) =
mX
i=1

λimax
j 6=i

µ
max
pij

¡
Fij (pij) (pi + Vn+1 (I− ei)) + F ij (pij) (pij + Vn+1 (I− ei − ej))

¢¶

+

Ã
1−

mX
i=1

λi

!
Vn+1 (I) . (1)

At the heart of the recursion (1) are two maximization operators reflecting the dynamic packaging and pricing

decisions. The “outer” maximization selects the “best” product j to be packaged with product i in the case

of a class i customer arrival, while the “inner” maximization selects the “best” price for each ij package.

Without loss of generality, we assume that the inventory left in stock at the end of the planning horizon has

no salvage value and supplement (1) by the “end-of-horizon” condition VN+1 (I) = 0.

Clearly, the dynamic packaging problem is quite complex since it involves solving a large-scale combina-

torial optimization superimposed on the stochastic DP. In fact, there are very few papers that successfully

derive structural results for such problems. To illustrate the complexity of this problem, we demonstrate that

in settings in which the number of products is three or more, the choice of the best packaging complement is

nontrivial. In particular, the optimal packaging decisions may be state-dependent as well as dynamic. Figure

1 illustrates an example of the optimal package selection in the three-product case for the following problem

parameters: F ij(pij) = ((pi + pj − pij) /pj)β defined over [pi, pi + pj ], i, j = 1, 2, 3, with N = 10,β = 1,

p1 = p3 = 1, p2 = 1.5, and λ1 = λ2 = λ3 = 0.3. Figure 1a shows how the optimal packaging at the beginning

of the planning horizon (n = 1) changes with the inventory of product 1: the packaging complement of product

2 oscillates between products 1 and 3 in a rather unusual fashion. Such “non-monotone” behavior hints at a

particularly complex structural form of the optimal value function even for a relatively simple three-product

case. Figure 1b illustrates the dynamic nature of the optimal packaging for the same state of the system: in

this example, the shrinking of the remaining time horizon forces product 1 to change its packaging complement

from product 3 to product 2.

As the above example demonstrates, packaging decisions for more than two products are quite complex.

Namely, solving the DP to optimality involves O
³
(N ∗Qm

i=1 Im)
m2
´
operations, assuming that the compu-

tational complexity of performing a single pricing optimization in (1) is constant and does not depend on

the size of the problem. This interaction between dynamic packaging and pricing significantly complicates

the analysis of the general DP formulation. Below we begin our analysis by separating packaging and pricing

decisions and focusing on pricing first by assuming that packaging is static so that the packaging complement

for each product is fixed and does not change with the state of the product inventory or with time. A com-

pany may implement this policy to ensure that the packaging complement closely matches the first-choice

product. For example, the packaging complement can be assigned according to the closest match based on

a customer profile and/or purchase history (Of course, the packaging decision becomes trivial with only two

products.) Thereafter we propose several (heuristic) ways to solve the dynamic packaging problem and test

them numerically.
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As mentioned above, the DP recursion in equation (1) is applicable as long as there is at least one unit

of inventory left for each product. Hence, when the company runs out of inventory for one or more products,

equation (1) needs to be adjusted. Below we consider two alternative policies describing the company’s

response to a request for a product with an inventory level of zero. The first alternative, designated as the ER

model, allows the company to procure a “missing” item i at an additional cost bi (to ensure that it is always

profitable to use ER in case of a stockout, we assume that bi ≤ pi). In Section 3 we prove the decomposition
property of the optimal value function for the ER model under any static packaging scheme, enabling an

efficient solution method for the multiproduct ER model. The LS model (analyzed in Section 4) lacks such

a decomposition property. Consequently, as the number of products grows, this model becomes increasingly

difficult to solve. For both models we propose heuristic approaches and analyze their performance.

3 The Emergency Replenishment model

Under the ER model, the company has an opportunity to procure additional product inventory at an extra

cost. This model may be appropriate in settings with many physical products sold over the Internet. For

example, in cases whereby the retailer stocks out, products could be drop-shipped from the wholesaler directly

to customers (i.e., the order is passed on to the wholesaler/distributor, who performs the fulfillment at an

extra cost; see Netessine and Rudi [24] for details on drop-shipping arrangements and practical examples).

In this case, bi may represent the drop-shipping markup and/or additional shipping costs. Alternatively, the

retailer may reorder the missing item from the wholesaler and, once it arrives, employ a faster delivery mode

to compensate for the delay (e.g., a next-day rather than regular shipping service). In this situation, bi may

represent the extra transportation cost.

It is convenient to introduce sets of indices An to denote products that have at least one unit of inventory

at the beginning of the n-th decision epoch. Under the ER model the appropriate generalization of (1) is

given by

Vn (I) =
X
i∈An

λimax (H
n
i , J

n
i ) +

X
i/∈An

λimax
¡
H
n
i , J

n
i

¢
+

Ã
1−

mX
i=1

λi

!
Vn+1 (I) , (2)

with

Hn
i = max

j 6=i, j∈An

µ
max
pij

¡
Fij (pij) (pi + Vn+1 (I− ei)) + F ij (pij) (pij + Vn+1 (I− ei − ej))

¢¶
, (3)

Jni = max
j 6=i, j /∈An

µ
max
pij

¡
Fij (pij) (pi + Vn+1 (I− ei)) + F ij (pij) (pij − bj + Vn+1 (I− ei))

¢¶
, (4)

H
n
i = −bi + max

j 6=i, j∈An

µ
max
pij

¡
Fij (pij) (pi + Vn+1 (I)) + F ij (pij) (pij + Vn+1 (I− ej))

¢¶
, (5)
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J
n
i = −bi + max

j 6=i, j /∈An

µ
max
pij

¡
Fij (pij) (pi + Vn+1 (I)) + F ij (pij) (pij − bj + Vn+1 (I))

¢¶
. (6)

Notice that in this case all product indices remain “active” due to the possibility of outsourcing the “missing”

product. Equations (3)-(6) reflect four distinct packaging possibilities that potentially exist under the ER

model. For example, if an in-stock product is requested, it can be matched with another in-stock product

(3), or with an out-of-stock product (4), with corresponding penalty. Similarly, if an out-of-stock product is

requested, it will be procured at an extra cost, and it can be packaged with an in-stock product (5), or with

another out-of-stock product (6).

3.1 Dynamic pricing under static packaging

Let j(i) be the index of the product offered in a package with product i when a class i customer arrives.

Under the static packaging utilized in this section, j(i) is fixed for each i = 1, 2, ...,m. We denote by E(i) the

set of products for each of which product i is offered as a packaging complement, E(i) = {k|j(k) = i}. For
the ER model with static packaging, (2) can be simplified to:

Vn (I) =
mX
i=1

λi max
pi,j(i)

Y ni,j(i) +

Ã
1−

mX
i=1

λi

!
Vn+1 (I) , (7)

with

Y nij =


Fij(pij) (pi + Vn+1(I− ei)) + F̄ij(pij) (pij + Vn+1(I− ei − ej)) if i ∈ An, j ∈ An
Fij(pij) (pi + Vn+1(I− ei)) + F̄ij(pij) (pij − bj + Vn+1(I− ei)) if i ∈ An, j /∈ An
−bi + Fij(pij) (pi + Vn+1(I)) + F̄ij(pij) (pij + Vn+1(I− ej)) if i /∈ An, j ∈ An
−bi + Fij(pij) (pi + Vn+1(I)) + F̄ij(pij) (pij − bj + Vn+1(I)) if i /∈ An, j /∈ An


. (8)

It turns out that under the assumption of static packaging in the ER model, the m-dimensional DP (7)

can be decomposed into m one-dimensional DPs. Such decomposition greatly reduces the computational

effort necessary for solving (7). Below we present the decomposition property of the ER model under static

packaging. We start by introducing the following definition:

Definition 1

For i = 1, ...,m, let Gin(Ii) be the function satisfying the following recursive formulae:

Gin(Ii) = λi
¡
pi +G

i
n+1(Ii−1)

¢
+

1− λi −
X
j∈E(i)

λj

Gin+1(Ii)
+
X
j∈E(i)

λjmax
pji

¡
Fji(pji)G

i
n+1(Ii) + F̄ji(pji)

¡
pji − pj +Gin+1(Ii − 1)

¢¢
, (9)
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for Ii ≥ 1 and n = 1, ...,N , and

Gin(0) = λi
¡
pi +G

i
n+1(0)− bi

¢
+

1− λi −
X
j∈E(i)

λj

Gin+1(0)
+
X
j∈E(i)

λjmax
pji

¡
Fji(pji)G

i
n+1(0) + F̄ji(pji)

¡
pji − pj +Gin+1(0)− bi

¢¢
, (10)

while GiN+1(Ii) = 0.

Note that (10) can be expressed in closed form as follows:

Gin(0) = (N + 1− n)
λi (pi − bi) +

X
j∈E(i)

λjmax
pji

¡
F̄ji(pji) (pji − pj − bi)

¢ . (11)

The following result states the decomposition property of the optimal revenue function:

Proposition 1

In each decision epoch n, the optimal expected revenue function described by (7) can be separated into m

parts, with each depending only on the inventory level of a single product:

Vn(I) =
Xm

i=1
Gin(Ii), n = 1, ...,N + 1,

where Gin(Ii) is defined by (9)-(10).

Proof: See Appendix.

We note that Gin(Ii) can be interpreted as the expected revenue generated by the inventory of product i

alone. Indeed, as (9) suggests, product i’s inventory can be changed either directly through sales to class i

customers or indirectly through sales to class j 6= i customers as part of a ji package. In the first case, the
revenue generated per unit of product i sold is pi, while in the second case it is pji − pj .

The decomposition result is somewhat surprising: one might expect that the opportunity to procure

missing items would complicate, not simplify, the problem (a similar observation is made in Plambeck and

Ward [27]). We note that the result of Proposition 1 can be rationalized as follows: it can be shown that

under static packaging, the value function of the “main” dynamic program (1) is decomposable into the sum

of single-product functions. The same is true for the “boundary” conditions in (7) relating to the terms in

(8) with i or j outside of An and the decomposition “pieces” (single-product value functions) are identical in

both cases. As it turns out, such matching of decomposition pieces does not hold for the LS model, nor does

the decomposition result of Proposition 1. At the same time, as we will show later, the decomposition of (1)

can still be applied heuristically in the LS case to yield good performance and thus has applicability beyond

the ER model.

Next, we use the decomposition property of the revenue function to derive additional structural properties.

We demote by p∗ij(I, n) the optimal package price in decision epoch n given that the inventory levels of products

are I.
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Proposition 2

a) Gin(Ii) is a nondecreasing concave function of Ii for i = 1, ...,m, and n = 1, ..., N .

b) The optimal package price p∗ij(I, n) is nonincreasing in n, Ij , and is independent of Ik for k 6= j, for

i, j = 1, ...,m and i 6= j.
Proof: See Technical Online Appendix.

The results of Proposition 2 are established using the induction over the time index n. We note that

concavity of the revenue functions Gin(Ii) facilitates the connection between the cross-selling problem we

consider and the inventory ordering problem the online retailer may face. In particular, concave revenue

functions can be included, along with convex inventory holding costs, in the generalized inventory ordering

problem. Thus, in the absence of joint inventory ordering costs, the optimal inventory policy for each item

remains an (s, S) policy (see Scarf [29], Veinott [33], and Zheng [36]). For situations in which joint ordering

costs are significant, the (s, S) policy is no longer optimal. For such cases, however, Zheng [37] proves that

a modified (s, S) policy, a so-called (s, c, S) policy, is optimal in the decentralized system. Federgruen et al.

[11] provide an iterative procedure to repeatedly update the (s, c, S) values for each item until the optimum

is reached.

The second part of Proposition 2 indicates that the optimal package price is nondecreasing in “time-to-go”

and nonincreasing in the inventory of the packaged product. The first effect is similar to the one found in

single-product dynamic pricing problems (see Gallego and van Ryzin [15]). The second effect is quite intuitive

and shows the linkage between product availability and price that we hypothesized in the introduction. These

findings are in some ways unsurprising since they also hold in simpler settings when a seller dynamically prices

a single product. Nevertheless, it is reassuring that under a detailed and explicit model of cross-selling, this

property still holds. Finally, the inventory of the first-choice product does not affect package price due to the

decomposition property of the value function.

3.2 Heuristic approaches to dynamic packaging and pricing

The optimal solution to the cross-selling problem (1) may be hard to obtain in real time in cases involving

a large number of products. Even though the decomposition property can be applied to simplify the pricing

problem, the combinatorial optimization aimed at finding the best packaging complements still poses a signifi-

cant challenge. In this section we propose and test numerically several heuristic packaging-pricing approaches.

First, we present the myopic heuristic HM , which ignores product inventories and time-to-go. To account

for these factors, we consider two more sophisticated heuristic approaches. Heuristic HD characterizes the

optimal solution in the ER model with one-shot static and deterministic demand whose value depends on

packaging and pricing decisions. This solution can then be used dynamically at each point in time in response

to changing inventory levels. The last heuristic HT simplifies the solution to the DP by assuming that there

are no packaging decisions in any periods other than the current one.

11



3.2.1 Myopic packaging and pricing heuristic

Perhaps the simplest approach to pricing and packaging is to ignore the impact of product inventories. We

denote the resulting myopic static packaging and pricing heuristic asHM . From (9), assuming that Gin+1(Ii) =

Gin+1(Ii − 1), we obtain

jM(i) = argmaxj 6=i F ij(pMij )(p
M
ij − pi), i = 1, ...,m, (12)

where pMij is defined by

pMij = argmaxpij
¡
F̄ij(pij)(pij − pi)

¢
. (13)

The static packaging scheme defined by (12) myopically chooses the packaging complement to maximize the

expected profit from selling a package. Note that (12) serves as the fundamental characteristic of class i

customers’ propensity to buy product j and represents the optimal price to be charged for the ij package in

the case of infinite product j inventory. The clear advantage of the myopic approach is its implementational

and computational simplicity: its application requires only O
¡
m2
¢
comparisons (here and below we assume

that the time required to perform an optimization of the type (13) is constant and does not depend on the

problem size). On the other hand, the myopic heuristic assumes that the marginal value of the inventory of

the potential packaging complement is negligible—an assumption that can be especially inadequate in cases in

which product inventories are constrained.

3.2.2 Static deterministic approximation

Consider a static deterministic approximation to the dynamic and stochastic ER model. We assume that the

“one-shot” demand for each package and each single product is deterministic but influenced by packaging

and pricing decisions. Specifically, we introduce the time parameter τ = N − n, which plays the role of
the effective time horizon in our static deterministic analysis. In particular, the total demand from type i

customers is λiτ . Packaging decisions are defined by the fraction of type i demand, 0 ≤ qij ≤ 1, which receives
an offer of the ij package (that this is different from the ji package). Note that these continuous variables

represent a generalization of the packaging decisions introduced in Section 2 which simplifies the analysis of

the deterministic model we consider. Given any packaging decisions {qij} and pricing decisions {pij}, the
total demand for the ij package is given by λiτqijF ij(pij), and the total demand for single product i is given

by
P
j 6=i λiτqijFij(pij), for i, j = 1, 2, ...,m and i 6= j.

Our static deterministic approximation assumes that the demand for each package and each single product

is the expected value of the corresponding demand arising in the stochastic setting, given that the same static

packaging and pricing decisions are used. The objective is to maximize the total revenue minus the total

emergency replenishment cost by selecting the optimal values of {qij} and {pij}. This static problem, denoted
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as (P1), can be formulated as follows:

max
qij ,pij

mX
i=1

X
j 6=i

λiτqijF ij(pij)pij +
mX
i=1

X
j 6=i

λiτqijFij(pij)pi −
mX
i=1

bi

³
λiτ +

X
j 6=i λjτqjiF ji(pji)− Ii

´+
(P1) s.t.

X
j 6=i qij = 1, for i = 1, 2, ...,m,

qij > 0, for i 6= j,

where x+ = max{x, 0}. The first part in this objective function represents the total revenue collected from
selling all ij packages, the second part is the total revenue from selling individual products, and the third part

is the purchase cost for ERs derived from the fact that the total demand for product i consists of demandP
j 6=i λiτqijFij(pij) for individual product i, demand

P
j 6=i λiτqijF ij(pij) for all ij packages, and demandP

j 6=i λjτqjiF ji(pji) for all ji packages.

Note that (P1) belongs to the class of constrained optimization problems with non-differentiable objective

functions, which, in general, are hard to cope with. Next we consider a modified problem (P2) that is

equivalent to (P1) but easier to solve. We then formulate the dual problem (D2) of the primal problem (P2)

and show that the optimal solution to (P2) can be derived easily from the optimal solution to (D2), whose

objective function is linear and whose constraint set is convex. Thus, many existing algorithms (e.g., the

gradient method) can be applied to solve (D2), which is equivalent to solving (P1).

By introducing auxiliary variables {yi} and performing some algebraic manipulations on the objective
function, problem (P1) can be formulated as the following equivalent problem (with the objective value

differing by a constant), denoted by (P2):

max
yi,qij ,pij

mX
i=1

X
j 6=i

λjτqjiF ji(pji)(pji − pj)−
mX
i=1

biyi

(P2) s.t. yi ≥ λiτ +
P
j 6=i λjτqjiF ji(pji)− Ii for i = 1, 2, ...,m,P

j 6=i qij = 1, for i = 1, 2, ...,m,

yi ≥ 0 for i = 1, 2, ...,m, qij > 0, for i 6= j.

Define Hji(x) = maxpji
¡
F̄ji(pji)(pji − pj − x)

¢
. The main results of this subsection are summarized in the

following proposition:

Proposition 3

a) The dual problem (D2) of the primal problem (P2) can be formulated as the following optimization

problem with a convex set of constraints:

min
µi,vi

mX
i=1

(µi(Ii − λiτ) + vi)

(D2) s.t. λjτHji(µi) ≤ vj for i 6= j,
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0 ≤ µi ≤ bi for i = 1, 2, ...,m.

b) Given any optimal solution {µ∗i , v∗i } to (D2), there exists a corresponding optimal solution {{p∗ij}, {q∗ij}, {y∗i }}
to (P2), determined as follows:

i) p∗ji = argmaxpji
¡
F̄ji(pji)(pji − pj − µ∗i )

¢
for i 6= j;

ii) {q∗ij} and {y∗i } are the solutions to (P2), with pij replaced by p∗ij.
Proof: See Appendix.

Proposition 3b.i indicates that the dual solution µ∗i can be interpreted as the marginal value of an extra

unit of product i. That is, if there is ample inventory, there is no need to make an emergency replenishment of

product i and thus µ∗i = 0. On the other hand, if the inventory is scarce, then µ
∗
i is equal to the ER cost bi. In

other words, µ∗i can also serve as an availability indicator for product i. By the equivalence of (P1) and (P2),

the optimal solution {p∗ij , q∗ij} derived from Proposition 3b is also optimal for (P1). This optimal solution

yields another dynamic cross-selling heuristic in which decisions depend on the current product inventory

and time-to-go. In the dynamic stochastic environment of (1) this heuristic (which we denote as HD) is

implemented as follows: at the beginning of each decision epoch n, (P2) is solved for τ = N −n using current
product inventory levels. The obtained packaging ({q∗ij}) and pricing ({p∗ij}) solutions are used as follows:
when a customer of class i arrives, a firm conducts a randomized “coin-flip” trial (with the probability of

j-th outcome being q∗ij); the realized outcome j is selected and the ij package is offered at the price p
∗
ij . In

terms of computational complexity, this heuristic involves solving O(N) convex optimizations (D2) and linear

programming problems (P2).

3.2.3 A two-stage heuristic

Suppose that at the beginning of the n-th decision epoch the current inventory vector is I. Under the “two-

stage” approach, we simplify the packaging/pricing problem by assuming that there is no packaging in periods

n + 1 through N . Note that the number of type i customers arriving in each epoch is a Bernoulli random

variable with parameter λi and the number of type i customers arriving in all remaining N − n epochs is
a binomial random variable Λi with parameters (λi, N − n). Then, the marginal value of an extra unit of
product j 6= i can be expressed as

Vn+1 (I− ei)− Vn+1 (I− ei − ej) = bjE (min (Λj , Ij)−min (Λj , Ij − 1)) (14)

= bj Pr (Λj > Ij) = bj
N−nX
k=Ij

µ
N − n
k

¶
λkj (1− λj)

N−n−k .

The package price pTij for any (i, j) combination can be established from

∂Vn (I) /∂pij = fij (pij) (pi + Vn+1 (I− ei))− fij (pij) (pij + Vn+1 (I− ei − ej)) + F ij (pij) (15)

= −fij (pij) (pij − pi − (Vn+1 (I− ei)− Vn+1 (I− ei − ej))) + F ij (pij) = 0,
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so that after substituting (14) into (15) and rearranging we obtain7

pTij = pi + F ij
¡
pTij
¢±
fij
¡
pTij
¢
+ bj

XN−n
k=Ij

µ
N − n
k

¶
λkj (1− λj)

N−n−k . (16)

Note that the expression for the myopic price pMij introduced earlier does not contain the last term appearing

in (16): pTij (in which T stands for the heuristically calculated Terminal value of inventory) is an upper bound

on pMij . At the same time, p
T
ij is a lower bound on the optimal price since packaging in subsequent periods is

not accounted for. Also note that the value of pTij explicitly depends on the inventory of product j.

The packaging complement for product i is then determined as follows. Suppose that customer i arrives

and we decide not to offer any package. Then we earn pi + Vn+1 (I− ei) . The incremental value (denoted by
∆ij) of offering the package ij can be calculated as follows:

∆ij =
¡
Fij
¡
pTij
¢
(pi + Vn+1 (I− ei)) + F ij

¡
pTij
¢ ¡
pTij + Vn+1 (I− ei − ej)

¢¢− (pi + Vn+1 (I− ei))
= F ij

¡
pTij
¢ ¡
pTij − pi − (Vn+1 (I− ei)− Vn+1 (I− ei − ej))

¢
= F ij

¡
pTij
¢µ
pTij − pi − bj

PN−n
k=Ij

µ
N − n
k

¶
λkj (1− λj)

N−n−k
¶

=
¡
F ij

¡
pTij
¢¢2.

fij
¡
pTij
¢
(from (16)).

Hence, we propose the following dynamic packaging/pricing heuristic HT : when a customer of type i arrives,

we calculate pTij for all j using (16). Then, the values of ∆ij are computed for all j, and the index of the

highest value is selected:

jT (i) = argmax
j 6=i

³¡
F ij

¡
pTij
¢¢2.

fij
¡
pTij
¢´
. (17)

We observe that under the two-stage heuristic both the packaging and the pricing decisions are truly dynamic:

both depend on current product inventories as well as on time-to-go. Assuming, as before, that the time it

takes to perform an optimization of the type (13) is constant and does not depend on problem size, we

establish that the computational complexity of this heuristic is O
¡
Nm2

¢
.

To illustrate packaging decisions under HT we consider an example with the exponential price reserva-

tion function (F ij(pij) = exp(−βij(pij − pi))), symmetric price sensitivity factors βij , which depend only on
the index of the first-choice product rather than on the index of the packaging complement (βij = βi), and

symmetric penalty costs (bj = b). In this case, we obtain pTij = pi +
1
βi
+ b

PN−n
k=Ij

¡N−n
k

¢
λkj (1− λj)

N−n−k

and, after some algebra, jT (i) = argmaxj 6=i
³PIj

k=0

¡N−n
k

¢
λkj (1− λj)

N−n−k
´
. Note that the expression

S (n, Ij ,λj) =
PIj
k=0

¡N−n
k

¢
λkj (1− λj)

N−n−k is an increasing function of the inventory Ij and the decision

epoch n is a decreasing function of demand intensity λj and does not depend on the index of the first-choice

product i. In other words, S (n, Ij ,λj) can be interpreted as a proxy of how well product j has been selling

7It can be verified that, after imposing a not particularly restrictive condition that the pricing reservation function has an
Increasing Failure Rate distribution, the objective function is unimodal in pij .
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up to the decision epoch n: the lower the value of this expression, the closer the product to the status of

best-seller. Thus, the price of ij package (when it is offered) is, as expected, a decreasing function of Ij and of

the decision epoch n and an increasing function of the demand intensity λj . The set of packaging complements

can be established as follows: at each decision epoch n, rank all products according to the current value of

the parameter S (n, Ij ,λj) and let bjTs = argmaxj (S (n, Ij ,λj)) and bjTn = argmaxj 6=bjTs (S (n, Ij ,λj)) be the
indices of products with the highest and second-highest parameter values (note that if more than one product

currently has the same parameter value, ties can be broken arbitrarily). Then, (17) is equivalent to

jT (i) =

( bjTs , i 6= bjTs ,bjTn , i = bjTs . (18)

In view of our interpretation of S (n, Ij ,λj) as the best-selling index, the packaging in (18) is intuitively

appealing: all products are offered in a package with the current slowest seller, and the slowest seller itself is

packaged with the current second-slowest seller.

3.2.4 The depletion ratio heuristic

Our discussion of the two-stage heuristic indicates that dynamic cross-selling can be viewed as an effective

tool for redirecting the demand for best-selling products to products with slower-than-desired sales. Below we

propose another easy-to-implement dynamic packaging approach we call the “depletion ratio” (DR) heuristic,

which emphasizes the role of dynamic packaging in the cross-selling process. Under the DR heuristic
¡
HDR

¢
,

in each decision epoch n, each product i is assigned a “depletion ratio” index equal to the ratio of the current

product inventory Ii to the rate λi at which product inventory would be depleted in the absence of cross-

selling. Defined in this way, the DR index plays a role similar to S (n, Ij ,λj) defined for the two-stage heuristic

under the exponential reservation price function: it indicates the current sales ranking of each product. For

the current set of inventory values, let js = argmaxi (Ii/λi) and j
n = argmaxi6=js (Ii/λi) be the indices of the

slowest-selling and the second slowest-selling products, respectively. Then, the dynamic packaging decisions

under the DR approach can be described as follows:

jDR (i) =

(
js, i 6= js,
jn, i = js.

(19)

The intuition behind the choice of the cross-selling complement in (19) is similar to the intuition behind (18):

every product is packaged with the current slowest seller, while the slowest seller itself is packaged with the

current second-slowest-selling product. Note that the DR approach does not restrict the choice of the package

pricing policy and can be combined with simple static pricing or sophisticated optimal dynamic pricing. In

particular, in our analysis below we consider two cross-selling policies based on DR packaging. The first policy,

which we call “myopic” DR policy (HDRM), complements DR packaging with the myopic pricing defined by

(13). More specifically, under the DRM heuristic, in the decision epoch n product i is offered in a bundle with
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product jDR (i) , and the price requested for such a bundle is equal to pDRMi = argmaxp

³
F̄ijDR(i)(p)(p− pi)

´
.

The second DR-based cross-selling policy (HDRO) selects the best pricing under DR packaging by solving the

variant of (1) with packaging complements determined by (19). More specifically, the DRO heuristic combines

DR bundling with the pricing determined by solving the following dynamic program

Vn (I) =
Pm
i=1 λimaxp

³
FijDR(i) (p) (pi + Vn+1 (I− ei)) + F ijDR(i) (p) (p+ Vn+1 (I− ei − ej))

´
+(1−Pm

i=1 λi)Vn+1 (I) . (20)

with the usual boundary conditions. We note that the complexity of computing the heuristic prices and

bundling complements for the HDRM is O
¡
Nm2

¢
, while the respective computational complexity for the

HDRO heuristic is O ((N ∗Qm
i=1 Ii)

m).

Despite the intuitive nature of DR packaging, an analytical characterization of sufficient conditions for

its optimality is hard to obtain, except in rather restrictive settings. Below we provide an example of such

conditions under static pricing in a symmetric product environment:

Proposition 4

Let λi = λ, pi = p, bi = b, pij = q, p < q < p + b, and F ij(pij) = γ for any j 6= i and i, j = 1, 2, ...,m.

Then, DR packaging is optimal for any decision epoch n = 1, ..., N .

Proof: See Appendix.

Proposition 4 considers the setting in which product packages are being sold at a fixed price and the

products differ only in their inventory values. While Proposition 4 indicates the potential effectiveness of the

DR packaging approach in nearly symmetric environments with static package pricing, its performance in

more typical settings needs to be evaluated numerically.

3.2.5 Effectiveness of packaging and pricing heuristics: numerical study

In this section we use an extensive numerical study to test the effectiveness of pricing/packaging heuristics

for the ER model. We denote by ROPT the optimal expected profits obtained by solving (2) (note that

computing the optimal dynamic packaging and pricing policy requires solving an m-dimensional DP). For

each cross-selling heuristic π, we compute the value of its expected profits as follows. In each decision epoch

n, let jπ(n, i) be the packaging complement that the heuristic π selects for product i, and also denote by

pπ(n, i) the price charged for the “i− jπ(n, i)” package. Then, for any initial inventory vector, the expected
profits under π are evaluated using the iteration

V π
n (I) =

mX
i=1

λi(Fijπ(n,i) (p
π(n, i))

¡
pi + V

π
n+1 (I− ei)

¢
+ F ijπ(n,i) (p

π(n, i))
¡
pπ(n, i) + V π

n+1 (I− ei − ej)
¢

+

Ã
1−

mX
i=1

λi

!
V π
n+1 (I) (21)
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for I > 0, n = 1, ..., N with appropriate boundary conditions. We probe the effectiveness of the HM , HD,

HT , HDRM , and HDRO heuristics in the ER model by comparing the relative performance gaps between RM ,

RD, RT , RDRM , RDRO and ROPT : εk = 100%× (ROPT −Rk)/ROPT , k =M, D, T,DRM,DRO.

The case of m = 3 products and exponential reservation price functions

Our search at Amazon.com reveals that in most instances the number of products connected through

packaging is three or less (see Table 1). In order to reflect this observation in our numerical study, we fixed

the number of products that can be potentially connected through packaging at m = 3. Recall that with

three products optimal packaging decisions are, generally speaking, state-dependent and dynamic.

Our test suite was designed as follows. In order to isolate the effects of package pricing, we set the prices

for individual products at the same level: p1 = p2 = p3 = 1. For package reservation prices, we use the

“exponential” distribution functions F ij(pij) = exp(−βij(pij − pi)), and assume for simplicity that the price
sensitivity factors βij depend only on the index of the first-choice product rather than on the index of the

packaging complement: βi = βij ,∀i, j. In our numerical study, each of the price sensitivity factors takes a
value of 1 (“low sensitivity”), 2 (“medium sensitivity”), 5 (“high sensitivity”), or 20 (“very high sensitivity”).

We set the number of time periods at N = 20 and fix the total customer arrival rate at λ = λ1+λ2+λ3 = 0.8.

The “individual product” arrival rates are varied as follows: λ1 = 0.1 + 0.5σ1, λ2 = 0.1 + (0.6 − λ1)σ2, and

λ3 = 0.8−λ1−λ2, where both σ1 and σ2 take values of 0, 0.5, and 1. Hence, we allow 7 possible combinations
of arrival rates: {0.1, 0.1, 0.6}, {0.1, 0.6, 0.1}, {0.6, 0.1, 0.1}, {0.1, 0.35, 0.35}, {0.35, 0.1, 0.35}, {0.35, 0.35, 0.1},
{0.35, 0.225, 0.225}. These combinations cover three essential scenarios for a three-way splitting of total

demand: “mostly single-product arrivals” (the first three), “mostly two-product arrivals” (the next three) and

“closely-valued demands” (the last one).

To test the sensitivity of the heuristics with respect to the initial levels of product inventory, we investigate

the cases in which the initial inventories are set at Ii = (1 + γ)λiN, i = 1, 2, 3, where the “inventory avail-

ability” coefficient γ takes values of −0.8 (“severely constrained inventory”), −0.3 (“moderately constrained
inventory”), 0 (“inventory matching demand”), 0.3 (“moderately slack inventory”), and 0.8 (“virtually un-

constrained inventory”). Note that in the last three cases our terminology is somewhat arbitrary since, as we

expect, under the optimal packaging/pricing policy the cumulative expected demand for product i will exceed

λiN due to cross-selling. Finally, we set the values of the ER prices bi equal to ηpi for i = 1, 2, 3, where η

takes values of 0.2, 0.5, and 0.8. Thus, in total, we test 43 × 7× 5× 3 = 6, 720 problem instances. Over these

instances, the averages of εM , εD, εT , εDRM and εDRO turn out to be 10.63%, 3.16%, 0.12%, 7.75% and

0.14%, respectively. Moreover, we observe that the two-stage and the DRO heuristics perform extremely well

in almost all test instances. The relative performance gaps in the worst cases are merely 0.69% (two-stage)

and 1.04% (DRO) over all tested instances. Interestingly, the deterministic approximation performs better

overall than the myopic policy with about 7.5% improvement on average, due to the fact that the heuristicHD

dynamically incorporates the effect of the inventory into packaging and pricing decisions. We note that the
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DRM heuristic occupies an intermediate place between the myopic and the deterministic heuristics in terms of

its performance. As expected, in many cases revenue losses when we use the myopic heuristic are remarkably

large. This observation underscores the importance of a good match between packaging and pricing decisions:

“depletion ratio” packaging, being near-optimal when coupled with best-match pricing, loses its effectiveness

when coupled with myopic pricing.

η = 0.2 0.5 0.8

εT 0.05 0.13 0.18

εD 0.91 2.74 5.83

εM 2.63 9.38 19.87

εDRM 1.61 6.72 14.92

εDRO 0.08 0.15 0.20

γ = −0.8 −0.3 0 0.3 0.8

εT 0.03 0.14 0.20 0.15 0.08

εD 0.16 2.40 7.44 3.97 1.84

εM 18.47 11.50 10.18 7.50 5.48

εDRM 17.44 9.87 6.56 3.44 1.44

εDRO 0.00 0.01 0.08 0.35 0.26

Table 2. Average performance gaps (in %) Table 3. Average performance gaps (in %)

as functions of ER price as functions of inventory availability

Next, we report the results of the sensitivity analysis with respect to the magnitude of the ER premium

relative to the product price η (Table 2), the inventory availability coefficient γ (Table 3), and the composition

of total customer demand (Table 4). The values of εi reported in these tables refer to the averages over problem

instances in which the relevant problem parameter is fixed. For example, in Table 2, the upper left value 0.05

refers to the average of the relative performance gap for the two-stage heuristic over 2,240 problem instances

with η = 0.2.

λ2 = 0.1 0.225 0.35 0.6

εT 0.14 0.07 0.08 0.16

εD 3.52 2.47 2.27 3.82

εM 11.45 9.67 9.12 10.48

εDRM 7.97 7.28 7.22 8.15

εDRO 0.15 0.03 0.16 0.15

Table 4. Average performance gaps (in %) as functions of arrival rate λ2

HT andHDRO heuristics are consistently producing near-optimal performance for a wide range of problem

parameters, while the performance of heuristics HM , HD, and HDRM changes in a predictable manner as

problem parameters vary. For example, when the magnitude of the ER price relative to the selling price of

the single product η is small, getting additional inventory is nearly cost-free. Not surprisingly, as Table 2

indicates, HM , HD, and HDRM perform well for small values of η. Furthermore, as Table 3 shows, when

product inventory levels are high, the marginal value of an extra unit of inventory for any product is small,

and all five heuristics perform well. In fact, as (16) and the result of Proposition 3b indicate, for high inventory

levels both the two-stage and the deterministic heuristics coincide with the myopic heuristic, which, in turn,

becomes optimal. On the other hand, when product inventory is low, the marginal value of an extra unit of

product i inventory approaches bi. Thus, the performance of the myopic heuristic, which assumes that this
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marginal value is zero, deteriorates. At the same time, both the two-stage and the deterministic heuristics

perform very well, since, as (16) and the result of Proposition 3b indicate, in the low-inventory limit the pricing

and the packaging decisions prescribed by these heuristics become optimal. Finally, Table 4 demonstrates

that the performance of five heuristics is rather insensitive to changes in the relative composition of the

total demand flow: the two-stage and DRO heuristics remain the best choices, followed by the deterministic

approximation, then DRM heuristic, with the myopic policy a distant fifth. We obtain similar results for fixed

values of λ1 and λ3.

Computational complexity involved in deriving a particular packaging/pricing policy provides another

dimension (in addition to performance) along which heuristics can be compared (see Table 5). As was pointed

out in the previous sections, HM , HD, HT and HDRM are very efficient (in particular, HM , HT and HDRM

can be derived in polynomial time in parameters N and m) and thus can be implemented for instances with

reasonably large values of N and m. In contrast, the complexity of the optimal algorithm as well as HDRO

heuristic increases exponentially with the number of products m and is polynomial in the initial inventory

levels. To be more specific, in our numerical trials we limited the implementation of both of these approaches

to the cases with the values of m up to 4 and of N up to 80 (for problem instances with m = 4 and N = 80 the

computational times for these two policies approached 10 minutes on a personal computer with Pentium IV

processor with 3.0 GHz CPU). We also note that evaluating the expected profits resulting from using either

HM , HD, HT or HDRM requires the number of computations comparable to that for the optimal policy or

for the HDRO heuristic. Thus the evaluation of performances of all of our heuristics is confined to relatively

small values of m and N .

Number of Number of optimizations

operations (D2) and (P2)

Optimal O
³
(N ×Qm

i=1 Im)
m2
´

M O
¡
m2
¢

D O (N)

T O
¡
Nm2

¢
DRM O

¡
Nm2

¢
DRO O ((N ×Qm

i=1 Im)
m)

Table 5. Computational complexity

Testing two-stage and depletion ratio heuristics

In the numerical study described above we have identified the two-stage and DRO heuristics as having

the best performance across a wide range of problem parameters for the case of 3 products and exponential

reservation price functions. Below we focus on investigating the robustness of these two heuristics with respect

to price sensitivity factors, changes in the number of products and the shape of reservation functions.

We first consider the situation with asymmetric price sensitivity factors βij . We introduce the following

change to our numerical suite: we allow β13 coefficient to take values 5, 10 and 20 while βij = 5 for all other
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coefficients. Performance of the two heuristics is summarized in Table 6. We observe that both heuristics per-

form well even with asymmetric price sensitivity factors. However, performance of both heuristics deteriorates

with more asymmetry in parameters but less so for the DRO heuristic than for the two-stage heuristic.

β13 = 5 β13 = 10 β13 = 20

εT 0.11 0.41 0.58

εDRO 0.14 0.25 0.36

Table 6. Average performance gaps (in %) for different price sensitivity factors

To investigate the robustness of the heuristics with respect to changes in the number of products and in

the shape of reservation functions, we introduce the following changes to our numerical suite. In addition to

the exponential reservation functions F ij(pij) = exp(−βij(pij − pi)), we also consider the “power” reservation
function F ij(pij) = ((pi + pj − pij) /pj)βij . The choice of the power form follows from our intent to investigate
the impact of the change in the shape of the pricing function (from convex for exponential functions to concave

for power functions with βij ≤ 1) on the performance of our two best heuristics. For both types of function,
we use the symmetry assumption βij = βi and consider βi = 0.5, 1.5. Note that the case of βi = 0.5 can be of

particular interest since for such a low value in the price sensitivity parameter the cross-selling may be expected

to be intense and the two-stage approach can really be challenged. To control the number of investigated

problem instances, we limit the values of the “inventory availability” coefficient γ to −0.3, 0, 0.3. For the case
of m = 3 products, we use the same demand patterns as described above. For the case of m = 4 products, we

use a similar approach and fix the total customer arrival rate at λ = λ1 + λ2 + λ3 + λ4 = 0.8. The individual

product arrival rates vary as follows: λ1 = 0.1 + 0.4σ1, λ2 = 0.1 + (0.5− λ1)σ2, λ3 = 0.1 + (0.6− λ1 − λ2)σ2,

and λ4 = 0.8−λ1−λ2−λ3, where σ1, σ2, and σ3 take values of 0, 0.5, and 1. Hence, in this case we allow 27

possible combinations of arrival rates, which, like the numerical suite used in the previous section, cover all

essential scenarios for a four-way splitting of the total demand: “mostly single-product arrivals,” “mostly two-

product arrivals,” “mostly three-product arrivals,” and “closely-valued demands.” The remaining problem

parameters were set in the same way as in the numerical study above. In total, we test 23 × 7× 3× 3 = 504
problem instances for m = 3 products and 23 × 27 × 3 × 3 = 1, 944 problem instances for m = 4 products.

The results of the numerical runs are presented in Table 7.

Two-stage Exponential RF Power RF

3 products 0.13 (0.69) 0.24 (6.98)

4 products 0.86 (9.05) 1.09 (7.08)

DRO Exponential RF Power RF

3 products 0.16 (1.08) 0.16 (1.94)

4 products 0.46 (3.01) 0.25 (2.29)

Table 7. Average (and maximum) performance gaps (in %) for two-stage and DRO heuristics

We note that, due to changes in our test suite, the deviations for the case of the exponential reservation

function and m = 3 products differ somewhat from those in the previous section. We observe that both

heuristics, on average, show quite a high degree of robustness with respect to changes in the reservation

function and the number of products. This conclusion is especially valid for the DRO heuristic, which retains

near-optimal performance even in the worst-case scenarios. In contrast, the two-stage approach appears to lose

21



its worst-case effectiveness when the number of products is increased or the shape of the reservation function

is changed, or both. It is interesting to note that the worst-case performance of the two-stage heuristic is

observed in problem instances with βi = 0.5 and η = 0.8, i.e., the instances in which 1) consumers are willing

to accept high package prices (for both types of reservation functions) and 2) the out-of-stock products are

costly to replenish. It is intuitive that the heuristic that neglects future cross-selling opportunities does not

perform well in cases in which cross-selling is readily accepted by customers. This performance gap opens

up dramatically when the number of cross-selling choices for each product is increased from 2 (m = 3) to

3 (m = 4). The high cost of replenishment further accentuates the profit loss resulting from the use of an

ineffective cross-selling approach.

The ultimate choice between the DRO and the two-stage heuristics may depend on the specific features of

the business environment in which the firm operates. On the one hand, if the nature of the firm’s inventory

allows it to limit the number of likely complements for each product to 2, the firm may be advised to use

the two stage approach as long as its customers are relatively sensitive to package prices: the pricing policies

under the two-stage approach are much easier to compute than those under the DRO heuristic (which requires

solving a number of optimization problems at each decision epoch). On the other hand, the DRO heuristic

may be a much more effective policy in cases in which the number of products is high or the estimated

customer price sensitivity for product packages is low.

4 The Lost Sales model

Although in some cases it is possible to procure an out-of-stock product, in a variety of situations this might

prove impossible or too costly. For example, when a retailer cross-sells travel services, there might not be

seats available on the requested route. Hence, it will be necessary to deny the customer’s request. To address

this issue, we consider an alternative setting in which there is no opportunity to replenish inventory and a

customer request is simply denied in the case of a stockout. As in the previous section, it is convenient to

introduce the sets of indices An to denote products that have at least one unit of inventory at the beginning

of the n-th decision epoch. Then, under the LS model, the generalization of (1) is given by

Vn (I) =
X
i∈An

λi max
j 6=i, j∈An

µ
max
pij

¡
Fij (pij) (pi + Vn+1 (I− ei)) + F ij (pij) (pij + Vn+1 (I− ei − ej))

¢¶

+

Ã
1−

X
i∈An

λi

!
Vn+1 (I) . (22)

As (22) indicates, the “lost sales” feature of the inventory dynamics is reflected in the fact that the set of

product indices that actively participate in the DP transformation on the right-hand side of (1) “shrinks” as

time passes.
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4.1 Dynamic pricing under static packaging

As we indicated earlier, the LS model possesses few structural properties. However, the two-product case

is somewhat more amenable to analysis. Hence, we begin our analysis with this simple case. Under the LS

model, when a company runs out of inventory for one of the products, we obtain

Vn(I1, 0) = λ1 (p1 + Vn+1(I1 − 1, 0)) + (1− λ1)Vn+1(I1, 0), (23)

for I1 ≥ 1, n = 1, ..., N and

Vn(0, I2) = λ2 (p2 + Vn+1(0, I2 − 1)) + (1− λ2)Vn+1(0, I2), (24)

for I2 ≥ 1, n = 1, ..., N . In addition, when the inventories of both products are depleted, we have

Vn(0, 0) = 0, n = 1, ..., N. (25)

Using the induction over the time index n, we can formalize the structural properties of the LS model in a

two-product case:

Proposition 5

a) The optimal expected revenue Vn(I1, I2) is a nondecreasing function of I1 and I2, respectively, for any

n = 1, ..., N :

Vn(I1 + 1, I2)− Vn(I1, I2) ≥ 0, Vn(I1, I2 + 1)− Vn(I1, I2) ≥ 0. (26)

b) The optimal expected revenue Vn(I1, I2) is a supermodular function of (I1, I2), for any n = 1, ..., N :

Vn(I1 + 1, I2 + 1)− Vn(I1, I2 + 1) ≥ Vn(I1 + 1, I2)− Vn(I1, I2). (27)

c) The optimal package price p∗ij(I1, I2, n) is nondecreasing in Ii, for (i, j) = (1, 2) and (2, 1):

p∗12(I1 + 1, I2, n) ≥ p∗12(I1, I2, n), n = 1, ..., N,

p∗21(I1, I2 + 1, n) ≥ p∗21(I1, I2, n), n = 1, ..., N. (28)

Proof: See Technical Online Appendix.

The statement of Proposition 5a is intuitively appealing and is similar to those established in the literature

on single-product pricing (see, e.g., Gallego and van Ryzin [15] and Federgruen and Heching [12]). The

statement of Proposition 5b can be rationalized as follows: the higher the inventory level for product j, the

more opportunities there are for selling product i. Thus, the marginal profit from adding one unit of product

i increases as the inventory level of product j increases. Note that Proposition 5b is in sharp contrast to

the ER model in which the optimal value function was separable in inventories of all products and hence
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supermodularity held trivially as an equality in (27). The intuition behind Proposition 5c can be explained

as follows: the larger the inventory of product i, the more opportunities there will be to sell this product in

the future. Therefore, the package offered to a customer requesting product i can be priced high, as there will

be other opportunities in the future to sell the same package. This result should be contrasted with related

results in single-product revenue management where larger product inventory typically leads to a lower price

(see, e.g., Gallego and van Ryzin [15]).

The statements of Proposition 5 are best illustrated with an example that also reveals additional insights

into the problem. The two pricing curves shown in Figure 2 depict the time trajectories of the optimal

price for the ij package with the initial states (I1 = 1, I2 = 5) and (I1 = 25, I2 = 5). We use the following

reservation functions and problem parameters in this example: F 12(p12) = ((p1 + p2 − p12) /p2)β12 defined
over [p1, p1 + p2], F 21(p21) = ((p1 + p2 − p21) /p1)β21 defined over [p2, p1 + p2] with β12 = β21 = 1, p1 = 1,

p2 = 2, and λ1 = λ2 = 0.4. Both curves are monotone, in accordance with (26), and, as (28) indicates, a

higher value of I1 diminishes the incentive to offer a discount on the package. In addition, we observe that

both pricing trajectories reduce to the same myopic price once the remaining planning horizon N−n becomes
less than the inventory of product 2 (I2 = 5). In this case, the existing inventory of product 2 cannot possibly

be depleted over the time remaining until the end of the horizon, and the system is prompted to behave as if

the inventory of product 2 is infinite. In this case,

p∗12(I1, I2, n) = argmaxp12

¡
F̄12(p12) (p12 − p1)

¢
, (29)

which depends neither on the products’ inventories nor on the time index. In other words, the heuristic price

pMij becomes optimal.

It seems reasonable to believe that, similar to the ER model, the concavity property of Vn(I1, I2) and

the monotonicity of p∗ij(I1, I2, n) with respect to Ij should hold. Unfortunately, these intuitive properties do

not hold for the LS model. The following counterexample demonstrates this. Let p1 = 100, p2 = 200,λ1 =

0.8,λ2 = 0.2, and N = 9. Then, for the reservation function Fij(x) = (x − pi)/pj , for x ∈ [pi, pi + pj ], it is
easy to verify that V3(2, 1) + V3(0, 1)− 2V3(1, 1) = 0.219 > 0 and p∗21(2, 2, 2) > p∗21(1, 2, 2).

We now turn to the multiproduct case. Consider any static product packaging rule B = {j(i), i = 1, ...,m}.
The multiproduct LS model with static packaging B and dynamic pricing can be formulated as follows:

V LSn (I) =
X

i∈An,j(i)∈An
λi max
pi,j(i)

Fi,j(i)
¡
pi,j(i)

¢ ¡
pi + V

LS
n+1 (I− ei)

¢
+F i,j(i)

¡
pi,j(i)

¢ ¡
pi,j(i) + V

LS
n+1

¡
I− ei − ej(i)

¢¢
+

X
i∈An,j(i)/∈An

λi (pi + Vn+1 (I− ei)) +
Ã
1−

X
i∈An

λi

!
V LSn+1 (I) . (30)

In the multi-product case, the few properties possessed by the two-product LS model vanish. For example, the

supermodularity of the optimal value function no longer holds, and the LS model retains only the monotonicity

of optimal revenues with the product inventory levels, which can be established using the induction over time
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index n:

Proposition 6

The optimal expected revenue is nondecreasing in the inventory level, i.e., V LSn (I + ei) > V LSn (I), for

i = 1, ...,m and n = 1, ..., N .

Proof: See Technical Online Appendix.

4.2 Heuristic approaches

Since even the stand-alone dynamic pricing problem under the LS model is rather intractable, there is little

hope of efficiently solving the dynamic pricing/packaging problem without the use of heuristics. Hence, it

is desirable to know how much we might lose by implementing a simple static packaging policy. Below we

derive upper and lower bounds for the expected profit under the LS model with static packaging and dynamic

pricing. Using these two bounds, we identify situations under which a given packaging configuration will lead

to negligible benefits compared with no packaging.

Definition 2

Let Lin(I) be the function satisfying the following recursive relation:

Lin(I) = λi
¡
pi + L

i
n+1 (I − 1)

¢
+ (1− λi)L

i
n+1 (I) , (31)

for I > 1, and Lin(0) = 0, for i = 1, ...,m, and n = 1, ..., N , while LiN+1(I) = 0.
Definition 3

Let U in(I) be the function satisfying the following recursive relation:

U in(I) = λi

³
pi + U

i
n+1 (I − 1) + F i,j(i)(pMi,j(i))(pMi,j(i) − pi)

´
+ (1− λi)U

i
n+1 (I) , (32)

for I > 1, and U in(0) = 0, for i = 1, ...,m, and n = 1, ..., N , while U iN+1(I) = 0.
We define Ln(I) =

Pm
i=1 L

i
n(Ii) and Un(I) =

Pm
i=1 U

i
n(Ii). Note that Ln(I) is the expected revenue under

the LS model with no packaging. The following proposition uses the induction over n to show that Ln(I) and

Un(I) are a lower bound and an upper bound, respectively, for the optimal expected revenue V
LS
n (I) in the

LS model.

Proposition 7

a) Ln(I) ≤ V LSn (I) ≤ Un(I), for n = 1, ..., N .
b) For n = 1, ..., N ,

V LSn (I)− Ln (I)
Ln (I)

≤ max
½
pj(i)
pi

¯̄̄̄
i = 1, ...,m

¾
. (33)

Proof: See Technical Online Appendix.

Note that the upper bound given in Proposition 7b is independent of customer reservation prices and arrival

processes. If each product is significantly more expensive than its packaging complement, then the bound in
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(33) is tight, implying that the impact of the packaging decision on expected profit is negligible relative to no

packaging. Given the price of each product, we can now easily compute the upper bound for each packaging

topology. Thus, without the demand information, we are able to identify the packaging configurations with

the tight upper bound. Consider an example in which (p1, p2, p3) = (100, 10, 1) and product 1 is packaged

with product 2 and product 2 with product 3 (product 3 is not packaged with any other product). According

to (33), under this packaging configuration, the highest possible revenue is at most 10% above the revenue

achieved in the absence of cross-selling.

Even with static packaging, the computation of the optimal price under the LS assumption requires solving

an m-dimensional DP problem (30) that is computationally challenging for a large m. Therefore, there exists

a need to develop a simple, easy-to-implement and effective pricing heuristic. As (30) indicates, the optimal

package price can be expressed as the maximizer of the following expression:

p∗ij(I, n) = argmaxpij
¡
F̄ij(pij)(pij − pi + (Vn+1(I− ei − ej)− Vn+1(I− ei))

¢
. (34)

A natural approximation under the above modification is to use the package prices defined by pMij in (13),

essentially ignoring the last two terms of (34). This heuristic package price is constant over the time horizon

and is independent of the inventory level of either product. We reuse the notation HM to denote this heuristic

(exactly the same heuristic applies to the two models, ER and LS). The following result states that pMij is

the lower bound on the optimal price p∗ij(I, n), and characterizes the sufficient conditions under which the

heuristic HM is optimal:

Proposition 8

a) The optimal price is never less than the price determined by the heuristic HM : p∗ij(I, n) ≥ pMij , for any
I and n.

b) HeuristicHM is optimal in period n when the available inventory is Ik ≥ N+2−n for all k = 1, 2, ...,m.
Proof: See Technical Online Appendix.

The proof of Proposition 8a utilizes the monotonicity of the value function established in Proposition 6.

Proposition 8b indicates that the static pricing heuristic is optimal in cases in which the inventory level of

every product is high, thus formalizing the observation in Figure 2. It is to be expected that the performance

of the myopic pricing heuristic worsens as the inventory becomes more “constrained.”

All heuristics used for the ER model can be easily modified for the LS model. For the HD heuristic the

only change is to set the ER prices bi (i = 1, 2, ...,m) to a “big” number in (P2), and then the same procedure

can be applied to derive the heuristic solution. For the HT heuristic it suffices to replace bi with pi whenever

it appears. Additionally, after observing that the DP formulations of the ER and LS models differ on the

boundary of state space, it is natural to use optimal pricing that employs the separability property for the

ER model while making myopic packaging decisions as a heuristic solution for the LS model. Namely, the

optimal price for ij package is obtained by solving the optimization problem (9,10) while the optimal package

is selected as argmaxj (pij − pi)F ij (pij) . We call such an approximation a decomposition heuristic, denoted
by HS .
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Below we report the results of the numerical study testing the performance of heuristics HM , HD, HT ,

HS, HDRM and HDRO applied to the LS model. Our test suite is set similarly to the one used for the ER

numerical study described above, except, naturally, for the absence of the ER prices bi. Thus, for the LS

model we test in total 43 × 7 × 5 = 2, 240 problem instances. Over these problem instances, the average

relative performance gaps for the four heuristics (εM , εD, εT , εS , εDRM and εDRO) are 9.25%, 4.93%, 0.27%,

2.18%, 7.95%, and 0.26%, respectively. Tables 8 and 9 indicate that, just as in the ER case, the two-stage

and DRO heuristics perform extremely well, with worst-case relative performance gaps of 1.8% and 1.55%.

Comparing Tables 3 and 8, we observe that the performance of the deterministic heuristic worsens in the LS

model, and the decomposition heuristic becomes the third-best performer.

γ = −0.8 −0.3 0 0.3 0.8

εT 0.03 0.20 0.43 0.44 0.24

εS 0.86 1.52 3.01 2.94 2.56

εD 2.93 4.75 8.75 5.62 2.59

εM 10.64 10.26 10.16 8.60 6.58

εDRM 12.70 10.78 8.42 5.42 2.43

εDRO 0.01 0.01 0.13 0.63 0.50

λ2 = 0.1 0.225 0.35 0.6

εT 0.33 0.11 0.13 0.38

εS 2.53 1.57 1.64 2.08

εD 5.04 4.89 4.52 5.20

εM 9.22 9.35 9.43 8.93

εDRM 7.99 7.90 7.88 7.96

εDRO 0.29 0.05 0.30 0.25

Table 8. Average performance gaps (in %) Table 9. Average performance gaps (in %)

as functions of inventory availability as functions of arrival rate λ2

5 Summary

In this paper we study the problem of dynamically cross-selling products on the Internet. While there are

related studies of static bundling and static cross-selling decisions, to the best of our knowledge there are

no studies that, like ours, consider cross-selling in the dynamic setting and identify it as an opportunity

complementary to single-product revenue management. The dynamic aspect of the cross-selling problem is

important since the Internet provides a truly dynamic environment that differs from the static setting of

the brick-and-mortar store in many aspects. These aspects are also found in the dynamic pricing/revenue

management literature, which we draw upon in our analysis. However, this literature has predominantly

focused on dynamic pricing for a single product and thus does not address dynamic pricing of product

packages under cross-selling.

Based on our analysis, several useful observations can be made with respect to the usefulness of dynamic

cross-selling as a way to increase revenues. First, when inventory is ample, there is little need to account for

product inventories when making cross-selling decisions: the main driving force behind the optimal package

price is customer preference. From our experiments it appears that simple myopic cross-selling policies work

relatively well in this case, so there is little need to do cross-selling dynamically. At the other extreme,

if inventory is severely constrained, revenue management through dynamic cross-selling is beneficial in the

ER model but much less so in the LS model because the package is offered at a high price, reducing the

probability that it is purchased. Therefore, most benefits from dynamic cross-selling arise when inventory is
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approximately equal to expected demand. In this case it is particularly important to have a good heuristic

solution. Indeed, from Tables 3 and 6 we can see that the performance of all heuristics worsens for intermediate

levels of inventory because of the impact of incorrect cross-selling decisions. However, the two-stage and DRO

heuristics are still good approximations of the optimal dynamic cross-selling policy.

Furthermore, we find that dynamic cross-selling is complementary to more traditional single-product rev-

enue management. While single-product revenue management is most effective when product inventory is

highly constrained (see Talluri and van Ryzin [32]), as we discussed above most benefits from dynamic cross-

selling arise when product inventory is approximately equal to expected demand. Therefore, a potentially

fruitful direction for future research would be to explore simultaneous dynamic pricing of individual products

as well as cross-selling (We analyze only the latter.) Although in some cases (e.g., book retailing) companies

might be reluctant to change the prices of individual products dynamically, in other applications (especially

travel services) this extension might be plausible. We hope that future research will consider this option.

We believe that research in the area of dynamic cross-selling has the potential to make an important

practical impact. According to several experts, dynamic cross-selling of non-air elements of a travel package

with airline tickets has the potential to generate large incremental revenues in an industry plagued by low

margins (see Feldman [13]). Web merchants who analyze revenue gains from cross-selling report a 5% increase

on average (see Peters [26]). Although early experiments with dynamic pricing of individual products on the

Internet have failed (see the example of Amazon.com [1]) due to poor perception by customers, dynamic

cross-selling seems to be flourishing. The reason might be that customers perceive a package as “fairly”

priced as long as it is not priced above the sum of its components, and moreover, cross-selling offers may

provide valuable information to customers by introducing them to new products. While Internet companies

are in need of easy-to-implement algorithms for dynamic cross-selling, operations research currently offers little

help in this respect. In particular, efficient algorithms are needed to deal with multidimensional cross-selling

problems that otherwise are too computationally intensive. Some obvious extensions of our work may include

allowing individual product prices to be adjusted dynamically, allowing multiple packages to be offered to

the same customer and letting customers self-select a package. A study of the related practice of up-selling

customers to products with higher revenues offers the possibility of fruitful research we well.
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Appendix
For the proof of some propositions we need an additional result:

Lemma A1

Let gij(x) = maxy
¡
F̄ij(y)(y − x)

¢
where 1 ≤ i 6= j ≤ m.

a) For any x1 ≥ 0 and x2 ≥ 0,

max (0, x2 − x1) ≥ gij(x1)− gij(x2) ≥ min (0, x2 − x1) . (35)
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b) For any x1 ≥ x2 ≥ 0, let yk be the maximizer of gij(xk) (k = 1, 2). Then y1 ≥ y2.
Proof of Lemma A1

Let yk be the maximizer of gij(xk) (k = 1, 2). We consider two cases: x1 ≥ x2 and x1 ≤ x2. If x1 ≥ x2,
then by definition, gij(x2) = F̄ij(y2)(y2−x2) ≥ F̄ij(y1)(y1−x2) ≥ F̄ij(y1)(y1−x1) = gij(x1) ≥ F̄ij(y2)(y2−x1).
This yields 0 ≤ gij(x2)− gij(x1) ≤ F̄ij(y2)(x1 − x2) ≤ x1 − x2 and F̄ij(y1) ≤ F̄ij(y2), i.e., y1 ≥ y2. If x1 ≤ x2,
by symmetry, we have 0 ≤ gij(x1)− gij(x2) ≤ x2 − x1. Combining these two cases, we obtain (35). ¥

Proof of Proposition 1

The statement trivially holds for n = N + 1. Using induction, suppose that for some n = 1, ..., N

Vn+1(I) =
Pm
i=1G

i
n+1(Ii). (36)

We need to prove that Vn(I) =
Pm
i=1G

i
n(Ii).

Vn(I)

=
X

i∈An,j(i)∈An
λi

µ
pi + Vn+1(I− ei) + max

pi,j(i)

¡
F̄i,j(i)(pi,j(i))

¡
pi,j(i) − pi + Vn+1(I− ei − ej(i))− Vn+1(I− ei)

¢¢¶

+
X

i∈An,j(i)/∈An
λi

µ
pi + Vn+1(I− ei) + max

pi,j(i)

¡
F̄i,j(i)(pi,j(i))

¡
pi,j(i) − pi − bj(i)

¢¢¶

+
X

i/∈An,j(i)∈An
λi

µ
pi − bi + Vn+1(I) + max

pi,j(i)
F̄i,j(i)(pi,j(i))

¡
pi,j(i) − pi + Vn+1(I− ej(i))− Vn+1(I)

¢¶

+
X

i/∈An,j(i)/∈An
λi

µ
pi − bi + Vn+1(I) + max

pi,j(i)
F̄i,j(i)(pi,j(i))

¡
pi,j(i) − pi − bj(i)

¢¶
+

Ã
1−

mX
i=1

λi

!
Vn+1 (I)

=
X

i∈An,j(i)∈An
λi

µ
pi +G

i
n+1(Ii − 1)−Gin+1(Ii) + maxpi,j(i)

F̄i,j(i)(pi,j(i))
³
pi,j(i) − pi +Gj(i)n+1(Ij(i) − 1)−Gj(i)n+1(Ij(i))

´¶

+
X

i∈An,j(i)/∈An
λi

µ
pi +G

i
n+1(Ii − 1)−Gin+1(Ii) + maxpi,j(i)

F̄i,j(i)(pi,j(i))
¡
pi,j(i) − pi − bj(i)

¢¶

+
X

i/∈An,j(i)∈An
λi

µ
pi − bi + max

pi,j(i)
F̄i,j(i)(pi,j(i))

³
pi,j(i) − pi +Gj(i)n+1(Ij(i) − 1)−Gj(i)n+1(Ij(i))

´¶

+
X

i/∈An,j(i)/∈An
λi

µ
pi − bi + max

pi,j(i)
F̄i,j(i)(pi,j(i))

¡
pi,j(i) − pi − bj(i)

¢¶
+

mX
i=1

Gin+1(Ii) (from (36))

=
mX
i=1

Gin(Ii). (from (9))¥

Proof of Proposition 3

a) Following the standard Lagrangian procedure to derive the dual function q(µ, ν), we have

q(µ, ν) = max
q>0,y>0,pij>0

L(p, q, y, µ, ν)
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= max
q>0,y>0,pij>0

( Pm
i=1

P
j 6=i λjτqjiF ji(pji)(pji − pj)−

Pm
i=1 biyi+Pm

i=1 µi[yi + Ii − λiτ −
P
j 6=i λjτqjiF ji(pji)] +

Pm
i=1 νi(1−

P
j 6=i qij)

)

= max
q>0,y>0,pij>0

( Pm
i=1

P
j 6=i[λjτF ji(pji)(pji − pj − µi)− νj ]qji +

Pm
i=1(µi − bi)yi+Pm

i=1[µi(Ii − λiτ) + νi]

)

= max
q>0,y>0


mX
i=1

X
j 6=i
[λjτHji(µi)− νj ]qji +

mX
i=1

(µi − bi)yi +
mX
i=1

[µi(Ii − λiτ) + νi]

 (37)

where the last equation follows from the definition of Hji(µi). Define Dq = {(µ, ν)|q(µ, v) < +∞}. It is easy to
see from (37) thatDq = {(µ, ν)|λjτHji(µi)−vj ≤ 0, for i 6= j, and µi ≤ bi}, and q(µ, ν) =

Pm
i=1[µi(Ii−λiτ)+νi]

for (µ, ν) ∈ Dq. Hence the dual problem (D2) can be formulated as follows:

min
µi,vj

: q(µ, v) =
Xm

i=1
[µi(Ii − λiτ) + vi]

s.t. λjτHji(µi) ≤ vj for i 6= j,
0 ≤ µi ≤ bi for i = 1, 2, ...,m.

In order to show that the above constraint set is convex, it suffices to show that Hji(x) is convex for every

pair i 6= j. Recall that Hji(x) = maxpji
¡
F̄ji(pji)(pji − pj − x)

¢
. Denote the maximizer of F̄ji(pji)(pji−pj−x)

by pji(x). Then from the first-order condition, we have

dF̄ji(pji)(pji − pj − x)
dpji

|pji=pji(x) = 0. (38)

Taking the derivative of Hji(x), we have

dHji(x)

dx
=
dF̄ji(pji)(pji − pj − x)

dpji
|pji=pji(x)

dpji(x)

dx
− F̄ji(pji(x)) = −F̄ji(pji(x)), (39)

where the last equality follows from (38). Hence d2Hji(x)/dx
2 = (dF (x)/dx) (dpji(x)/dx) > 0, which follows

from Lemma A1b and the fact that F (x) is a cumulative distribution function. This proves Proposition 3a.

b) It is easy to ensure that the constraint set of (D2) is compact by imposing a finite bound on v. Hence,

the Weierstrass Theorem ensures the existence of the optimal solution to (D2). Denote the optimal solution

to (D2) by (µ∗, ν∗). It is easy to verify that any solution to (D2) is regular. It follows from the KKT necessary

conditions that there exist {q∗ij} and {y∗i } satisfying the following KKT conditions of (D2) (note that (38) is
used in deriving the KKT conditions):³

y∗i + Ii − λiτ −
X

j 6=i λjτq
∗
jiF ji(pji(µ

∗
i ))
´
µ∗i = 0, for i = 1, 2, ...,m,X

j 6=i q
∗
ij = 1, for i = 1, 2, ...,m, (40)

(µ∗i − bi)y∗i = 0, for i = 1, 2, ...,m, (41)
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(λjτHji(µ
∗
i )− v∗j )q∗ji = 0 (42)

y∗i > 0, for i = 1, 2, ...,m, (43)

y∗i > −Ii + λiτ +
X

j 6=i λjτq
∗
jiF ji(pji(µ

∗
i )), for i = 1, 2, ...,m, (44)

q∗ij > 0, for i 6= j. (45)

Define p∗ji = pji(µ
∗
i ). Note that (40), (43), (44), and (45) are the four constraints of (P2). Hence, {{q∗ij},

{y∗i }, {p∗ij}} is a feasible solution to (P2) and yields the following objective value:Xm

i=1

X
j 6=i λjτq

∗
jiF ji(p

∗
ji)(p

∗
ji − pj)−

Xm

i=1
biy

∗
i

=
Xm

i=1

X
j 6=i λjτq

∗
jiF ji(p

∗
ji)(p

∗
ji − pj)−

Xm

i=1
µ∗i y

∗
i (by (41))

=
Xm

i=1

X
j 6=i λjτq

∗
jiF ji(p

∗
ji)(p

∗
ji − pj − µ∗i ) +

Xm

i=1
µ∗i (Ii − λiτ) (by (40))

=
Xm

i=1

X
j 6=i λjτq

∗
jiHji(µ

∗
i ) +

Xm

i=1
µ∗i (Ii − λiτ) (by definition of Hji(x))

=
Xm

i=1

X
j 6=i q

∗
jiv
∗
j +

Xm

i=1
µ∗i (Ii − λiτ) (by (42))

=
Xm

i=1
v∗i +

Xm

i=1
µ∗i (Ii − λiτ), (by (40))

which is equal to the optimal value of the dual problem. By weak duality, {{q∗ij}, {y∗i }, {p∗ij}} is an optimal
solution to (P2). This proves Proposition 3b.i. One can obtain the optimal solution to (P2) using the above

KKT conditions. An alternative way is to solve a linear programming problem (P2) with pij being replaced

by p∗ij . This proves Proposition 3b.ii. ¥
Proof of Proposition 4

Since q < p + b, it is suboptimal to choose a product with zero inventory as a packaging complement.

Therefore, the dynamic packaging problem reduces to:

Vn (I) =
P
i∈A(I) λ

µ
(1− γ)(p+ Vn+1 (I− ei)) + max

j 6=i, j∈A(I)
γ (q + Vn+1 (I− ei − ej))

¶
+
P
i/∈A(I) λ

µ
(1− γ)(p− b+ Vn+1 (I)) + max

j 6=i, j∈A(I)
γ (q − b+ Vn+1 (I− ej))

¶
+(1−mλ)Vn+1 (I) , (46)

where A (I) denotes products that have at least one unit of inventory at the beginning of the n-th decision

epoch when the inventory is I. The boundary condition is VN+1 (I) = 0. In order to prove the optimality of

the DR packaging, we need to show that Vn (I− ek) ≥ Vn (I− el) (since λi = λ) for any I = (I1, I2, ..., Im)

with Ik ≥ Il ≥ 1 and any n = 1, ..., N + 1. First, from the boundary condition, this inequality trivially holds

when n = N + 1. By induction, suppose it also holds up to some n+ 1, i.e.,

Vs (I− ek) ≥ Vs (I− el) , for any I = (I1, I2, ..., Im) with Ik ≥ Il ≥ 1 and s = n+ 1, ..., N + 1.
(47)
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We prove the desired result for two separate cases: Ik = Il = 1 and Ik > Il = 1 (the proof for the case of

Ik, Il > 1 follows similar steps).

Case 1: Ik = Il = 1.

Define B = {i|i 6= k, l,and Ii > 0} and C = {i|i 6= k, l,and Ii = 0}. Then A (I− ek) = B ∪ {l} and
A (I− el) = B ∪ {k}. Note that for any i ∈ B, by (47), we have

max
j 6=i, j∈B

γ (q + Vn+1 (I− ei − ej−ek)) ≥ max
j 6=i, j∈B

γ (q + Vn+1 (I− ei − ej−el)) ,

which implies that

max
j 6=i, j∈B∪{l}

γ (q + Vn+1 (I− ei − ej−ek)) ≥ max
j 6=i, j∈B∪{k}

γ (q + Vn+1 (I− ei − ej−el)) . (48)

Similarly, for any i ∈ C, by (47), we have

max
j 6=i, j∈B∪{l}

γ (q − b+ Vn+1 (I− ej−ek)) ≥ max
j 6=i, j∈B∪{k}

γ (q − b+ Vn+1 (I− ej−el)) . (49)

By (46), we have

Vn (I− ek)
=

P
i∈B λ

µ
(1− γ)(p+ Vn+1 (I− ei−ek)) + max

j 6=i, j∈B∪{l}
γ (q + Vn+1 (I− ei − ej−ek))

¶
+λ

µ
(1− γ)(p+ Vn+1 (I− el−ek)) + max

j 6=l, j∈B∪{l}
γ (q + Vn+1 (I− el − ej−ek))

¶
+
X
i∈C

λ

µ
(1− γ)(p− b+ Vn+1 (I− ek)) + max

j 6=i, j∈B∪{l}
γ (q − b+ Vn+1 (I− ej−ek))

¶
+λ

µ
(1− γ)(p− b+ Vn+1 (I− ek)) + max

j 6=k, j∈B∪{l}
γ (q − b+ Vn+1 (I− ej−ek))

¶
+(1−mλ)Vn+1 (I− ek) ,

≥ P
i∈B λ

µ
(1− γ)(p+ Vn+1 (I− ei−el)) + max

j 6=i, j∈B∪{k}
γ (q + Vn+1 (I− ei − ej−el))

¶
+λ

µ
(1− γ)(p+ Vn+1 (I− ek−el)) + max

j 6=l, j∈B∪{k}
γ (q + Vn+1 (I− ek − ej−el))

¶
+
P
i∈C λ

µ
(1− γ)(p− b+ Vn+1 (I− el)) + max

j 6=i, j∈B∪{k}
γ (q − b+ Vn+1 (I− ej−el))

¶
+λ

µ
(1− γ)(p− b+ Vn+1 (I− el)) + max

j 6=l, j∈B∪{k}
γ (q − b+ Vn+1 (I− ej−el))

¶
+(1−mλ)Vn+1 (I− el) (by (47), (48), and (49))

= Vn (I− el) .

Case 2: Ik > Il = 1.

Note that for any n = 1, 2, ..., N , i = 1, 2, ...,m, and inventory vector I, we have Vn(I− ei) + b ≥ Vn(I),
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which together with (47), implies that

Vn+1 (I− ek−ek) ≥ −b+ Vn+1 (I− el) , (50)

and for any j ∈ B,

Vn+1 (I− ek − ej−ek) ≥ −b+ Vn+1 (I− ej−el) . (51)

Vn (I− ek)
=

X
i∈B

λ

µ
(1− γ)(p+ Vn+1 (I− ei−ek)) + max

j 6=i, j∈B∪{k,l}
γ (q + Vn+1 (I− ei − ej−ek))

¶
+λ

µ
(1− γ)(p+ Vn+1 (I− el−ek)) + max

j 6=l, j∈B∪{k,l}
γ (q + Vn+1 (I− el − ej−ek))

¶
+λ

µ
(1− γ)(p+ Vn+1 (I− ek−ek)) + max

j 6=k, j∈B∪{k,l}
γ (q + Vn+1 (I− ek − ej−ek))

¶
+
X
i∈C

λ

µ
(1− γ)(p− b+ Vn+1 (I− ek)) + max

j 6=i, j∈B∪{k,l}
γ (q − b+ Vn+1 (I− ej−ek))

¶
+(1−mλ)Vn+1 (I− ek)

≥
X
i∈B

λ

µ
(1− γ)(p+ Vn+1 (I− ei−el)) + max

j 6=i, j∈B∪{k}
γ (q + Vn+1 (I− ei − ej−el))

¶
+λ

µ
(1− γ)(p+ Vn+1 (I− ek−el)) + max

j 6=l, j∈B∪{k}
γ (q + Vn+1 (I− ek − ej−el))

¶
+
X
i∈C

λ

µ
(1− γ)(p− b+ Vn+1 (I− el)) + max

j 6=i, j∈B∪{k}
γ (q − b+ Vn+1 (I− ej−el))

¶
+λ

µ
(1− γ)(p− b+ Vn+1 (I− el)) + max

j 6=l, j∈B∪{k}
γ (q − b+ Vn+1 (I− ej−el))

¶
+(1−mλ)Vn+1 (I− el) (by (47), (50), and (51))

= Vn (I− el) .¥
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Number of ObservationsPackaging Configuration

Table 1: Packaging configurations for the top 100 best-selling books at Amazon.com:
- book on the top 100 list,           - book not on the top 100 list.
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Fig.1. 3-product case: optimal dynamic packaging as a function of the state of the system (a – for 
I2=2, I3=4, n=1) and time (b – for for I1=1, I2=2, I3=2). N=10,                                             , p1=β= 
p3=1, p2=1.5.
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Fig. 2. Optimal price for the ij package as a function of the time index n for the 
Lost Sales model. Pricing functions and model parameters:    (pij)=((pi+pj-pij)/pi)β, 
pij = pi ,       = pi + pj, β = 1, p1 = 1, p2 = 2, λ1  = λ2  = 0.4, Ι2  = 5. 
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